JPS61254203A - Microporous membrane - Google Patents

Microporous membrane

Info

Publication number
JPS61254203A
JPS61254203A JP28126184A JP28126184A JPS61254203A JP S61254203 A JPS61254203 A JP S61254203A JP 28126184 A JP28126184 A JP 28126184A JP 28126184 A JP28126184 A JP 28126184A JP S61254203 A JPS61254203 A JP S61254203A
Authority
JP
Japan
Prior art keywords
membrane
solvent
microporous membrane
latex particles
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28126184A
Other languages
Japanese (ja)
Inventor
Takemoto Kamata
健資 鎌田
Masaharu Oda
雅春 小田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP28126184A priority Critical patent/JPS61254203A/en
Publication of JPS61254203A publication Critical patent/JPS61254203A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a microporous membrane showing sharp fractional characteristics and having a large void ratio, by using a microporous membrane having narrow pore size distribution wherein a void ratio is a specific value or more and the inhibiting ratio of monodisperse latex particles is a specific value. CONSTITUTION:For example, polystyrene is used as a spherical phase and polyhydroxybutyrate is used as a continuous phase to respectively prepare chloroform solutions and the solution mixture of both of them is formed into a film to evaporate a solvent. Next, the obtained film is immersed in dimethylformamide being the solvent to polystyrene but the non-solvent to polyhydroxybutyate and subsequently washed with water and dried by air. Thus obtained membrane has a void ratio of 25% or more and an inhibiting ratio of monodisperse latex particles, which has a particle size 1/5 the diameter of monodisperse latex particles showing an inhibiting ratio of 95%, of 10% or less and shows sharp fractional characteristics and a high filtrate transmitting speed.

Description

【発明の詳細な説明】 〔座業上の利用分野〕 本発明は限外濾過、精@濾過等に適した孔径分布の狭い
微多孔質膜に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Sedentary Use] The present invention relates to a microporous membrane with a narrow pore size distribution suitable for ultrafiltration, semi-filtration, etc.

〔従来の技術〕[Conventional technology]

限外濾過膜や精密濾過膜は水処理、食品工業、医薬品工
業、医療分野等で広く用いらnているが、こnらの膜は
分画すべき対象物の粒径にあわせて種々の孔径の膜が用
いらnでいるが、膜としては大きな濾過速度とシャープ
な分画特性か要求さ扛る。
Ultrafiltration membranes and precision filtration membranes are widely used in water treatment, food industry, pharmaceutical industry, medical field, etc., but these membranes have various pore sizes depending on the particle size of the target material to be fractionated. However, the membrane is required to have a high filtration rate and sharp fractionation characteristics.

従来の微多孔質膜は高分子全溶剤に溶解して得らnる溶
液をフィルム状、チューブ状あるいは中壁糸状に賦形し
た後、該高分子の非溶剤中に浸漬して高分子?沈澱させ
て微多孔質膜を得る方法、高分子を溶剤と非溶剤の混合
液に溶解、賦形後該混曾液を蒸発さぜ、微多孔質膜を得
る方法、ポリマーと他のポリマー又は無機塩類全混付し
て賦形後、−万のポリマーや無機塩類七七の溶剤で抽出
する方法等で得らnてきた。
Conventional microporous membranes are made by dissolving all polymers in a solvent, shaping the resulting solution into a film, tube, or inner-walled thread, and then immersing it in a non-solvent for the polymer. A method for obtaining a microporous membrane by precipitation, a method for obtaining a microporous membrane by dissolving a polymer in a mixture of a solvent and a non-solvent, and evaporating the mixture after shaping; It was obtained by a method such as mixing all the inorganic salts, shaping, and then extracting with a polymer of 10,000 or a solvent of 7,700 inorganic salts.

〔発明が解決すべき問題点〕[Problems to be solved by the invention]

cnらの膜は空孔率が大きく、大きな透過速度が得られ
る可能性があるが、これらの方法によるいずnの膜も分
画特性がブロードとなりシャープな分画特性を示すもの
は得らnない。
The membrane of cn et al. has a large porosity and may be able to obtain a high permeation rate, but the membranes of cn et al. obtained by these methods have broad fractionation characteristics, and it is not possible to obtain a membrane that exhibits sharp fractionation characteristics. No.

こt′Lは微多孔質膜に存在する空孔の孔径が不均一で
あるためと考えら詐る。孔径分布を水銀圧入法で測定し
た場合にみかけ上シャープな孔径分布を示すものもある
が、水銀圧入法は孔径分布の目安を与えるだけのもので
あり、実用的な性能を示すものでなく、実際の濾過特性
に関係する分画特性として孔径分布を既知の粒径の単分
散ラテックス粒子を用いて測定してみると第1図(aJ
に示さnるカーブを描き、実用上シャープな孔径分布を
示すものではない。
It is incorrect to think that this t'L is due to the non-uniformity of the pore diameters of the pores present in the microporous membrane. When the pore size distribution is measured using the mercury intrusion method, some products show an apparently sharp pore size distribution, but the mercury intrusion method only provides a guideline for the pore size distribution and does not indicate practical performance. Figure 1 (aJ
It draws a curve as shown in (n), and does not show a sharp pore size distribution in practical use.

一方、従来技術の中でもシャープな分画特性上水す微多
孔質膜として、ポリマーフィルムに原子炉から発生する
高エネルギーの荷電粒子全照射し、次いでアルカリエツ
チング等により荷電包子で分解したポリマーを抽出する
方法で作成するものにュークリボア、商品名、GEi社
製)がある。しかしこの@はその製法から来る制約上多
数の空孔を形成さぜることか困難で、空孔率は高々20
%迄のものしか得られず、従って透過速度が小さいとい
う欠点に!する・そこで実用上の孔径分布かシャープで
濾過速度を決める因子の1つである空孔率の大きな膜の
出現が要請さnている現状にある。
On the other hand, as a microporous membrane with sharp fractionation characteristics among conventional technologies, the polymer film is fully irradiated with high-energy charged particles generated from a nuclear reactor, and then the polymer decomposed in the charged envelopes is extracted by alkali etching etc. There is Eucribore (trade name, manufactured by GEi) that is created using this method. However, due to the constraints imposed by its manufacturing method, it is difficult to form a large number of pores in this @, and the porosity is at most 20.
%, and the disadvantage is that the permeation rate is low! Therefore, there is a need for a membrane with a sharp pore size distribution and high porosity, which is one of the factors that determines the filtration rate, in practical use.

本発明の目的はシャープな分画特性を示し、かつ空孔率
の大きい微多孔質膜を提供することにある。
An object of the present invention is to provide a microporous membrane that exhibits sharp fractionation characteristics and has a large porosity.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の要旨は25%以上の空孔率tMし、阻止率95
%7示す単分散ラテックス粒子の直径の115の粒径の
単分散ラテックス粒子の阻止車が10%以下である孔径
分布の狭い微多孔質膜にある。
The gist of the present invention is to have a porosity tM of 25% or more and a rejection rate of 95.
The microporous membrane has a narrow pore size distribution in which the blocking wheel of monodisperse latex particles having a particle size of 115% of the diameter of the monodisperse latex particles showing %7 is 10% or less.

空孔率は膜の全体積VMに対する膜中の空孔の全体積V
り比率を百分率で表したもので式(1)%式% 空孔率は一般的には水銀圧入法で測定することかできる
が、簡便法としては膜を構成する高分子を膨潤させない
液体で膜中の空孔を満し、その前後の重量変化がら空孔
率を求めることもできる。
The porosity is the total volume of pores in the membrane, V, relative to the total volume of the membrane, VM.
Porosity can generally be measured by mercury porosimetry, but a simple method is to measure it using a liquid that does not swell the polymer that makes up the membrane. It is also possible to fill the pores in the membrane and determine the porosity from the weight change before and after filling.

膜の分画特性の指標として単分散ラテックス粒子の阻止
率を測定する方法全説明する。単分散ラテックスの稀薄
懸濁水溶液を用いて膜表面近傍全マグネチツクスターラ
−を用いて攪拌しながら該水溶液t″F遇し、r過前後
のラテックス粒子濃度(各々af、0p)k測定して、
式(2)から阻止率が求めらnる。種々の粒径のラテッ
クスを用いて阻止率を求め、こnから分画曲線を描き、
95%阻止の時の粒径、その115の粒径の阻止率を求
めnばよい。
A method for measuring the rejection of monodisperse latex particles as an indicator of the fractionation properties of a membrane is fully described. Using a dilute suspended aqueous solution of monodisperse latex, stir the aqueous solution t''F near the membrane surface using a magnetic stirrer, and measure the latex particle concentration (af, 0p, respectively) before and after r. ,
The rejection rate can be calculated from equation (2). Determine the rejection rate using latex of various particle sizes, draw a fractionation curve from this,
What is necessary is to find the particle size at 95% inhibition and the rejection rate for the particle size of 115%.

中空糸やチューブ状膜の場合は膜の外部の液を攪拌して
膜表面が乱流にさらさnる状態で濾過tして測定すnば
よい。
In the case of a hollow fiber or tubular membrane, the measurement may be performed by stirring the liquid outside the membrane so that the membrane surface is exposed to turbulent flow and filtering it.

本発明の微多孔質膜の単分散ラテックス粒子の阻止率は
目的に応じ種々の値を選ぶことができるか、95阻止率
を示す粒子の粒径か0.1〜50μmであることが好ま
しい。
The rejection rate of the monodispersed latex particles of the microporous membrane of the present invention can be selected from various values depending on the purpose, and it is preferable that the particle size of the particles exhibiting a 95 rejection rate is 0.1 to 50 μm.

以下に本発明を図面を用いて説明する。The present invention will be explained below using the drawings.

第1図は鴇々の粒径の単分散ラテックス粒子の阻止率を
示す曲線であり、曲線(1))、 (e)は本発明の膜
の測定結果であり、曲線(a)は水銀圧入法による孔径
分率かシャープであるとした従来法による膜の測定結果
である。第1図から阻止車95%の阻止率となる粒子径
’eXIX’とした時0.2に、(12に’の粒径の粒
子の阻止率は曲線(alで約50%、(b)で10%、
(C)では5%弱となり本願発明の膜が分画特性がシャ
ープであることがわかる。
Figure 1 is a curve showing the rejection rate of monodisperse latex particles of a certain particle size, curves (1)) and (e) are the measurement results of the membrane of the present invention, and curve (a) is the mercury intrusion These are the results of measuring a membrane using the conventional method, in which the pore size fraction was found to be sharp. From Fig. 1, when the particle diameter is 'eXIX' which gives a blocking rate of 95%, the blocking rate of particles with a particle size of 0.2 and (12') is shown by the curve (al, approximately 50%, (b) 10%,
In (C), it is a little less than 5%, indicating that the membrane of the present invention has sharp fractionation characteristics.

次に本発明の膜の好ましい製造法について述べる。Next, a preferred method for manufacturing the membrane of the present invention will be described.

相溶性の悪い高分子を混合しても相分[−おこすが、両
者に対し溶解能を示す溶剤を用いて両者の混合溶液を作
ると均一な高分子混合溶液となる。こn’を賦形した後
溶剤を蒸発させると溶剤の蒸発に伴って高分子溶液が相
分離會おこす。この場合、両者の高分子の混合比を適切
に選ぶと一方の高分子が連続相となジ、他の高分子が球
状となって分散した相分離構造となる。
Even if polymers with poor compatibility are mixed, phase separation [-] will occur, but if a mixed solution of both is made using a solvent that can dissolve both, a uniform polymer mixed solution will be obtained. When the solvent is evaporated after shaping this n', phase separation of the polymer solution occurs as the solvent evaporates. In this case, if the mixing ratio of both polymers is appropriately selected, one polymer becomes a continuous phase and the other polymer becomes spherical and dispersed to form a phase-separated structure.

この球状孔の直径に溶剤の蒸発速度、蒸発温度0球状相
、連続相の粘度球状孔の高分子の分子量等により異なり
、例えば溶剤の蒸発速度を速くすると球の直径は小さく
なり、蒸発温度を低くすると球状孔同士の会合がおこら
ず均一な直径の球状相が多数できたものが得らnる。
The diameter of the spherical pores varies depending on the evaporation rate of the solvent, the evaporation temperature, the viscosity of the spherical phase, the continuous phase, the molecular weight of the polymer in the spherical pores, etc. For example, if the evaporation rate of the solvent is increased, the diameter of the sphere becomes smaller, and the evaporation temperature is increased. If it is lower, the spherical pores will not associate with each other, and a large number of spherical phases with uniform diameters will be obtained.

このような構造”kWするものを得る几めの高分子の組
合せとしては、両者の溶解度パラメーターの差の絶対値
Δδか113以上、好筐しぐに15以上、より好ましく
は1.0以上となるものが良い。このΔδが大きい程均
−な直径の球状相全得やすい。
As for a careful combination of polymers to obtain such a structure with kW, the absolute value Δδ of the difference in solubility parameters between the two should be 113 or more, preferably 15 or more, more preferably 1.0 or more. The larger Δδ is, the easier it is to obtain a spherical phase with uniform diameter.

このような高分子の組合せとして球状相にポリスチレン
を選ぶと、連続相を形成する高分子としてポリヒドロキ
シブチレート(jl下PHBという〕、ポリラクタイド
、セルロースアセテート、ポリ塩化ビニリデン、PAN
系ポリマー等を挙げることができる。また逆にこnらの
ポリマーを球状相にしてポリスチレンを連続相にするこ
とができる。
When polystyrene is selected as the spherical phase as a combination of such polymers, the polymers forming the continuous phase are polyhydroxybutyrate (hereinafter referred to as PHB), polylactide, cellulose acetate, polyvinylidene chloride, and PAN.
Examples include polymers of various types. Conversely, these polymers can be made into a spherical phase and polystyrene can be made into a continuous phase.

こnらの組合せの場合、溶剤としてはクロロホルム、塩
化メチレン等の低沸点ハロゲン化炭化水素が好ましく用
いらnる。
In the case of these combinations, low boiling point halogenated hydrocarbons such as chloroform and methylene chloride are preferably used as the solvent.

ΔJがα3以上であり、両者を溶かして均一な溶液にで
きる溶剤があり、かつ、−万全溶解して他方に対しては
非溶剤となる溶剤がある高分子の組付せてあnば、一方
かポリスチレンに限定さnることなく、どのような組合
せもとることかできる。
If ΔJ is α3 or more, there is a solvent that can dissolve both of them to form a uniform solution, and there is a solvent that completely dissolves them and becomes a non-solvent for the other, if the polymer is assembled, Any combination can be used without being limited to one or the other polystyrene.

球状相を形成させ、かつ空孔率の大きい膜を得るために
は高分子同士の混合比は球状相用高分子/連続相用高分
子の重量比が12〜1.3であることが好ましく、15
〜1.2であることがより好ましい・ 両者の高分子を溶剤に溶解した時の濃度は、[15〜1
0%であることか好ましい。濃度がこnより高すぎると
均一な溶液が得らnず・低すぎると溶剤量、溶剤蒸発に
かかるコストが大きくなり好ましくない。
In order to form a spherical phase and obtain a membrane with a large porosity, the mixing ratio of polymers is preferably such that the weight ratio of spherical phase polymer/continuous phase polymer is 12 to 1.3. , 15
The concentration when both polymers are dissolved in a solvent is preferably [15 to 1.2].
It is preferable that it be 0%. If the concentration is too high, a uniform solution will not be obtained, and if it is too low, the amount of solvent and the cost for solvent evaporation will increase, which is undesirable.

こうして得らnる上記球状相が分散した連続相からなる
賦形物を球状相に対しては溶解能を有し、連続相に対し
ては非溶剤である溶媒を用いて処理をすることにより球
状相のみ全選択して溶解した後、乾燥すnば孔径が均一
で空孔率の大きい膜が得らnる。
By treating the thus obtained excipient consisting of a continuous phase in which the above-mentioned spherical phase is dispersed, using a solvent that has the ability to dissolve the spherical phase and is a non-solvent for the continuous phase. After all the spherical phases are selected and dissolved, a membrane with uniform pore diameter and high porosity can be obtained by drying.

この選択溶解能’に!する溶媒としては球状相がポリス
チレンの場合は、MffiK、シクロヘキサン、DMF
、THF、芳香族炭化水素等のポリスチレン溶剤の中か
ら連続相を構成する高分子全溶解しないものを適宜選択
丁扛ばよい。水溶性高分子の場合は水を挙げることがで
きる。
This selective solubility'! When the spherical phase is polystyrene, the solvent used is MffiK, cyclohexane, DMF.
, THF, aromatic hydrocarbons, and the like, which do not completely dissolve the polymer constituting the continuous phase may be appropriately selected. In the case of water-soluble polymers, water can be mentioned.

球状相の溶解除去の際、連続相にも少量の球状相の高分
子が混合しているため、球状相の他、連続相にも極〈小
さいを孔が存在する場合もある。しかし、この連続相中
の空孔は球状相の除去によって生ずる空孔に比べ著しく
小さいため膜の分離性能には実質的に影響を与えない。
When the spherical phase is dissolved and removed, a small amount of the polymer of the spherical phase is mixed in the continuous phase, so in addition to the spherical phase, extremely small pores may also be present in the continuous phase. However, the pores in this continuous phase are significantly smaller than the pores produced by removal of the spherical phase, so they do not substantially affect the separation performance of the membrane.

本発明の膜の形態としては、フィルム状のものに限らず
、チューブ状、中空糸状公知の形態にも賦形出来ること
は当業者であれば容易に達成出来る。さらに分離効率を
同上させるためには、膜の厚みt出来るだけ薄くするこ
とが好ましく、数μmから数十μmの膜厚が好ましい。
Those skilled in the art can easily realize that the membrane of the present invention can be formed not only into a film but also into tubes and hollow fibers. Furthermore, in order to improve the separation efficiency, it is preferable to make the membrane thickness as thin as possible, and the membrane thickness is preferably from several μm to several tens of μm.

本発明の方法で粒径か0.1μmから数十μmのと ラテックス膣子どシャープに分別することが可能な膜を
得ることが可能であり、さらに空孔率が25%以上の透
過速度の大きい膜が得らnる。
By the method of the present invention, it is possible to obtain a membrane that can sharply separate latex vagina particles with a particle size of 0.1 μm to several tens of μm, and a membrane with a porosity of 25% or more and a permeation rate. A large film can be obtained.

〔実施例〕〔Example〕

以下に実施例を用いて本発明tさらに詳しく説明する。 The present invention will be explained in more detail below using examples.

実施例1 粘度平均分子量50万、ポリヒドロキシブチレート(P
H!3と略す)とアニオン1会で得らnた第1表に示す
Xt平均分子量を有する釉々の単分散ポリスチレン(P
st、 )の13wむ優クロロホルム溶液tそnぞn調
製して、等量ずつ混OL、、Pa t/PHB = 1
 (D a 台m液’に!l!! L7c。この混曾溶
液r;c透明で均一であった。この混合溶液を溶媒蒸発
後のフィルムの厚みが50μになるよう、ガラスシャー
レに入れ、溶媒の蒸発速度tコントロールしなからりe
IeIホルムに!発させた。なお、溶媒の蒸発速度のフ
ントロールは以下のように行った。直径約203のデシ
ケータ−内に溶液を入t′L′fcガラスシャーレr入
n。
Example 1 Polyhydroxybutyrate (P) with a viscosity average molecular weight of 500,000
H! Glazed monodisperse polystyrene (P
Prepare a 13w chloroform solution of st, ) and mix in equal amounts, Pat/PHB = 1
(D a Base m solution! l!! L7c. This mixed solution r;c was transparent and uniform. This mixed solution was placed in a glass Petri dish so that the thickness of the film after solvent evaporation was 50 μm. The evaporation rate of the solvent cannot be controlled.
To IeI Holm! I let it emanate. Note that the evaporation rate of the solvent was measured as follows. Pour the solution into a desiccator with a diameter of about 20 mm.Pour the solution into a glass petri dish.

デシケータ−のふ7t?シた。デシケータ−のふ−内に
注入しへ溶液全乾燥させた。本実験では70メーターで
9気量會コントロールし、室温で200WLt/m1n
 の流量で蒸発温度は室温(約25℃)であった。得ら
nたフィルム状の賦形物t−PstKは溶媒であるがP
HBICは非溶剤であるジメチルホルムアミド(DMF
)に浸漬後水洗してフィルムを風乾した。得ら:rL7
1=フィルムの表面全電子顕微鏡で観察すると写真(3
)のごとく円形に近い均一な孔径を有する全孔を多数有
する膜が得らn友。得らn皮膜の9孔率と透水速度を第
1表に示す。
7 tons of desiccator? Shita. The solution was poured into a desiccator and completely dried. In this experiment, 9 air volume was controlled using 70 meters, and 200WLt/m1n was used at room temperature.
The evaporation temperature was room temperature (approximately 25°C) at a flow rate of . The obtained film-like excipient t-PstK is a solvent, but P
HBIC uses dimethylformamide (DMF), a non-solvent.
), the film was washed with water and air-dried. Obtained: rL7
1 = The surface of the film is photographed when observed with a full electron microscope (3
), it is possible to obtain a membrane having a large number of all pores with uniform pore diameters that are nearly circular. Table 1 shows the porosity and water permeation rate of the obtained n-film.

空孔率6は乾燥状の膜上ブタノール中に30分浸漬後、
表面金ぬぐった状態での重量(Wl)、こf’L’を真
空乾燥機中60℃で1昼夜乾燥した後の重量(W2)、
ポリマーの密度(ρp、PHBの場合1、250 )、
重量測定温度でのブタノールの密度ρBから式3を用い
て求めた 実験No4の膜の表面状態を写真3に示す。
The porosity is 6 after immersing the dry membrane in butanol for 30 minutes.
Weight (Wl) when the surface is wiped with gold, weight after drying this f'L' at 60°C in a vacuum dryer for one day and night (W2),
Density of the polymer (ρp, 1,250 for PHB),
Photo 3 shows the surface condition of the membrane of Experiment No. 4, which was determined using Equation 3 from the density ρB of butanol at the weight measurement temperature.

各々粒径(LaO2、(L913.1.091.2.9
5.4.31、i7、&9.11.9.1&7の単分散
ポリスチレン、ポリビニルトルエン、又はスチレン−ジ
ビニルベンゼンポリマーラテックス111%水溶液を用
いてこnらの膜の分画曲線を求め、その分画曲線から阻
止率95優の時の粒径の175の粒径の時阻止率(Rd
15)t−求めた。その結果を表1に示す。
Each particle size (LaO2, (L913.1.091.2.9
5.4.31, i7, &9.11.9.1&7 Monodisperse polystyrene, polyvinyltoluene, or styrene-divinylbenzene polymer latex 111% aqueous solution was used to determine the fractionation curve of these membranes, and the fraction From the curve, the rejection rate at a particle size of 175 (Rd
15) t-calculated. The results are shown in Table 1.

表  1 実施例2 実施例1の実験N004のポリマーの組付ぜでガラスシ
ャーレの代りにチアミン製のシャーレ勿用い、さらに乾
燥後の膜厚が10μmになるように調節した以外は実施
例1と同様にして微多孔質膜り、に4得た・得らn几膜
につき粒径[1L605、α7、[1L804、α91
3.1.091.2.95.4.31、i7、&8.1
1.9.1&7の単分散ラテックスα1%水溶液を用い
て、なお蒸発速度のフン)o−ルは、窒気童t−DIl
lで250 mA/m1nxFX膜で300 mt/m
inとした以外は実施例1と同様の方法で行った。分画
曲線を求めた。さらに高エネルギー荷電粒子を照射した
後、アルカリ曲線を求めた。これらを第2図に示す。こ
nらの膜の95%阻止率を示す流径((1)、その11
5の粒径での阻止W= RA15.空孔率を第2表に示
す。
Table 1 Example 2 Same as Example 1 except that a thiamin Petri dish was used instead of a glass Petri dish in the polymer assembly of Experiment No. 004 of Example 1, and the film thickness after drying was adjusted to 10 μm. Microporous membranes were prepared in the same manner, and particle sizes [1L605, α7, [1L804, α91
3.1.091.2.95.4.31, i7, &8.1
1.9.1 & 7 monodispersed latex α 1% aqueous solution was used, and the evaporation rate was determined by Nitkido t-DIl.
250 mA/m at 1nxFX membrane 300 mt/m
The same method as in Example 1 was carried out except that the temperature was changed to "in". A fractionation curve was determined. After further irradiation with high-energy charged particles, an alkaline curve was determined. These are shown in FIG. The flow diameter showing the 95% rejection rate of these membranes ((1), part 11
Rejection W at a particle size of 5 = RA15. The porosity is shown in Table 2.

第  2  表 本商品名 70口ボア(住友電工社製)第2図から明ら
かなように膜G(曲線?)は分画曲線がブロードとなり
、好ましい分画特性が得らnず、第2表から明らかなよ
うに膜FU窒孔率が小さく、従って層単位面積当9のr
過速度が小さいのに対し、本願発明の膜は分画特性がシ
ャープでかつ空孔率も大きいことがわがる。
Table 2: This product name: 70-bore (manufactured by Sumitomo Electric) As is clear from Figure 2, the membrane G (curve?) had a broad fractionation curve, and the desired fractionation characteristics could not be obtained. As is clear from
It can be seen that while the overspeed is small, the membrane of the present invention has sharp fractionation characteristics and a large porosity.

実施例3 ζ OH,0 子Ji30万)(PLLAと略す)と単分散ポリスチレ
ン(重量平均分子量五7万)の(L 3 wt%のクロ
ロホルム溶液tそnぞnpi整して等量ずつ混甘し、P
st/PLLA = 1の混合溶液を調整りし実施例2
と同様にしてテフロンシャーレ上に溶液全流延し、溶媒
と蒸発させた後、DMP中に浸漬し、水洗後乾燥するこ
とによって10 pmの厚み’It−Nする半透膜を得
た。得らnた膜の分画特性と実施例2と同様に測定した
ところ、空孔率63%、95%阻止率を示す粒径z9μ
m1CL58μmでの阻止率2僑と優fLt分画特性を
示し空孔率の大きい膜であった。
Example 3 A chloroform solution of (L 3 wt%) of monodisperse polystyrene (weight average molecular weight 570,000) and monodispersed polystyrene (weight average molecular weight 570,000) were prepared and mixed in equal amounts. P
Example 2 A mixed solution of st/PLLA = 1 was prepared.
In the same manner as above, the entire solution was cast onto a Teflon Petri dish, and after evaporating the solvent, it was immersed in DMP, washed with water, and dried to obtain a 10 pm thick 'It-N semipermeable membrane. The fractionation characteristics of the obtained membrane were measured in the same manner as in Example 2, and the particle size was z9μ showing a porosity of 63% and a rejection rate of 95%.
The membrane exhibited excellent fLt fractionation characteristics with a rejection rate of 2 at m1CL of 58 μm, and had a large porosity.

実施例4 実施例1のPHBとポリメチルメタクリレ−) (PM
MAと略す、重量平均分子量2.8万)と単分散ポリス
チレンをPHB : PMMA : Pst=1:α5
:(L5(重量比)で混合し、1 wt%のクロロホル
ム溶液を調整した。実施例3と同様にして製膜を行い、
膜厚20μの微多孔質膜表面友。この膜の分画特性と実
施例3と同様に単分散ラテックスを用いて測定したとこ
ろ空孔率59%、95%阻止率會示す粒径2.7μm、
4゜その175 の牧径での阻止率は0%であった。
Example 4 PHB of Example 1 and polymethyl methacrylate) (PM
(abbreviated as MA, weight average molecular weight 28,000) and monodisperse polystyrene as PHB: PMMA: Pst=1:α5
:(L5 (weight ratio) was mixed to prepare a 1 wt% chloroform solution. Film formation was performed in the same manner as in Example 3,
Microporous membrane surface with a thickness of 20μ. The fractionation characteristics of this membrane were measured using monodispersed latex in the same manner as in Example 3, and the particle size was 2.7 μm, showing a porosity of 59% and a rejection rate of 95%.
4゜The rejection rate at the 175 diameter was 0%.

〔発明の効果〕〔Effect of the invention〕

本発明によって得らnる膜は限外濾過や精密濾過膜とし
て用い几場合、シャープな分画特性を示すものであり、
かつ膜の空孔率が大きいため、P液の透過速度も大きく
、小さい膜面積で所定量の被濾過液會処理することか可
能である。
When the membrane obtained by the present invention is used as an ultrafiltration or microfiltration membrane, it exhibits sharp fractionation characteristics.
In addition, since the porosity of the membrane is large, the permeation rate of the P liquid is also high, and it is possible to process a predetermined amount of the liquid to be filtered with a small membrane area.

孔形態である。明らかに本発明の膜の孔径は均一であり
、かつ写真(2)と比べnば、単位膜面積あたりの空孔
数(即ち空孔率)が大きいことがわかる。またラテック
ス水溶液で調べた膜の分画特性は本発明の膜の場合、第
1図(b)、 (C)のどとくであり、従来の膜の特性
(第1図(a)、第2図(t)〕に比べ、シャープな特
性を示すものである。
It has a pore form. It is clear that the pore diameter of the membrane of the present invention is uniform, and compared to photograph (2), the number of pores per unit membrane area (ie, porosity) is large. In addition, the fractionation characteristics of the membrane examined using a latex aqueous solution are as follows: In the case of the membrane of the present invention, the throat is low (Figures 1(b) and (C)), whereas the characteristics of the conventional membrane (Figures 1(a) and 2) are low. (t)] exhibits sharper characteristics.

本発明の膜はこのように優nた分離特性全示す窺め、粒
径が比較的に接近し7を粒子同志の分離に有効に用いる
ことが出来る。
The membrane of the present invention exhibits excellent separation properties as described above, and the particle sizes are relatively close to each other, making it possible to effectively use the membrane for separating particles.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は微多孔質膜の分画特性を示す曲線のモデル図で
あり、曲線aは従来の膜曲線す、  cは本発明の膜で
ある。 第2図は実施例2の結果をグラフに示したものである。 曲線d、eは本発明の膜であり、曲線f、fは市販膜で
ある。 写真(1)、写真(2)は市販膜表面の空孔形態の走査
型電子顕微鏡写真であり、写真(3)は本発明の微多孔
質膜表面の空孔形態の走査型電子顕微鏡写真である。 竣−@ 析(波) 狐 −@ 簀(被) 図面の浄書(内容に変更なし) P 73  図 堵 オ′4面 図面の浄書(内容に変更なし) 才5囚 手続補正書 昭和61年 5月27日 特許庁長官  宇 賀 道 部 殿 事件の表示 昭和59年特許願第281261、 発明の名称 微多孔質膜 補正をする者 事件との関係    特許出願人 東京都中央区京橋二丁目3番19号 (603)三菱レイヨン株式会社 取締役社長  河 崎 晃 夫 5゜ 6゜ 願書の「添付書類の目録」の欄、明細書の「図面の簡単
な説明」の欄及び図面 1)願書を別紙の通り補正する。 2)明細書第17頁第7行の「写真(1)、写真(2)
」を「第3図、第4図」に訂正する。 3)同第8行の「写真(3)」を「第5図」に訂正する
。 4)図面の写真1乃至写真3を5J1紙の通り補正する
FIG. 1 is a model diagram of curves showing the fractionation characteristics of a microporous membrane, where curve a is a conventional membrane curve and curve c is a membrane curve of the present invention. FIG. 2 is a graph showing the results of Example 2. Curves d and e are the membranes of the invention, and curves f and f are commercially available membranes. Photos (1) and (2) are scanning electron micrographs of the pore morphology on the surface of a commercially available membrane, and Photo (3) is a scanning electron micrograph of the pore morphology on the surface of the microporous membrane of the present invention. be. Completion - @ Analysis (wave) Kitsune - @ Screen (subject) Engraving of the drawing (no change in content) P 73 Engraving of the 4-page drawing (no change in content) Amendment of procedure for five-year prisoner 1986 5 Patent Application No. 281261 filed in 1981 by the Commissioner of the Japan Patent Office Michibe Uga on August 27th, Name of the invention Relationship to the microporous membrane amendment case Patent applicant: 2-3-19 Kyobashi, Chuo-ku, Tokyo No. (603) Akio Kawasaki President and Director of Mitsubishi Rayon Co., Ltd. to correct. 2) “Photo (1), Photo (2)” on page 17, line 7 of the specification
" should be corrected to "Figures 3 and 4." 3) Correct "Photo (3)" in line 8 to "Figure 5." 4) Correct photos 1 to 3 of the drawings according to the 5J1 paper.

Claims (1)

【特許請求の範囲】[Claims] 1、25%以上の空孔率を有し、阻止率95%を示す単
分散ラテックス粒子の直径の1/5の粒径の単分散ラテ
ックス粒子の阻止率が10%以下である孔径分布の狭い
微多孔質膜。
1. Narrow pore size distribution with a porosity of 25% or more and a rejection of 10% or less for monodisperse latex particles with a particle size of 1/5 of the diameter of the monodisperse latex particles exhibiting a rejection of 95% Microporous membrane.
JP28126184A 1984-12-27 1984-12-27 Microporous membrane Pending JPS61254203A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28126184A JPS61254203A (en) 1984-12-27 1984-12-27 Microporous membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28126184A JPS61254203A (en) 1984-12-27 1984-12-27 Microporous membrane

Publications (1)

Publication Number Publication Date
JPS61254203A true JPS61254203A (en) 1986-11-12

Family

ID=17636608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28126184A Pending JPS61254203A (en) 1984-12-27 1984-12-27 Microporous membrane

Country Status (1)

Country Link
JP (1) JPS61254203A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996014890A1 (en) * 1994-11-09 1996-05-23 Mitsubishi Rayon Co., Ltd. Hollow-filament plasma-filtering membrane and plasma-filtering module
JP2002535116A (en) * 1999-01-21 2002-10-22 株式会社荏原製作所 Ethylene-vinyl alcohol hollow fiber membrane

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996014890A1 (en) * 1994-11-09 1996-05-23 Mitsubishi Rayon Co., Ltd. Hollow-filament plasma-filtering membrane and plasma-filtering module
JP2002535116A (en) * 1999-01-21 2002-10-22 株式会社荏原製作所 Ethylene-vinyl alcohol hollow fiber membrane

Similar Documents

Publication Publication Date Title
Mao et al. Effects of coagulants on porous structure of membranes prepared from cellulose in NaOH/urea aqueous solution
US9914099B2 (en) Self-assembled block copolymer membrane
US4075108A (en) Polycarbonate membranes and production thereof
US3883626A (en) Porous cellulose acetate membrane and a process for the manufacture of same
US4188418A (en) Separation process
EP0489693B1 (en) Charged asymmetric mosaic membranes
JPS5857205B2 (en) Manufacturing method of semipermeable membrane
US4160791A (en) Polycarbonate membranes and production thereof
US5082565A (en) Semipermeable membrane made from polyether ketones
JP6547832B2 (en) Composite porous hollow fiber membrane, composite porous hollow fiber membrane module, and method of operating composite porous hollow fiber membrane module
JPS596231A (en) Porous fluorocarbon resin membrane and its production
JPS5891732A (en) Porous polyvinylidene fluoride resin membrane and preparation thereof
JPS61254203A (en) Microporous membrane
JPH03237142A (en) Porous membrane and manufacture thereof
JPS605202A (en) Porous cellulose ester type hollow fiber and preparation thereof
JPH0359733B2 (en)
JPH0338226A (en) Porous separation membrane
JPS5827964B2 (en) Manufacturing method of semipermeable membrane
JPS5958041A (en) Preparation of porous polysulfone membrane
JP2000107578A (en) Production of porous membrane using norbornene type resin
JP3464000B1 (en) Manufacturing method of high performance hollow fiber microfiltration membrane
JP3456739B2 (en) Amorphous aromatic polyetherketone hollow fiber separation membrane and method for producing the same
JPS6171802A (en) Polysulfone composite porous membrane and preparation thereof
KR20230174230A (en) Hollow fiber membrane and its manufacturing method
JPS59139902A (en) Preparation of permselective membrane