JPS61252964A - Directly coupled clutch for hydraulic transmission - Google Patents

Directly coupled clutch for hydraulic transmission

Info

Publication number
JPS61252964A
JPS61252964A JP9345985A JP9345985A JPS61252964A JP S61252964 A JPS61252964 A JP S61252964A JP 9345985 A JP9345985 A JP 9345985A JP 9345985 A JP9345985 A JP 9345985A JP S61252964 A JPS61252964 A JP S61252964A
Authority
JP
Japan
Prior art keywords
plate
transmission device
fluid transmission
direct coupling
coupling clutch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9345985A
Other languages
Japanese (ja)
Inventor
Kazumasa Tsukamoto
一雅 塚本
Masahiro Hayabuchi
正宏 早渕
Koji Maeda
浩司 前田
Kazuaki Watanabe
和昭 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin AW Co Ltd
Toyota Motor Corp
Original Assignee
Aisin AW Co Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin AW Co Ltd, Toyota Motor Corp filed Critical Aisin AW Co Ltd
Priority to JP9345985A priority Critical patent/JPS61252964A/en
Publication of JPS61252964A publication Critical patent/JPS61252964A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H45/00Combinations of fluid gearings for conveying rotary motion with couplings or clutches
    • F16H45/02Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H45/00Combinations of fluid gearings for conveying rotary motion with couplings or clutches
    • F16H45/02Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type
    • F16H2045/0221Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type with damping means
    • F16H2045/0226Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type with damping means comprising two or more vibration dampers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H45/00Combinations of fluid gearings for conveying rotary motion with couplings or clutches
    • F16H45/02Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type
    • F16H2045/0221Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type with damping means
    • F16H2045/0226Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type with damping means comprising two or more vibration dampers
    • F16H2045/0231Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type with damping means comprising two or more vibration dampers arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H45/00Combinations of fluid gearings for conveying rotary motion with couplings or clutches
    • F16H45/02Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type
    • F16H2045/0221Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type with damping means
    • F16H2045/0247Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type with damping means having a turbine with hydrodynamic damping means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H45/00Combinations of fluid gearings for conveying rotary motion with couplings or clutches
    • F16H45/02Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type
    • F16H2045/0273Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type characterised by the type of the friction surface of the lock-up clutch
    • F16H2045/0294Single disk type lock-up clutch, i.e. using a single disc engaged between friction members

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Hydraulic Clutches, Magnetic Clutches, Fluid Clutches, And Fluid Joints (AREA)

Abstract

PURPOSE:To enlarge the range of absorbable torque capacity without increasing the diameter of damper mechanism by holding the first plate between first shock-absorbing member and second plate. CONSTITUTION:First plate 24 is held between first shock-absorbing member 23 and second plate 25. The output transmitted through a piston 21 is transmitted through the first plate 24, the first shock-absorbing member 23, second plate 25, second shock-absorbing member 26 and third plate 27 to the output member serially. Consequently, the absorbable torque capacity can be enlarged without increasing the diameter of the damper mechanism 22.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、流体伝動装置の直結クラッチに関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a direct coupling clutch for a fluid transmission device.

[従来の技術] 流体伝動装置に用いられる直結クラッチは、車両に搭載
されたエンジンの出力を入力とする入力部材と変速機構
に出力する出力部材との間に流体を介して連結する流体
伝動装置の入力部材と着脱自在に係合するピストンと、
該ピストンと連結するドライブプレート、該ドライブプ
レートとIi[部材を介して連結された流体伝動装置の
出力部材と連結するドリブンプレートからなるダンパ機
構とからなり、流体伝動装置の直結クラッチに要求され
る特性は、緩衝部材を介して連結されるドライブプレー
トとドリブンプレートのトルク差を円滑に吸収すべく、
ドライブプレートとドリブンプレートのねじれ剛性を小
さくし、ねじれ角を大きくすることが要求される。
[Prior Art] A direct coupling clutch used in a fluid transmission device is a fluid transmission device that connects via fluid between an input member that receives the output of an engine mounted on a vehicle and an output member that outputs output to a transmission mechanism. a piston that removably engages with the input member of the
It consists of a drive plate connected to the piston, and a damper mechanism consisting of a driven plate connected to the output member of the fluid transmission device connected via the drive plate and the Ii member, which is required for a direct coupling clutch of the fluid transmission device. The characteristic is to smoothly absorb the torque difference between the drive plate and the driven plate connected via the buffer member,
It is required to reduce the torsional rigidity of the drive plate and the driven plate and to increase the torsional angle.

従来より用いられるダンパ機構は、ドリブンプレートの
外周側の同一円周上に2種のスプリングを直列に配設し
て設けられており、この従来のダンパ機構による特性は
、第12図の破線(a)に示す如く、低負荷時(トルク
−bからC)においてばばね定数の小さいスプリングを
作動させて捩り角−dからeで対処し、高負荷時(トル
ク−f<−b 、 C<1ll)にはばね定数の大きい
スプリングも同時に作動させて捩り角−h<−d、e<
iで対処するよう設けられていた。
A conventionally used damper mechanism is provided by arranging two types of springs in series on the same circumference on the outer peripheral side of a driven plate, and the characteristics of this conventional damper mechanism are shown by the broken line ( As shown in a), when the load is low (torque -b to C), a spring with a small spring constant is operated to cope with the torsion angle -d to e, and when the load is high (torque -f<-b, C< 1ll), a spring with a large spring constant is activated at the same time to adjust the torsion angle -h<-d, e<
i was set up to deal with it.

[発明が解決しようとする問題点] しかるに近年のエンジンの高出力化によりダンパ機構の
吸収できるトルク変動の範囲を大きくすることが要求さ
れているが、従来のダンパ機構は、緩衝部材を介して連
結されるドライブプレートとドリブンプレートとの捩り
角の範囲が小さく、トルクを吸収できる範囲が狭い範囲
に限定されていた。
[Problems to be Solved by the Invention] However, with the increase in engine output in recent years, there is a demand for increasing the range of torque fluctuations that damper mechanisms can absorb. The range of torsion angle between the connected drive plate and driven plate is small, and the range in which torque can be absorbed is limited to a narrow range.

本発明の目的は、ダンパ機構の径を大きくすることなく
、吸収できるトルク容量の範囲を大きくすることのでき
る流体伝動装置の直結クラッチの提供にある。
An object of the present invention is to provide a direct coupling clutch for a fluid transmission device that can increase the range of torque capacity that can be absorbed without increasing the diameter of the damper mechanism.

[問題点を解決するための手段] 上記問題点を解決すべく、本発明の流体伝動装置の直結
クラッチは、流体伝動装置の入力部材と着脱自在に係合
するピストンと、該ピストンと連結する第1プレートと
、該第1プレートと第1!i!衝部材を介して連結する
第2プレートと、該第2プレートと第2緩衝部材を介し
て連結すると共に前記流体伝動装置の出力部材と連結す
る第3プレートとからなる流体伝動装置の直結クラッチ
において、前記第1プレートは、前記第1緩衝部材およ
び前記第2プレートを両側より挟み込んで保持したこと
を構成とする。
[Means for Solving the Problems] In order to solve the above problems, the direct coupling clutch of the fluid transmission device of the present invention includes a piston that removably engages with an input member of the fluid transmission device, and a piston that is connected to the piston. a first plate, the first plate and the first! i! A direct coupling clutch for a fluid transmission device comprising a second plate connected through a shock member, and a third plate connected to the second plate through a second buffer member and connected to an output member of the fluid transmission device. , the first plate holds the first buffer member and the second plate by sandwiching them from both sides.

[作用および発明の効果] 上記構成よりなる本発明の流体伝動装置の直結クラッチ
は、外周と内周とに緩衝部材が配設され、ピストンより
伝達された出力が第1プレート、第1緩衝部材、第2プ
レート、第2緩衝部材、第3プレートを介して出力部材
に直列的に伝達されるため、ダンパ機構の径を大きくす
ることなく吸収できるトルク容量を大きくすることがで
きる。また従来と同様なトルク吸収容量とする場合は、
ダンパ機構の径を小さくすることができ、直結クラッチ
を軽量およびコンパクト化することができる。
[Operation and Effects of the Invention] In the direct coupling clutch of the fluid transmission device of the present invention having the above configuration, buffer members are provided on the outer periphery and the inner periphery, and the output transmitted from the piston is transmitted to the first plate and the first buffer member. Since the torque is transmitted in series to the output member via the second plate, the second buffer member, and the third plate, the torque capacity that can be absorbed can be increased without increasing the diameter of the damper mechanism. In addition, if the torque absorption capacity is the same as before,
The diameter of the damper mechanism can be reduced, and the direct coupling clutch can be made lighter and more compact.

(実施例の効果) 第1プレートを・一対のプレートより設け、該一対のプ
レートの連結位置をピストンとスプライン連結されるス
プライン嵌合部に設けることにより、次の如き効果を奏
する。
(Effects of the Embodiment) The first plate is provided as a pair of plates, and the connecting position of the pair of plates is provided at the spline fitting portion connected to the piston by spline, thereby producing the following effects.

イ)第1緩VIJ部拐の配設される円周長を最大限に取
ることができるため、第1緩衝部材および第2緩衝部材
のストローク長を大ぎく取ることができ、ダンパ機構の
捩れ角を大きく取り、吸収できるトルク容量を増大する
ことができる。
b) Since the circumferential length of the first loose VIJ part can be maximized, the stroke length of the first and second buffer members can be maximized, reducing the torsion of the damper mechanism. By increasing the angle, the torque capacity that can be absorbed can be increased.

口)第1!衝部材の配設される円周長を最大限に取るこ
とができるため、第1aItr部材および第2緩衝部材
の配設数を多くすることができ、緩衝部材1つあたりの
許容最を小さくでき、これにより緩衝部材の径寸法を小
さくすることができるため、ダンパ機構の軸寸法を短縮
することができる。
Mouth) 1st! Since the circumferential length of the shock member can be maximized, the number of the 1aItr member and the second buffer member can be increased, and the maximum permissible limit per buffer member can be reduced. As a result, the diameter of the buffer member can be reduced, so the axial dimension of the damper mechanism can be shortened.

[実施例] つぎに本発明の流体伝動装置の直結クラッチを図に示す
一実施例に基づき説明する。
[Embodiment] Next, a direct coupling clutch of a fluid transmission device of the present invention will be described based on an embodiment shown in the drawings.

第1図は本発明を適用した直結クラッチ付流体伝動装置
の断面図を示す。
FIG. 1 shows a sectional view of a fluid transmission device with a direct coupling clutch to which the present invention is applied.

車両用自動変速機の動力伝達装置である直結クラッチ付
流体伝動装置は、トルクコンバータ1と直結クラッチ2
とからなり、トルクコンバータ1のケースである動力伝
達ケース11と、該動力伝達ケース11内で流体(作動
油)を介在させ、動力を伝達する流体伝動部12とから
なり、直結クラッチ2は動力伝達ケース11と流体伝動
部12の間に配設され、直結クラッチ2は作動油供給手
段13により駆動される。
A fluid transmission device with a direct coupling clutch, which is a power transmission device for a vehicle automatic transmission, has a torque converter 1 and a direct coupling clutch 2.
It consists of a power transmission case 11 which is a case of the torque converter 1, and a fluid transmission part 12 that transmits power by interposing fluid (hydraulic oil) within the power transmission case 11. The direct coupling clutch 2 is disposed between the transmission case 11 and the fluid transmission section 12 and is driven by a hydraulic oil supply means 13 .

トルクコンバータ1は図示しないエンジンと図示しない
変速機構の間でトルクコンバータケース31内に配設さ
れ、該トルクコンバータケース31の後部(図示右側)
には変速機構を内設するトランスミッションケース32
が締結され、トルクコンバータケース31とトランスミ
ッションケース32の間はオイルポンプハウジング33
により隔壁されている。
The torque converter 1 is disposed in a torque converter case 31 between an engine (not shown) and a transmission mechanism (not shown), and is located at the rear of the torque converter case 31 (on the right side in the figure).
A transmission case 32 in which a transmission mechanism is installed
are fastened, and an oil pump housing 33 is connected between the torque converter case 31 and the transmission case 32.
It is separated by walls.

動力伝達ケース11は、図示しないエンジンのクランク
軸とスタータホイールを介して連結され、内部に直結ク
ラッチ2を内包するフロントカバー111と、該フロン
トカバー111の内周に溶接された内部に流体伝動部1
2を内包する円環板状のりャカバー112と、該リアカ
バー112の内周壁面の内壁に周設されたポンプ駆動ス
リーブ113とから構成され、ポンプ駆動スリーブ11
3の後端は、トルクコンバータケース31とトランスミ
ッションケース32の間に締結されたオイルポンプカバ
ー331の前方に突設して形成された筒状部331A内
とメタルベアリング130^およびオイルシール130
Bを介して回転自在に内設され、オイルポンプカバー3
31とりャカバー332からなるオイルポンプハウジン
グ33内に配設された外歯歯車51と内歯歯車52を備
えた内接歯車オイルポンプ5の外歯歯車51を駆動すべ
く、外歯歯車51の内周とスプライン連結されている。
The power transmission case 11 is connected to a crankshaft of an engine (not shown) via a starter wheel, and includes a front cover 111 that includes a direct coupling clutch 2 therein, and a fluid transmission section welded to the inner circumference of the front cover 111. 1
2, and a pump drive sleeve 113 provided around the inner wall of the rear cover 112.
The rear end of 3 is connected to the interior of a cylindrical portion 331A that protrudes from the front of an oil pump cover 331 fastened between the torque converter case 31 and the transmission case 32, a metal bearing 130^, and an oil seal 130.
The oil pump cover 3 is rotatably installed inside via B.
In order to drive the external gear 51 of the internal gear oil pump 5, which is provided with an external gear 51 and an internal gear 52, which are disposed in an oil pump housing 33 consisting of a 31 catcher cover 332, the internal gear 51 of the external gear 51 is The circumference is connected by splines.

流体伝動部12は、リヤカバー112の内部に一体に形
成され、リヤカバー112の回転により作動油を遠心力
で内周側から外周側に流動させるポンプ羽根車121と
、該ポンプ羽根車121に対応して設けられ、ポンプ羽
根* 121が外周側に流動させた作動油を受け、再び
内周側に流動させることによりポンプ羽根車121の回
転が伝達されるタービン羽根車122と、ポンプ羽根車
121とタービン羽根車122の内周側の間で作動油の
流動方向を変更し、トルクを増大させるステータ123
とから構成される。ステータ123の内周には一方向の
み回転可能な一方向クラッチ124のアウターレース1
24八と連結し、一方向クラッチ124のインナーレー
ス124Bは、トランスミッションケース32と締結さ
れたオイルポンプハウジング33のリヤカバー332と
連結された固定スリーブ125の前端外周とスプライン
嵌合され、ステータ123を通過する作動油の流れの向
きにより一方向にのみ回転するように設けられている。
The fluid transmission section 12 is integrally formed inside the rear cover 112, and corresponds to a pump impeller 121 that causes hydraulic oil to flow from the inner circumferential side to the outer circumferential side by centrifugal force by rotation of the rear cover 112, and the pump impeller 121. A turbine impeller 122 is provided with the pump impeller 121, and the pump impeller 121 receives the hydraulic oil that has flowed to the outer circumferential side and transmits the rotation of the pump impeller 121 by making the hydraulic oil flow to the inner circumferential side again. A stator 123 that changes the flow direction of hydraulic oil between the inner peripheral sides of the turbine impeller 122 and increases torque.
It consists of An outer race 1 of a one-way clutch 124 that can rotate in only one direction is provided on the inner periphery of the stator 123.
248, and the inner race 124B of the one-way clutch 124 is spline-fitted with the outer circumference of the front end of the fixed sleeve 125 connected to the rear cover 332 of the oil pump housing 33 which is connected to the transmission case 32, and passes through the stator 123. It is provided so that it can rotate only in one direction depending on the direction of the flow of hydraulic oil.

またタービン羽根車122を支持するタービンフランジ
122Aは、固定スリーブ125の内周の前端と後端で
メタルベアリング130C,1300を介して配設され
たトルクコンバータ1の出力部材である出力軸126と
中心側がスプライン連結される出力軸連結ハブ127の
外周フランジ127Aと下達する第3プレート21の第
4ガイドプレート27B内周部と共にリベット128で
固定連結されている。
Further, the turbine flange 122A supporting the turbine impeller 122 is centered with the output shaft 126, which is the output member of the torque converter 1, which is disposed via metal bearings 130C, 1300 at the front and rear ends of the inner circumference of the fixed sleeve 125. The outer periphery flange 127A of the output shaft connection hub 127 whose side is spline-connected and the inner periphery of the fourth guide plate 27B of the third plate 21 extending downward are fixedly connected by rivets 128.

直結クラッチ2は、動力伝達ケース11のフロントカバ
ー111と流体伝動部12のタービン羽根車122の間
に配設され、内周側筒状部211、外周側筒状部212
、円環状板部213からなり、トルクコンバータ1の入
力部材である動力伝達ケース11のフロントカバー11
1とIIIR自在に係合される円板状のピストン21と
、ロックアツプ係合時の衝撃を吸収するダンパ機構22
とからなる。ピストン21は内周側筒状部211が出力
軸連結ハブ127の環状凹部127Bにシールリング1
27Cを介して軸方向に摺動自在に外嵌されている。円
環状板部213は外周側がフロントカバー111の内部
に設けられたロックアツプ係合時に摩擦力を増大させる
摩擦材21Aに対応した平面リング状のロックアツプ係
合面213Aとして形成され、外周側筒状部212は後
方に開口する複数の切欠きとされるスプライン212^
が形成されている。
The direct coupling clutch 2 is disposed between the front cover 111 of the power transmission case 11 and the turbine impeller 122 of the fluid transmission unit 12, and includes an inner cylindrical portion 211 and an outer cylindrical portion 212.
, the front cover 11 of the power transmission case 11, which is an input member of the torque converter 1, is composed of an annular plate portion 213.
1 and IIIR, a disc-shaped piston 21 that can be freely engaged with the piston 21, and a damper mechanism 22 that absorbs the impact when lock-up engagement occurs.
It consists of The inner cylindrical portion 211 of the piston 21 is inserted into the annular recess 127B of the output shaft connection hub 127 with the seal ring 1.
27C so that it is slidable in the axial direction. The annular plate portion 213 has an outer circumferential side formed as a flat ring-shaped lock-up engagement surface 213A corresponding to a friction material 21A provided inside the front cover 111 that increases frictional force during lock-up engagement, and an outer circumferential cylindrical portion. 212 is a spline 212 which is a plurality of notches that open rearward.
is formed.

ダンパ機構22は、第2図にも示す如く、前記ピストン
21と連結されると共に外周側にばね定数が小さく、ス
トローク長の大きい圧縮コイルスプリングよりなる一部
の第1緩衝部材23を周方向に摺動可能に保持する第1
ガイドプレート24Aと第2ガイドプレート24Bから
なる第1プレート24と、該第1プレート24の第1ガ
イドプレート24Aと第2ガイドプレート24Bとの間
で周方向に摺動可能に挟持されると共に、前記第1緩衝
部材23を介して前記第1プレート24と連結する第2
プレート25と、ばね定数が大きく、ストローク長の小
さい圧縮コイルスプリングよりなる第2緩衝部材26を
周方向に摺動自在に保持する第3ガイドプレート27^
と第4ガイドプレート27Bからなり、第3ガイドプレ
ート27Aと第4ガイドプレート27Bで前記第2プレ
ート25を周方向に摺動自在に挟持し、前記第2緩衝部
材26を介して前記第2プレート25と連結する第3プ
レート27とからなり、前記第1プレート24の外周位
置にはピストン21のスプライン212Aとスプライン
嵌合するスプライン嵌合部242が設けられ、第1プレ
ート24の第1ガイドプレート24Aと第2ガイドプレ
ート24Bは第1緩衝部材23の外周側で複数のリベッ
ト241で固着されている。第3プレート27の第3ガ
イドプレート27Aと第4ガイドプレート28Bは第2
緩衝部材26間で挟持される第2プレート25が摺動で
きるようリベット271で固着されている。第1プレー
ト24と第2プレート25との摺動可能な範囲(捩り角
)は−βとγの間とされ、第2プレート25と第3プレ
ート27との摺動範囲は一δとεの間とされており、第
1緩衝部材23と第2緩衝部材26とのばね定数の設定
により、第1プレート24と第2プレート25との捩り
角が一δ以下あるいはγ以上とされることにより第2プ
レート25と第3プレート27とが摺動を開始するよう
設けられている。
As shown in FIG. 2, the damper mechanism 22 is connected to the piston 21 and has a part of the first buffer member 23 made of a compression coil spring with a small spring constant and a large stroke length on the outer circumferential side. The first slidably held
A first plate 24 consisting of a guide plate 24A and a second guide plate 24B is slidably sandwiched in the circumferential direction between the first guide plate 24A and the second guide plate 24B of the first plate 24, and a second plate connected to the first plate 24 via the first buffer member 23;
A third guide plate 27^ that slidably holds the plate 25 and a second buffer member 26 made of a compression coil spring with a large spring constant and a small stroke length in the circumferential direction.
and a fourth guide plate 27B, the second plate 25 is slidably held in the circumferential direction by the third guide plate 27A and the fourth guide plate 27B, and the second plate 25 is held via the second buffer member 26. 25, a spline fitting part 242 is provided on the outer periphery of the first plate 24 to be spline fitted with the spline 212A of the piston 21, and the first guide plate of the first plate 24 is 24A and the second guide plate 24B are fixed to each other by a plurality of rivets 241 on the outer peripheral side of the first buffer member 23. The third guide plate 27A and the fourth guide plate 28B of the third plate 27 are
The second plate 25 held between the buffer members 26 is fixed with rivets 271 so that it can slide. The sliding range (torsion angle) between the first plate 24 and the second plate 25 is between -β and γ, and the sliding range between the second plate 25 and the third plate 27 is between δ and ε. By setting the spring constants of the first buffer member 23 and the second buffer member 26, the torsion angle between the first plate 24 and the second plate 25 is set to 1 δ or less or γ or more. The second plate 25 and the third plate 27 are provided to start sliding.

作動油供給手段13は、オイルポンプハウジング33の
リヤカバー332内に形成された油路131、該油路1
31に対応して固定スリーブ125に形成された油路1
32、出力軸126と固定スリーブ125の間でメタル
ベアリング130C11300の間に形成された油路1
33、該油路133と油路134を介して連通し、出力
軸126の軸心に形成された油路135、該油路135
と連通し、フロントカバー111とピストン21の門に
て形成される油路136からなる第1油路13Aと、ポ
ンプ駆動スリーブ113と固定スリーブ125の間に連
通するオイルポンプハウジング33のオイルボンアカバ
ー331に形成された図示しない油路、ポンプ駆動スリ
ーブ113と固定スリーブ125の間に形成された油路
137、該油路137に連通し、ポンプ駆動スリーブ1
13と一方向りラッヂの124の間を通り、ステータ1
23とポンプ羽根車121の間に連通する油路138か
らなる第2油路13Bとが形成されており、第1油路1
3Aと第2油路13Bの作動油の供給方向の切換は図示
しない油圧制御装置により行われ、その一方便が選択さ
れて油圧源と連結されるとその他方側から作動油が排出
される。
The hydraulic oil supply means 13 includes an oil passage 131 formed in the rear cover 332 of the oil pump housing 33;
Oil passage 1 formed in fixed sleeve 125 corresponding to 31
32. Oil passage 1 formed between metal bearing 130C11300 between output shaft 126 and fixed sleeve 125
33, an oil passage 135 communicating with the oil passage 133 via the oil passage 134 and formed at the axial center of the output shaft 126;
A first oil passage 13A consisting of an oil passage 136 formed by the front cover 111 and the gate of the piston 21, and an oil bone aperture of the oil pump housing 33 communicating between the pump drive sleeve 113 and the fixed sleeve 125. An oil passage (not shown) formed in the cover 331, an oil passage 137 formed between the pump drive sleeve 113 and the fixed sleeve 125, communicating with the oil passage 137, and the pump drive sleeve 1
13 and the one-way latch 124, and stator 1.
23 and the pump impeller 121, a second oil passage 13B consisting of an oil passage 138 communicating with the first oil passage 1 is formed.
Switching of the supply direction of the hydraulic oil between the hydraulic oil passages 3A and 13B is performed by a hydraulic control device (not shown), and when one side is selected and connected to the hydraulic power source, the hydraulic oil is discharged from the other side.

つぎに上記構成よりなる流体伝動装置の作動を説明する
Next, the operation of the fluid transmission device having the above configuration will be explained.

前記油圧制御装置がロックアツプ状態に設定されていな
いとき。
When the hydraulic control device is not set to a lock-up state.

作動油供給手段13は、油圧源より作動油を第1油路1
3Aを介して動力伝達ケース11内を充填し、第2油路
13Bより作動油を排出せしめる循環通路を形成するよ
うに設定される。
The hydraulic oil supply means 13 supplies hydraulic oil from a hydraulic source to the first oil path 1.
It is set to form a circulation passage that fills the inside of the power transmission case 11 through the oil passage 3A and discharges hydraulic oil from the second oil passage 13B.

動力伝達ケース11内への作動油の供給がフロントカバ
ー111とピストン21の間を介して行われるため、フ
ロントカバー111に固着された摩擦材21Aとピスト
ン21のロックアツプ係合面213^とは油圧差によっ
て引き離されて両者間の摩擦係合面は解放され、作動油
は摩擦材21Aとロックアツプ係合面213Aの間を流
れて動力伝達ケース11内を充填し、流体伝動部12を
循環し、第2油路13Bを通って排出される。このとき
クランク軸からスターターホイール、動力伝達ケース1
1を介してポンプ羽根車121に入力された出力は流体
伝動部12内を循環する作動油の流体伝動によってター
ビン羽根車122に伝達される。従って出力軸126に
は流体伝動部12のトルクコンバータの作用のみに基づ
く回転トルクが出力され、直結クラッチ2はトルク伝達
を行わない。
Since hydraulic oil is supplied into the power transmission case 11 through the space between the front cover 111 and the piston 21, the friction material 21A fixed to the front cover 111 and the lock-up engagement surface 213^ of the piston 21 are hydraulically connected. They are pulled apart by the difference, and the frictional engagement surface between them is released, and the hydraulic fluid flows between the friction material 21A and the lockup engagement surface 213A, fills the inside of the power transmission case 11, and circulates through the fluid transmission part 12. It is discharged through the second oil passage 13B. At this time, from the crankshaft to the starter wheel, power transmission case 1
1 to the pump impeller 121 is transmitted to the turbine impeller 122 by fluid transmission of hydraulic oil circulating within the fluid transmission section 12. Therefore, rotational torque based only on the action of the torque converter of the fluid transmission section 12 is output to the output shaft 126, and the direct coupling clutch 2 does not transmit torque.

前記油圧制御装置がロックアツプ状態に設定されている
とき。
When the hydraulic control device is set to a lock-up state.

作動油供給手段13は、油圧源より作動油を第2油路1
3Bを介して動力伝達ケース11内を充填し、第1油路
13Aより作動油を排出せしめる循環通路を形成するよ
う設定される。
The hydraulic oil supply means 13 supplies hydraulic oil from a hydraulic source to the second oil path 1.
It is set to form a circulation passage that fills the inside of the power transmission case 11 via 3B and discharges hydraulic oil from the first oil passage 13A.

動力伝達ケース11内への作動油の供給は流体伝動部1
2側より行われるため、動力伝達ケース11内は作動油
の充填圧力より圧力が高まると共にフロントカバー11
1とピストン21の間の作動油が第1油路13Aより排
出されるため、フロントカバー111に設けられた摩擦
材21Aとピストン21の[lツクアップ係合面213
Aが動力伝達ケース11内の作動油の充填圧力により圧
迫されて係合し、その結果、クランク軸からスターター
ホイールを介して動力伝達ケース11に伝達された出力
は、FJ擦材21A1ピストン21、ダンパ機構22お
よび出力軸連結ハブ127を介して出力軸126に伝達
され、これによりエンジンの回転出力が出力軸126に
直結的に伝達される。
Hydraulic oil is supplied into the power transmission case 11 through the fluid transmission unit 1.
Since this is carried out from the 2nd side, the pressure inside the power transmission case 11 becomes higher than the filling pressure of the hydraulic oil, and the front cover 11
1 and the piston 21 is discharged from the first oil passage 13A, the friction material 21A provided on the front cover 111 and the piston 21's
A is compressed and engaged by the filling pressure of the hydraulic oil in the power transmission case 11, and as a result, the output transmitted from the crankshaft to the power transmission case 11 via the starter wheel is transmitted to the FJ friction material 21A1 piston 21, The rotation output of the engine is transmitted to the output shaft 126 via the damper mechanism 22 and the output shaft connection hub 127, thereby directly transmitting the rotational output of the engine to the output shaft 126.

つぎにダンパ機構の特性を第3図の実線(α)を用いて
説明する。
Next, the characteristics of the damper mechanism will be explained using the solid line (α) in FIG.

エンジンは第2図中の矢印へ方向に回転駆動されるもの
である。第1プレート24および第3プレート27に応
力が加わらないときの第1プレート24および第2プレ
ート25の捩り角および第1プレート24と第2プレー
ト25の捩り角が−βからγの範囲のときの第2プレー
ト25と第3プレート27の捩り角をOとする。ここで
例えばロックアツプ係合時など第1プレート24の受け
る回転トルクが第3プレート27の回転トルクより大き
い場合、トルク差Oからトルク差この範囲では、ばね定
数の小さい第1緩衝部材23の付勢力にて捩り角0から
γまでを対処し、トルク差ζからトルク差ζよりトルク
差が大きいトルク差ηの範囲では、ばね定数の大きい第
211i1部材26が第2プレート25に付勢されて捩
り角γからεの範囲内で対処する。また例えは車両走行
中、ロックアツプ係合状態でエンジン回転が下がった場
合など、第3プレート27の受ける回転トルクが第1プ
レート24の回転トルクより大きい場合、トルク差Oか
らトルク差乙の範囲では、ばね定数の小さい第1緩衝部
材23の付勢力にて捩り角Oから−0までを対処し、ト
ルク差乙からトルク差乙よりトルク差が大きいトルク差
にの範囲では、ばね定数の大きい第2[i部材26の付
勢力にて捩り角−βから捩り角−δの範囲内で対処する
The engine is driven to rotate in the direction of the arrow in FIG. When the torsion angle of the first plate 24 and the second plate 25 when no stress is applied to the first plate 24 and the third plate 27 and the torsion angle of the first plate 24 and the second plate 25 are in the range of −β to γ. The torsion angle of the second plate 25 and third plate 27 is O. Here, when the rotational torque received by the first plate 24 is larger than the rotational torque of the third plate 27, such as during lock-up engagement, the biasing force of the first buffer member 23 having a small spring constant is reduced from the torque difference O to the torque difference in this range. The torsion angle is from 0 to γ, and in the range from the torque difference ζ to the torque difference η, which is larger than the torque difference ζ, the 211i1 member 26 with a large spring constant is biased by the second plate 25 and twisted. Deal with it within the range of angle γ to ε. For example, when the rotational torque received by the third plate 27 is larger than the rotational torque of the first plate 24, such as when the engine speed decreases while the vehicle is in a lock-up engaged state while the vehicle is running, in the range from torque difference O to torque difference O. , the torsion angle O to -0 is handled by the biasing force of the first buffer member 23 with a small spring constant, and in the range from torque difference B to a torque difference larger than torque difference O, the first buffer member 23 with a large spring constant 2 [The biasing force of the i member 26 is used to deal with the twist angle within the range of -β to -δ.

上記実施例では、第2プレートを・一枚のプレートで形
成するとともに、第3プレートを第21衝部材および第
2プレートを両側より挟み込んで保持する例を示したが
、第2プレートが第21衝部材および第3プレートを両
側より挟み込んで保持するよう設けても良い。
In the above embodiment, the second plate is formed of one plate, and the third plate is held by sandwiching the 21st plate and the 2nd plate from both sides, but the second plate is the 21st plate. The impact member and the third plate may be provided so as to be sandwiched and held from both sides.

上記実施例では、第1プレートの連結位置を第1!l衝
部材の内1’、lに設けた例を示したが、他に第1緩衝
部材lυの各間、第1緩衝部材の内周位置に設けても良
い。
In the above embodiment, the connection position of the first plate is set to 1! Although an example has been shown in which they are provided at 1' and 1 of the first shock absorbing members, they may also be provided between the first shock absorbing members lυ and at the inner peripheral position of the first shock absorbing members.

上記実施例では、第1プレートを形成する一対のプレー
トをリベットにより連結した例を示したが、他にボルト
およびナツト等による締結、溶接などの接合手段などた
の連結手段を用いても良い。
In the above embodiment, an example was shown in which the pair of plates forming the first plate were connected by rivets, but other connecting means such as fastening with bolts and nuts, welding, etc. may be used.

上記実施例では、第1プレートを一対のプレートにより
形成した例を示したが、他に第1プレートを一枚のプレ
ス成形品より形成し、例えば第1プレートの外周または
内周に折曲部を設けて第1緩衝部材および第2プレート
を挟み込むようよう設けても良い。
In the above embodiment, an example was shown in which the first plate was formed from a pair of plates, but it is also possible to form the first plate from a single press-formed product, for example, with a bent portion on the outer or inner periphery of the first plate. may be provided so as to sandwich the first buffer member and the second plate.

上記実施例では、流体伝動装置にトルクコンバータを適
用した例を示したが、流体継手(フリユイドカップリン
グ)など他の流体伝動装置に適用しても良い。
In the above embodiment, an example was shown in which a torque converter was applied to a fluid transmission device, but the present invention may also be applied to other fluid transmission devices such as a fluid coupling.

上記実施例では、第1緩衝部材および第2緩衝部材に圧
縮コイルスプリングを適用した例を示したが、他にリー
フスプリング、テンションコイルスプリング、ゴム部材
など他の緩衝郡部材適用して用いても良い。また圧縮コ
イルスプリング内に圧縮コイルスプリングを配設したデ
ュアルコイルスプリング、圧縮コイルスプリングとゴム
部材とを組合せるなど、種々の!1Ili部材を組合せ
て用いても良い。
In the above embodiment, compression coil springs are used as the first and second buffer members, but other buffer members such as leaf springs, tension coil springs, and rubber members may also be used. good. In addition, there are various types of springs, such as dual coil springs with a compression coil spring inside a compression coil spring, and a combination of a compression coil spring and a rubber member. 1Ili members may be used in combination.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の流体伝動装置の直結クラッチを適用し
た直結クラッチ付流体伝動装置の側面断面図、第2図は
ダンパ機構の正面図、第3図は横軸にドライブプレート
とドリブンプレートとの捩り角、縦軸にトルクを示し、
本発明および従来のダンパ機構の特性を表すグラフであ
る。 図中 1・・・トルクコンバータ 2・・・直結クラッ
チ 11・・・動力伝達ケース 21・・・ピストン 
22・・・ダンパ機構 23・・・第1緩衝部材 24
・・・第1プレート25・・・第2プレート 26・・
・第2緩衝部材 27・・・第3プレート 126・・
・出力軸 127・・・出力軸連結ハブ
Fig. 1 is a side sectional view of a fluid transmission device with a direct coupling clutch to which the direct coupling clutch of the fluid transmission device of the present invention is applied, Fig. 2 is a front view of the damper mechanism, and Fig. 3 shows a drive plate and a driven plate on the horizontal axis. Torsion angle is shown on the vertical axis, torque is shown on the vertical axis,
It is a graph showing the characteristics of the damper mechanism of the present invention and the conventional damper mechanism. In the diagram 1... Torque converter 2... Direct clutch 11... Power transmission case 21... Piston
22... Damper mechanism 23... First buffer member 24
...First plate 25...Second plate 26...
-Second buffer member 27...Third plate 126...
・Output shaft 127...Output shaft connection hub

Claims (1)

【特許請求の範囲】 1)流体伝動装置の入力部材と着脱自在に係合するピス
トンと、該ピストンと連結する第1プレートと、該第1
プレートと第1緩衝部材を介して連結する第2プレート
と、該第2プレートと第2緩衝部材を介して連結すると
共に前記流体伝動装置の出力部材と連結する第3プレー
トとからなる流体伝動装置の直結クラツチにおいて、 前記第1プレートは、前記第1緩衝部材および前記第2
プレートを両側より挟み込んで保持したことを特徴とす
る流体伝動装置の直結クラツチ。 2)前記第1プレートは、一対のプレートを連結して設
けたことを特徴とする特許請求の範囲第1項記載の流体
伝動装置の直結クラツチ。 3)前記第1プレートを形成する一対のプレートは、前
記第1緩衝部材の外周位置で連結されたことを特徴とす
る特許請求の範囲第2項記載の流体伝動装置の直結クラ
ツチ。 4)前記第1プレートは、外周部にて前記ピストンとス
プライン嵌合したことを特徴とする特許請求の範囲第1
項ないし第3項のいずれかに記載の流体伝動装置の直結
クラツチ。 5)前記第1プレートを連結する連結位置は、前記ピス
トンとスプライン連結するスプライン嵌合部に設けられ
たことを特徴とする特許請求の範囲第4項記載の流体伝
動装置の直結クラツチ。 6)前記第3プレートは、前記第2緩衝部材および前記
第2プレートを両側より挟み込んで保持することを特徴
とする特許請求の範囲第1項記載の流体伝動装置の直結
クラツチ。 7)前記第3プレートは、一対のプレートを連結して設
けたことを特徴とする特許請求の範囲第6項記載の流体
伝動装置の直結クラツチ。 8)前記第3プレートを形成する一対のプレートは、前
記第2緩衝部材間で連結されたことを特徴とする特許請
求の範囲第7項記載の流体伝動装置の直結クラツチ。
[Scope of Claims] 1) a piston that removably engages with an input member of a fluid transmission device, a first plate that connects with the piston, and a first plate that connects with the piston;
A fluid transmission device comprising: a second plate connected to the plate via a first buffer member; and a third plate connected to the second plate via the second buffer member and connected to an output member of the fluid transmission device. In the direct coupling clutch, the first plate is connected to the first buffer member and the second buffer member.
A direct coupling clutch for a fluid transmission device, characterized by a plate held by sandwiching it from both sides. 2) A direct coupling clutch for a fluid transmission device according to claim 1, wherein the first plate is a pair of plates connected to each other. 3) A direct coupling clutch for a fluid transmission device according to claim 2, wherein the pair of plates forming the first plate are connected at an outer peripheral position of the first buffer member. 4) Claim 1, wherein the first plate is spline-fitted to the piston at its outer peripheral portion.
A direct coupling clutch for a fluid transmission device according to any one of items 1 to 3. 5) A direct coupling clutch for a fluid power transmission device according to claim 4, wherein the connecting position for connecting the first plate is provided at a spline fitting portion that connects the piston with a spline. 6) The direct coupling clutch for a fluid transmission device according to claim 1, wherein the third plate holds the second buffer member and the second plate by sandwiching them from both sides. 7) A direct coupling clutch for a fluid transmission device according to claim 6, wherein the third plate is a pair of plates connected to each other. 8) A direct coupling clutch for a fluid transmission device according to claim 7, wherein the pair of plates forming the third plate are connected between the second buffer members.
JP9345985A 1985-04-30 1985-04-30 Directly coupled clutch for hydraulic transmission Pending JPS61252964A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9345985A JPS61252964A (en) 1985-04-30 1985-04-30 Directly coupled clutch for hydraulic transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9345985A JPS61252964A (en) 1985-04-30 1985-04-30 Directly coupled clutch for hydraulic transmission

Publications (1)

Publication Number Publication Date
JPS61252964A true JPS61252964A (en) 1986-11-10

Family

ID=14082911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9345985A Pending JPS61252964A (en) 1985-04-30 1985-04-30 Directly coupled clutch for hydraulic transmission

Country Status (1)

Country Link
JP (1) JPS61252964A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02225861A (en) * 1989-12-27 1990-09-07 Aisin Aw Co Ltd Direct-coupled clutch for hydraulic power transmission
JPH02225860A (en) * 1989-12-27 1990-09-07 Aisin Aw Co Ltd Direct-coupled clutch for hydraulic power transmission
JPH02225859A (en) * 1989-12-27 1990-09-07 Aisin Aw Co Ltd Direct-coupled clutch for hydraulic power transmission
US5125486A (en) * 1990-08-31 1992-06-30 Toyota Jidosha Kabushiki Kaisha Fluid power transmission with a lock-up clutch
US5139122A (en) * 1990-03-28 1992-08-18 Aisin Seiki Kabushiki Kaisha Torque converter including a lock-up clutch
US5213186A (en) * 1990-11-30 1993-05-25 Toyota Jidosha Kabushiki Kaisha Control system and method for automatic transmission
US5230409A (en) * 1990-09-27 1993-07-27 Toyota Jidosha Kabushiki Kaisha Fluid power transmission system with lock-up clutch
US7837018B2 (en) 2007-07-20 2010-11-23 Exedy Corporation Lock-up damper
CN106895110A (en) * 2015-12-18 2017-06-27 通用汽车环球科技运作有限责任公司 Torsional damper system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5694049A (en) * 1979-12-26 1981-07-30 Borg Warner Two stage torsion and vibration damper
JPS57173618A (en) * 1981-03-30 1982-10-26 Borg Warner Damper with large movement of lock up clutch for torque converter

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5694049A (en) * 1979-12-26 1981-07-30 Borg Warner Two stage torsion and vibration damper
JPS57173618A (en) * 1981-03-30 1982-10-26 Borg Warner Damper with large movement of lock up clutch for torque converter

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02225861A (en) * 1989-12-27 1990-09-07 Aisin Aw Co Ltd Direct-coupled clutch for hydraulic power transmission
JPH02225860A (en) * 1989-12-27 1990-09-07 Aisin Aw Co Ltd Direct-coupled clutch for hydraulic power transmission
JPH02225859A (en) * 1989-12-27 1990-09-07 Aisin Aw Co Ltd Direct-coupled clutch for hydraulic power transmission
US5139122A (en) * 1990-03-28 1992-08-18 Aisin Seiki Kabushiki Kaisha Torque converter including a lock-up clutch
US5125486A (en) * 1990-08-31 1992-06-30 Toyota Jidosha Kabushiki Kaisha Fluid power transmission with a lock-up clutch
US5230409A (en) * 1990-09-27 1993-07-27 Toyota Jidosha Kabushiki Kaisha Fluid power transmission system with lock-up clutch
US5213186A (en) * 1990-11-30 1993-05-25 Toyota Jidosha Kabushiki Kaisha Control system and method for automatic transmission
US7837018B2 (en) 2007-07-20 2010-11-23 Exedy Corporation Lock-up damper
CN106895110A (en) * 2015-12-18 2017-06-27 通用汽车环球科技运作有限责任公司 Torsional damper system

Similar Documents

Publication Publication Date Title
US8403118B2 (en) Three-pass turbine damper
EP2703687B1 (en) Hybrid drive module
US4966261A (en) Lock-up torque converter for automatic transmissions
DE10123615B4 (en) Torque converter with lockup clutch
US9528586B2 (en) Hydrokinetic torque coupling device having turbine-piston lockup clutch and intermediate clutch component, and related methods
US8096885B2 (en) Method and apparatus for lash prevention using coil springs
US5203835A (en) Lock-up torque converter for automatic transmission
US4736652A (en) Power transmission device for an automobile
JP2018531351A6 (en) Torsional vibration damper for hydrodynamic torque coupling device with inner and outer elastic damping members connected in series
JP2018531351A (en) Torsional vibration damper for hydrodynamic torque coupling device with inner and outer elastic damping members connected in series
US20080277227A1 (en) Torque converter with anti-rattle and cooling flow arrangement
JPH0141848B2 (en)
JPS61252964A (en) Directly coupled clutch for hydraulic transmission
US6478127B2 (en) Hydraulic torque transmitting device
US6622834B2 (en) Hydrodynamic torque converter
US5361880A (en) Viscous converter clutch with O-slip capability
US6866130B2 (en) Torque converter
CN108431449A (en) The frequency power absorption device of torque-vibration damper for hydrodynamic torque coupling arrangement
JPS61252963A (en) Directly-coupled clutch for hydraulic transmission
JPS61252960A (en) Hydraulic transmission associated with directly-coupled clutch
JPS61252962A (en) Directly-coupled clutch for hydraulic transmission
US11867239B2 (en) Damper device and design method of damper device
JPS61252958A (en) Directly-coupled clutch for hydraulic transmission
US6269923B1 (en) Lockup device of torque converter
US10274067B2 (en) Hydrokinetic torque-coupling device having lock-up clutch operatively connected to torsional vibration damper, and related methods