JPS61252928A - Air spring system using vibro-isolator rubber in combination - Google Patents

Air spring system using vibro-isolator rubber in combination

Info

Publication number
JPS61252928A
JPS61252928A JP9126285A JP9126285A JPS61252928A JP S61252928 A JPS61252928 A JP S61252928A JP 9126285 A JP9126285 A JP 9126285A JP 9126285 A JP9126285 A JP 9126285A JP S61252928 A JPS61252928 A JP S61252928A
Authority
JP
Japan
Prior art keywords
air spring
vibration
vibro
rubber
spring system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9126285A
Other languages
Japanese (ja)
Inventor
Kazuya Shimizu
一弥 清水
Toshiya Shimazaki
俊也 島崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SWCC Corp
Original Assignee
Showa Electric Wire and Cable Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Electric Wire and Cable Co filed Critical Showa Electric Wire and Cable Co
Priority to JP9126285A priority Critical patent/JPS61252928A/en
Publication of JPS61252928A publication Critical patent/JPS61252928A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • F16F15/023Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using fluid means
    • F16F15/0232Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using fluid means with at least one gas spring

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Combined Devices Of Dampers And Springs (AREA)
  • Fluid-Damping Devices (AREA)

Abstract

PURPOSE:To improve the extent of vibro-isolating performance so better, by using a vibro-isolator rubber device combinedly for an air spring in a series manner, while reducing a horizontal direction spring constant so sharply enough, in case of a vibro-isolating system, bearing the above caption, available for various precision measuring instruments. CONSTITUTION:Supposing a surface plate 4, where an air spring 30 is locked, moves in a left direction, a metal device 40 on the air spring and a vibro- isolator rubber device 50 both rotate around each of turning centers 01 and 02 by horizontal directional force F and vertical directional force W, whereby shearing deformation and torsional deformation both are produced in this vibro- isolator rubber device 50. That is to say, both shearing and torsional deformations of the vibro-isolator rubber device 50 are added to the shearing deformation of a bellows 36 in series in addition, therefore spring action is made to be soft. Accordingly, with the vibro-isolator rubber device 50 combinedly used, a spring constant is remarkably reduced, thus the extent of vibro-isolating performance is improved.

Description

【発明の詳細な説明】 本発明は、ホログラフィセット、電子顕微鏡等のような
各種精密測定機器又は製造機械を設置した床から該精密
機器等に伝わる微細振動を遮断又は低減し機器等の精度
を維持するための空気ばねシステムに関するものである
DETAILED DESCRIPTION OF THE INVENTION The present invention improves the accuracy of various precision measuring instruments or manufacturing machines, such as holography sets and electron microscopes, by blocking or reducing minute vibrations transmitted to the precision instruments from the floor on which they are installed. It concerns an air spring system for maintenance.

【え立且遣 従来、周囲からの、特に床からの振動を防ぎ。[Etachi Katsuyoshi] Traditionally, it prevents vibrations from the surroundings, especially from the floor.

精密機器の測定精度又は製造機械の加工精度を維持又は
向上せしめるために空気ばねシステムが利用されている
− 従来の空気ばねシステムは、概略第10図に図示する構
成が一般的である。つまり、空気ばねシステムlは精密
機器2を担持する防振架台(定盤)4を有し、該防振架
台4が複数個の空気ばね6によっ□て床8上に支持され
る。空気ばね6は。
Air spring systems are used to maintain or improve the measurement accuracy of precision instruments or the processing accuracy of manufacturing machines. A conventional air spring system generally has a configuration schematically shown in FIG. 10. That is, the air spring system 1 has a vibration-proof pedestal (surface plate) 4 that supports the precision equipment 2, and the vibration-proof pedestal 4 is supported on the floor 8 by a plurality of air springs 6. Air spring 6.

防振架台4に取付けられた止金具10と、該止金具lO
にベローズ固定金具12にて取付けられ上空気室14を
形成するベローズ16と、該ベローズ16に固着され内
部に上空気室18を画成し床8上に設置される下金具2
0とを有する。前記上空気室14と上空気室18は、下
金具20の上面に形成した第2段オリフィス24よって
連通される。
A stopper 10 attached to the vibration isolating frame 4 and the stopper lO
A bellows 16 is attached to the bellows fixing fitting 12 to form an upper air chamber 14, and a lower fitting 2 is fixed to the bellows 16 to define an upper air chamber 18 inside and is installed on the floor 8.
0. The upper air chamber 14 and the upper air chamber 18 communicate with each other through a second stage orifice 24 formed on the upper surface of the lower metal fitting 20.

前記上空気室18は止金具20に設けられた第2段オリ
フィス24を介して自動圧力調整弁26と連通され、圧
縮空気の供給、排気がなされる。
The upper air chamber 18 is communicated with an automatic pressure regulating valve 26 through a second stage orifice 24 provided in the stopper 20, and compressed air is supplied and exhausted.

該自動圧力調整弁26は種々のものが使用されているが
、いずれにしても自動圧力調整弁26のON@OFF作
用により、防振架台4上の機器2の水平精度(レベリン
グ精度)が正確に維持される0例えば自動圧力調整弁2
6の位置での高さ寸法を±50〜±100ルmに調整可
能とし、又支持間隔すを1000mmとすると(0,1
〜012)/1oooの水平度が達成される。
Various types of automatic pressure regulating valves 26 are used, but in any case, the ON@OFF action of the automatic pressure regulating valve 26 ensures that the horizontal precision (leveling precision) of the equipment 2 on the vibration isolating pedestal 4 is accurate. maintained at 0 e.g. automatic pressure regulating valve 2
If the height dimension at position 6 can be adjusted from ±50 to ±100 m, and the support interval is 1000 mm (0,1
A levelness of ~012)/1ooo is achieved.

く  しよ−    、 へ L記構成の空気ばねシステム1において、空気ばね6に
水平方向成分の振動が作用するとベローズ16に剪断力
Fが加わり、該ベローズ16は第11図の状態から第1
2図の状態へと変形される。従来、上空気室14を形成
するベローズ16は薄い補強布にゴムをコーティングし
た概略厚さが0.5〜1mmの柔軟性に富む材料で作製
されており、成る大きさの剪断ばね定数Ktzを有して
いる。一般に空気ばねの剪断ばね定数Ktは次式にて表
わされる。
In the air spring system 1 having the configuration shown in FIG.
It is transformed into the state shown in Figure 2. Conventionally, the bellows 16 forming the upper air chamber 14 is made of a highly flexible material with a thickness of approximately 0.5 to 1 mm, such as a thin reinforcing cloth coated with rubber, and has a shear spring constant Ktz of the size. have. Generally, the shear spring constant Kt of an air spring is expressed by the following formula.

Kt=Kt、+Ktz ここで、Kt、は剪断力Fに基づく、つまり第11図に
図示されるベローズの変位εによる左右のベローズ接触
長さの差に起因するばね定数であり1次式で表わされる
Kt=Kt, +Ktz Here, Kt is a spring constant based on the shear force F, that is, due to the difference in the contact length of the left and right bellows due to the displacement ε of the bellows shown in FIG. 11, and is expressed by a linear equation. It will be done.

K t I= F /ε=π2/ (8PDp)このよ
うに、上記式で表わされる空気ばねの剪断ばね定数Kk
の値はある限度以下にはならず、該剪断ばね定数Ktを
希望する値まで小さくすることができない、従って、次
式から理解されるように、空気ばね防振システムの水平
方向の固有振動数fntが小さくならない。
K t I= F /ε=π2/ (8PDp) Thus, the shear spring constant Kk of the air spring expressed by the above formula
The value of cannot be below a certain limit, and the shear spring constant Kt cannot be reduced to the desired value. Therefore, as can be understood from the following equation, the horizontal natural frequency of the air spring vibration isolation system fnt does not become small.

fnt= (1/2π) ・   t/M)ここで、M
はばね上質量である。
fnt= (1/2π) ・t/M) Here, M
is the sprung mass.

従来、空気ばね防振システムの防振効果を評価するファ
クタとして、次の式で表わされる振動伝達率Trが採用
されている。
Conventionally, a vibration transmissibility Tr expressed by the following equation has been employed as a factor for evaluating the vibration isolation effect of an air spring vibration isolation system.

Tr=11/(1−(f/fnt)2)  lここで、
fは防振対象の振動数で、fntは空気ばね防振システ
ムの固有振動数である。
Tr=11/(1-(f/fnt)2) lwhere,
f is the frequency of the vibration isolation target, and fnt is the natural frequency of the air spring vibration isolation system.

該振動伝達率Trは小さいことが好ましいが、上述から
分るように、従来の空気ばね防振システムではfntを
小とすることができず、水平方向の防振性能が向上しな
いという欠点があった。
Although it is preferable that the vibration transmissibility Tr is small, as can be seen from the above, the conventional air spring vibration isolation system has the drawback that fnt cannot be made small and the vibration isolation performance in the horizontal direction cannot be improved. Ta.

例えば、有効断面積Ae=45Cm2とした場合、固有
振動数fntを2.5Hz以下とすることはできなかっ
た。防振性能上該固有振動数fntは1.5Hz程度ま
で下げることが望まれている。
For example, when the effective cross-sectional area Ae = 45 Cm2, the natural frequency fnt could not be lower than 2.5 Hz. In view of vibration damping performance, it is desirable to lower the natural frequency fnt to about 1.5 Hz.

泉」LΩ」L節 従って、本発明の目的は、特に水平方向のばね定数を大
幅に低下せしめ、即ち、水平方向のばね作用を軟らかく
し、それにより固有振動数を小さくシ、特に水平方向の
防振性能を著しく向上せしめた空気ばねシステムを提供
することである。
Therefore, it is an object of the present invention to significantly reduce the spring constant in the horizontal direction, that is, to soften the spring action in the horizontal direction, thereby reducing the natural frequency, especially in the horizontal direction. An object of the present invention is to provide an air spring system with significantly improved anti-vibration performance.

−占         だ  の 上記目的は本発明によって達成される。要約すれば本発
明は、所定圧力に保持された空気室を有する空気ばねと
、該空気ばねに対し直列態様で該空気ばねに連結された
防振ゴム手段とを具備することを特徴とする空気ばねシ
ステムである0本発明の一実施態様によると、防振ゴム
手段は空気ばねと定盤との間に配置され、又他の実施態
様によると、防振ゴム手段は床と空気ばねとの間に配置
される。
- The above objects of divination are achieved by the present invention. To summarize, the present invention provides an air spring characterized by comprising: an air spring having an air chamber maintained at a predetermined pressure; and vibration-proofing rubber means connected to the air spring in series with the air spring. According to one embodiment of the invention, the anti-vibration rubber means are arranged between the air spring and the surface plate, and according to another embodiment, the anti-vibration rubber means are arranged between the floor and the air spring. placed between.

本発明の好ましい実施態様によると、防振ゴム手段は、
防振ゴムを防振ゴム下金具及び防振ゴム上金具で挟持し
て構成され、該防振ゴム下金具及び防振ゴム上金具は平
板状か、又は半球状とされる。
According to a preferred embodiment of the invention, the anti-vibration rubber means:
It is constructed by sandwiching a vibration isolating rubber between a vibration isolating rubber lower metal fitting and a vibration isolating rubber upper metal fitting, and the vibration isolating rubber lower metal fitting and the vibration isolating rubber upper metal fitting are flat or semispherical.

次に、本発明に係る空気ばねシステムについて図面を参
照して更に詳しく説明する。
Next, the air spring system according to the present invention will be explained in more detail with reference to the drawings.

第1図は本発明に係る空気ばねシステムの一実施例が部
分的に拡大して図示される0本発明に係る空気ばねシス
テムlaは防振架台(定盤)4と床8との間に空気ばね
30と、防振ゴム手段50とを具備する0本実施例にお
いて、定盤4は防振ゴム手段50に直接支持され、該防
振ゴム手段50は空気ばね30に担持される構成とされ
る。
FIG. 1 shows an embodiment of the air spring system according to the present invention partially enlarged. In this embodiment, which includes an air spring 30 and a vibration isolating rubber means 50, the surface plate 4 is directly supported by the vibration isolating rubber means 50, and the vibration isolating rubber means 50 is supported by the air spring 30. be done.

第1図の実施例では、空気ばね30は内部に空所を有し
上端が開口した空気ばね下金具32と。
In the embodiment shown in FIG. 1, the air spring 30 has a hollow space inside and an air spring lower metal fitting 32 having an open upper end.

前記空気ばね下金具32の上部開口端に配置され該空気
ばね下金具32と協働して空気室34を画成するベロー
ズ36と、該ベローズ36を空気ばね下金具32の上端
に固定するベローズ押え金具38とを有する。該空気室
34内は圧縮空気が充填され圧力Pに保持されている。
A bellows 36 that is disposed at the upper open end of the lower air spring fitting 32 and cooperates with the lower air spring fitting 32 to define an air chamber 34; and a bellows that fixes the bellows 36 to the upper end of the lower air spring fitting 32. It has a presser metal fitting 38. The air chamber 34 is filled with compressed air and maintained at a pressure P.

前記ベローズ36には空気ばね下金具40が固着され、
防振ゴム手段50が連結される。
An air spring lower metal fitting 40 is fixed to the bellows 36,
A vibration-proof rubber means 50 is connected.

防振ゴム手段50は、防振ゴム52を平板状の防振ゴム
下金具54及び防振ゴム上金具56で挟持して構成され
、防振ゴム下金具54は連結軸58にて上記空気ばね下
金具40に固定的に連結され、又防振ゴム上金具56は
直接定盤4に取付けられる。
The vibration isolating rubber means 50 is constructed by sandwiching a vibration isolating rubber 52 between a flat plate-shaped vibration isolating rubber lower metal fitting 54 and a vibration isolating rubber upper metal fitting 56, and the vibration isolating rubber lower metal fitting 54 is connected to the air spring by a connecting shaft 58. It is fixedly connected to the lower metal fitting 40, and the vibration-proof rubber upper metal fitting 56 is directly attached to the surface plate 4.

次に、上記の如くに構成される空気ばねシステムlaの
作用について説明する。
Next, the operation of the air spring system la configured as described above will be explained.

第2図に図示されるように、振動により空気ばね30と
定盤4との間に相対水平方向運動が起り、第2図で空気
ばね3oが固定され定盤4が左方向へと移動したとする
と、水平方向力F及び垂直方向力(空気ばねの支持荷重
)Wによって空気ばね下金具40及び防振ゴム手段5o
は回転中心01及び02の回りに回転し防振ゴム手段5
0には剪断変形とねじれ変形が起る。勿論、振動により
空気ばね30と定盤4との間に相対水平方向運動が起こ
る前は、第1図に図示されるように、水平方向力Fは発
生せず、垂直方向力(空気ばねの支持荷重)Wの作用線
上に空気ばね下金具4o及び防振ゴム手段50の回転中
心01及びo2は位置しており、防振ゴム手段50に剪
断変形とねじれ変形は起こらない。
As shown in FIG. 2, relative horizontal movement occurs between the air spring 30 and the surface plate 4 due to vibration, and in FIG. 2, the air spring 3o is fixed and the surface plate 4 is moved to the left. Then, the air spring lower fitting 40 and the vibration isolating rubber means 5o are
rotates around rotation centers 01 and 02, and the anti-vibration rubber means 5
0, shear deformation and torsional deformation occur. Of course, before a relative horizontal movement occurs between the air spring 30 and the surface plate 4 due to vibration, the horizontal force F is not generated and the vertical force (of the air spring) is not generated, as shown in FIG. The rotation centers 01 and o2 of the air-spring lower metal fitting 4o and the vibration-isolating rubber means 50 are located on the line of action of the support load) W, and the vibration-isolating rubber means 50 is not subjected to shearing deformation or torsional deformation.

今、防振ゴム手段50.即ち、防振ゴム52が丸形防振
ゴムであるとすると、防振ゴム手段5゜の水平方向、つ
まり剪断方向のばね定数Kr、及び垂直力Wの作用によ
るねじれ変形のねじればね定数に0は次式で表わされる
Now, the anti-vibration rubber means 50. That is, assuming that the vibration isolating rubber 52 is a round vibration isolating rubber, the spring constant Kr in the horizontal direction of the vibration isolating rubber means 5°, that is, in the shear direction, and the torsional spring constant of torsional deformation due to the action of the vertical force W are 0. is expressed by the following formula.

Kr=F/δr       (1) Kθ=Kc−d2/16   (2) ここで、F:水平力 δr:剪断変形量 KC:防振ゴムの圧縮ばね定数 d:防振ゴムの直径 従ッて、本発明に係る空気ばねシステムlaの総合ばね
定数Kkは次の式で表わされる。
Kr=F/δr (1) Kθ=Kc-d2/16 (2) Where, F: Horizontal force δr: Shearing deformation KC: Compression spring constant of the vibration-proof rubber d: Diameter of the vibration-proof rubber Therefore, The overall spring constant Kk of the air spring system la according to the present invention is expressed by the following equation.

K t = 1 / [(1/ K b ) + (1
/ K r ) +(J12  (1+AeP/KrJ
l)/ (Ko−AeP文))]          
(3)ここで、Kb:ベローズ単体の水平方向ばね定数
にθ:防振ゴムのねじればね定数 Ae:空気ばね有効誉圧面積 P:空気ばね圧(P = W / A e )見:回転
中心01.02間の距離 上記式(3)から理解されるように総合ばね定数Ktは
ベローズ単体のばね定数Kbより小さくなり1本発明に
係る空気ばねシステムは、空気ばねのみしか有しない、
つまり、ベローズの剪断変形しか起こらない従来の空気
ばねシステムに比較すると、斯るベローズの剪断変形に
更に防振ゴムの剪断変形及びねじれ変形が直列にて付加
され、その結果ばね作用がソフトになる。
K t = 1 / [(1/ K b ) + (1
/Kr) +(J12 (1+AeP/KrJ
l)/ (Ko-AeP sentence))]
(3) Here, Kb: Horizontal spring constant of the bellows alone θ: Torsional spring constant of the anti-vibration rubber Ae: Air spring effective pressure area P: Air spring pressure (P = W / A e ) See: Center of rotation As can be understood from the above equation (3), the overall spring constant Kt is smaller than the spring constant Kb of the bellows alone.1 The air spring system according to the present invention has only an air spring.
In other words, compared to a conventional air spring system in which only shear deformation occurs in the bellows, shear deformation and torsional deformation of the anti-vibration rubber are added in series to the shear deformation of the bellows, resulting in a softer spring action. .

第3図は、ベローズ単体の水平方向ばね定数Kbと、大
型防振ゴム手段併用の本発明による空気ばねシステムの
ばね定数Kk(実測値及び計算値)との関係を示すグラ
フであるが、防振ゴム手段を併用することによりばね定
数が著しく低減していることが分かるであろう。
FIG. 3 is a graph showing the relationship between the horizontal spring constant Kb of the bellows alone and the spring constant Kk (actually measured values and calculated values) of the air spring system according to the present invention that uses a large vibration-proof rubber means. It will be seen that the spring constant is significantly reduced by the combined use of the vibrating rubber means.

第3図から明らかなように1本発明の空気ばねシステム
においては圧力の増大と共にばね定数Ktが減少してい
るが、これは空気ばね支持荷重W(= A e P)に
よるモーメントが第2図から分かるように、防振ゴム手
段50が転倒、即ち1回転する方向に作用するからであ
る。
As is clear from Fig. 3, in the air spring system of the present invention, the spring constant Kt decreases as the pressure increases, but this is because the moment due to the air spring support load W (= A e P) As can be seen from the figure, this is because the vibration isolating rubber means 50 acts in the direction of overturning, that is, one rotation.

又、上記式(3)から回転中心01.02間の距離文、
即ち、連結軸58の長さを大きくすれば、ばね定数Kt
はより小さいものとなる。従って1種々の長さの連結軸
58を用意するか又はスペーサ(図示せず)により連結
軸の長さを変えることによりばね定数Ktを微調整する
ことができる。しかしながら、防振ゴム手段50の座屈
を防止するために、防振ゴムのねじればね定欽(Kθ)
は、Kθ>WZを満足する必要があり、従って連結軸5
8の長さにも限度がある0例えば防振ゴムのねじればね
定数にθが3000kgo am/ r a d、支持
荷重Wが350kgであるとすれば、文が8.5cm以
下となるように連結軸58の長さを設定すべきである。
Also, from the above formula (3), the distance statement between the rotation centers 01.02,
That is, if the length of the connecting shaft 58 is increased, the spring constant Kt
becomes smaller. Therefore, the spring constant Kt can be finely adjusted by preparing connecting shafts 58 of various lengths or by changing the length of the connecting shafts using spacers (not shown). However, in order to prevent buckling of the anti-vibration rubber means 50, the twisting force of the anti-vibration rubber (Kθ)
must satisfy Kθ>WZ, therefore, the connecting shaft 5
There is also a limit to the length of 8. For example, if the torsional spring constant of the anti-vibration rubber is θ of 3000 kg am/rad and the supporting load W is 350 kg, connect the parts so that the length is 8.5 cm or less. The length of shaft 58 should be set.

第4図は、本発明に係る空気ばねシステムの他の実施態
様を示す0本実施例の空気ばねシステムlbは第1図の
空気ばねシステムlaと同様の構造とされるが、本実施
例においては、定盤4は直接には空気ばね30に支持さ
れ、該空気ばね30が防振ゴム手段50に担持されてい
る点において前記空気ばねシステムlaと相違する0本
実施例の空気ばねシステム1bも前記空気ばねシステム
1aに関連して説明したと同様に作用し、且つ同様の効
果を有する。
FIG. 4 shows another embodiment of the air spring system according to the present invention. The air spring system lb of this embodiment has the same structure as the air spring system la of FIG. The air spring system 1b of this embodiment differs from the air spring system la in that the surface plate 4 is directly supported by an air spring 30, and the air spring 30 is supported by a vibration isolating rubber means 50. The air spring system 1a also functions in the same manner as described in connection with the air spring system 1a, and has similar effects.

又、上記各実施例において使用された空気ばね30はそ
の構造が限定されるものではなく1例えば第5図に例示
するような構造とすることもできる。つまり、本実施例
の空気ばねシステム1cの空気ばね30aは、第1O図
に関連して説明した従来の構造の空気ばね6と同様に、
空気室34の下方に第1段オリフィス22にて連通され
た下室気室42を設け、該下室気室42は第2段オリフ
ィス24を介して自動圧力調整弁26と連通され、各空
気室への圧縮空気の供給、排気がなされる構造とするこ
ともできる。
Further, the structure of the air spring 30 used in each of the above embodiments is not limited, and may be structured as shown in FIG. 5, for example. That is, the air spring 30a of the air spring system 1c of this embodiment is similar to the air spring 6 of the conventional structure explained in connection with FIG.
A lower air chamber 42 is provided below the air chamber 34 and is communicated with the first stage orifice 22. The lower air chamber 42 is communicated with the automatic pressure regulating valve 26 through the second stage orifice 24, and It is also possible to have a structure in which compressed air is supplied to and exhausted from the chamber.

第6図は2本発明に係る空気ばねシステムの他の実施例
を示す0本実施例の空気ばねシステム1dは、第1図に
示す空気ばねシステム1aと同様の構成とされるが、防
振ゴム手段50が具体的構造において相違している。
FIG. 6 shows another embodiment of the air spring system according to the present invention. The air spring system 1d of this embodiment has the same configuration as the air spring system 1a shown in FIG. The rubber means 50 differ in their specific construction.

更に詳しく説明すれば、防振ゴム手段50は防振ゴム5
2を防振ゴム下金具54及び防振ゴム上金具56で挟持
して構成し、防振ゴム下金具54は連結軸58にて前記
各実施例の空気ばねと同じ構造とされる空気ばね30の
主金具40に固定的に連結され、又防振ゴム上金具56
は直接定盤4に取付けられる点において上記実施例と同
じであるが、防振ゴム下金具54及び防振ゴム上金具5
6の構造が相違している。つまり、本実施例では、防振
ゴム下金具54は半径R1の凸表面を有した半球体とさ
れ、又防振ゴム上金具56は半径R2(>R1)の凹表
面を有した半球面体とされる。防振ゴム52は、凸型下
金具54と凹型上金具56との間に介設され、好ましく
は下金具54及び主金具56の表面に加硫接着される。
To explain in more detail, the vibration isolating rubber means 50 is the vibration isolating rubber 5.
2 is sandwiched between an anti-vibration rubber lower metal fitting 54 and an anti-vibration rubber upper metal fitting 56, and the anti-vibration rubber lower metal fitting 54 has a connecting shaft 58. It is fixedly connected to the main metal fitting 40 of the vibration isolating rubber upper metal fitting 56.
is the same as the above embodiment in that it is directly attached to the surface plate 4, but the vibration isolating rubber lower metal fitting 54 and the vibration isolating rubber upper metal fitting 5 are
6 has a different structure. That is, in this embodiment, the vibration-isolating rubber lower metal fitting 54 is a hemisphere with a convex surface of radius R1, and the vibration-isolating rubber upper metal fitting 56 is a hemisphere with a concave surface of radius R2 (>R1). be done. The vibration isolating rubber 52 is interposed between the convex lower metal fitting 54 and the concave upper metal fitting 56, and is preferably vulcanized and bonded to the surfaces of the lower metal fitting 54 and the main metal fitting 56.

第6図の実施例では、連結軸5Bは両端に螺子軸58a
、58bが設(すられ、それぞれ防振ゴム下金具54及
び空気ばね主金具40に螺合して取付けられる。又、連
結軸58と防振ゴム下金具54との間にはスペーサSが
配置され、連結軸58の長さ、即ち、回転中心Of、0
2間の距離文を変え得るように構成される。
In the embodiment shown in FIG. 6, the connecting shaft 5B has threaded shafts 58a at both ends.
, 58b are provided and are screwed and attached to the vibration-isolating rubber lower metal fitting 54 and the air spring main metal fitting 40, respectively. Also, a spacer S is arranged between the connecting shaft 58 and the vibration-isolating rubber lower metal fitting 54. and the length of the connecting shaft 58, that is, the rotation center Of, 0
It is configured such that the distance statement between the two can be changed.

次に、上記の如くに構成される空気ばねシステムldの
作用について説明する。
Next, the operation of the air spring system ld configured as described above will be explained.

第7図に図示されるように、振動により空気ばね30と
定盤4との間に相対水平方向運動が起こり、第7図で空
気ばね30が固定され定盤4が左方向へと移動したとす
ると、水平方向力F及び垂直方向力(空気ばねの支持荷
重)Wによって空気ばね主金具40及び防娠ゴム手段5
0は回転中心O1及び02の回りに回転し防振ゴム手段
50にはねじれ変形が起る。勿論、揚動により空気ばね
30と定盤4との間に相対水平方向運動が起こる前は、
第1図に図示されるように、水平方向力Fは発生せず、
垂直方向力(空気ばねの支持荷重)Wの作用線上に空気
ばね上金具40及び防振ゴム手段50の回転中心01及
び02は位置しており、防振ゴム手段50に何等ねじれ
変形は起こらない。
As shown in FIG. 7, the vibration caused a relative horizontal movement between the air spring 30 and the surface plate 4, and in FIG. 7, the air spring 30 was fixed and the surface plate 4 moved to the left. Then, due to the horizontal force F and the vertical force (air spring support load) W, the air spring main metal fitting 40 and the anti-pregnancy rubber means 5
0 rotates around the rotation centers O1 and 02, and the vibration isolating rubber means 50 undergoes torsional deformation. Of course, before relative horizontal movement occurs between the air spring 30 and the surface plate 4 due to lifting,
As illustrated in FIG. 1, no horizontal force F is generated;
The rotation centers 01 and 02 of the air sprung metal fitting 40 and the anti-vibration rubber means 50 are located on the line of action of the vertical force (load supported by the air spring) W, and no torsional deformation occurs in the anti-vibration rubber means 50. .

本実施例における空気ばねシステムldの総合ばね定数
Ktは次の式で表わされる。
The overall spring constant Kt of the air spring system ld in this embodiment is expressed by the following equation.

Kt=1/[1/Kb+Jl’/(KO−Ae・Pi)
1             (4)ここで、Kb:ベ
ローズ単体の水平方向ばね定数に0:防振ゴムのねじれ
ばね定数 Ae:空気ばね有効受圧面積 P:空気ばね圧(P = W / A e )!L二回
転中心Of、02間の距離 上記式(4)から理解されるように総合ばね定数Ktは
ベローズ単体のばね定数Kbより小さくなり、本発明に
係る空気ばねシステムldは、空気ばねのみしか有しな
い、つまり、ベローズの剪断変形しか起こらない従来の
空気ばねシステムに比較すると、斯るベローズの剪断変
形に更に防振ゴムのねじれ変形が直列にて付加され、そ
の結果ばね作用がソフトになる。
Kt=1/[1/Kb+Jl'/(KO-Ae・Pi)
1 (4) Here, Kb: Horizontal spring constant of the bellows alone 0: Torsional spring constant of the anti-vibration rubber Ae: Air spring effective pressure receiving area P: Air spring pressure (P = W / A e )! L Distance between two rotation centers Of and 02 As can be understood from the above equation (4), the overall spring constant Kt is smaller than the spring constant Kb of the bellows alone, and the air spring system ld according to the present invention has only an air spring. Compared to a conventional air spring system in which only the shear deformation of the bellows occurs, the torsional deformation of the anti-vibration rubber is added in series to the shear deformation of the bellows, resulting in a softer spring action. .

第8図は、ベローズ単体の水平方向ばね定数Kbと、半
球型防振ゴム手段併用の本発明による空気ばねシステム
のばね定数Kt(実測値及び計算値)との関係を示すグ
ラフであるが、防振ゴム手段を併用することによりばね
定数が著しく低減していることが分かるであろう。
FIG. 8 is a graph showing the relationship between the horizontal spring constant Kb of the bellows alone and the spring constant Kt (actually measured values and calculated values) of the air spring system according to the present invention that uses hemispherical anti-vibration rubber means. It will be seen that the spring constant is significantly reduced by using the anti-vibration rubber means.

第8図から明らかなように、本発明の空気ばねシステム
においては圧力の増大と共にばね定数Ktが減少してい
るが、これは空気ばね支持荷重W(= A e P)に
よるモーメントが第7図から分かるように、防振ゴム手
段50が転倒、即ち、回転する方向に作用するからであ
る。
As is clear from FIG. 8, in the air spring system of the present invention, the spring constant Kt decreases as the pressure increases, but this is because the moment due to the air spring support load W (= A e P) As can be seen from the figure, this is because the vibration isolating rubber means 50 acts in the direction of overturning, that is, rotation.

又、上記式(4)から理解されるように、空気ばねシス
テム1dのばね定数Kkは、回転中心01.02間の距
離皇の二乗に反比例して小さくなる。従って、上記スペ
ーサSにて連結軸58の長さを調整することによりばね
定数Ktを微調整することができる。
Further, as understood from the above equation (4), the spring constant Kk of the air spring system 1d decreases in inverse proportion to the square of the distance between the rotation centers 01.02. Therefore, by adjusting the length of the connecting shaft 58 using the spacer S, the spring constant Kt can be finely adjusted.

しかしながら、防振ゴム手段50の座屈を防止するため
に、防振ゴムのねじればね定数(KO)〉W文を満足す
る必要があり、従って連結軸58の長さにも限度がある
0例えば防振ゴムのねじればね定数KOが2000kg
* cm/rad、支持荷重Wが350kgであるとす
れば、Jlが5゜7cm以下となるように連結軸58の
長さを設定すべきである。
However, in order to prevent buckling of the anti-vibration rubber means 50, it is necessary to satisfy the torsional spring constant (KO) of the anti-vibration rubber>W, and therefore there is a limit to the length of the connecting shaft 58, e.g. Torsional spring constant KO of anti-vibration rubber is 2000kg
* cm/rad, and if the supported load W is 350 kg, the length of the connecting shaft 58 should be set so that Jl is 5°7 cm or less.

更に、本実施例の空気ばねシステムldは、前記第1図
に示す実施例と異なり、圧縮方向及び水平方向のばね定
数は大きいが1回転中心01(更には02)の回りのね
じればね定数は小さいという特徴を有する。換言すれば
、垂直方向のばね作用は固く、従って該空気ばねシステ
ムldの許容支持荷重が大となる。又、ばね上の定s1
4に水平力を作用させた場合に、防振ゴム52は純粋に
水平方向に撓むことはないが、防振ゴム52のねじれ変
形により、水平方向へも容易に撓むことができ結果とし
て水平方向に軟らかいばね作用をなす。
Furthermore, unlike the embodiment shown in FIG. 1, the air spring system ld of this embodiment has a large spring constant in the compression direction and the horizontal direction, but a torsional spring constant around the center of one rotation 01 (and even 02). It has the characteristic of being small. In other words, the spring action in the vertical direction is stiff and therefore the permissible supporting load of the air spring system ld is large. Also, the constant s1 on the spring
When a horizontal force is applied to 4, the vibration isolating rubber 52 does not deflect purely in the horizontal direction, but due to torsional deformation of the vibration isolating rubber 52, it can easily deflect in the horizontal direction as well. Provides a soft spring action in the horizontal direction.

第9図は、第6図に示す本発明に係る空気ばねシステム
の変形実施態様を示す8本実施例の空気ばねシステムl
eは第6図の空気ばねシステムlaと実質的に同様の構
造とされるが、本実施例においては、定盤4は直接には
空気ばね30に支持され、該空気ばね30が防振ゴム手
段50に担持されている点において前記空気ばねシステ
ムldと相違する0本実施例の空気ばねシステムleも
前記空気ばねシステムldに関連して説明したと同様に
作用し、且つ同様の効果を有する。
FIG. 9 shows eight embodiments of an air spring system l showing a modified embodiment of the air spring system according to the present invention shown in FIG. 6.
e has substantially the same structure as the air spring system la shown in FIG. The air spring system LE of this embodiment, which differs from the air spring system LD in that it is carried by means 50, also operates in the same manner as described in connection with the air spring system LD, and has similar effects. .

又、第6図及び第9図に例示する各実施例において使用
された空気ばね30はその構造が図示されるものに限定
されるものではなく、例えば第5図に関連して説明した
構造の空気ばねな採用することも可能である。更に又、
第6図の実施例において上記説明では防振ゴム手段50
にて、防振ゴム下金具54が半径R1の凸表面を有した
半球体であり、防振ゴム上金具56が半径R2(>R1
)の凹表面を有した半球面体としたが、逆に防振ゴム下
金具54を半径R2の凹表面を有した半球面体とし、防
振ゴム上金具56を半径R1(<R2)の凸表面を有し
た半球体とすることもできるし、又同様に第9図の実施
例においても主金具と下金具の形状を逆に構成すること
ができる。
Furthermore, the structure of the air spring 30 used in each of the embodiments illustrated in FIGS. 6 and 9 is not limited to that shown in the drawings, and for example, the structure described in connection with FIG. It is also possible to use an air spring. Furthermore,
In the embodiment of FIG. 6, in the above description, the vibration isolating rubber means 50
, the vibration-proof rubber lower metal fitting 54 is a hemisphere with a convex surface with a radius R1, and the vibration-proof rubber upper metal fitting 56 has a radius R2 (>R1
), but conversely, the lower anti-vibration rubber fitting 54 is made into a hemisphere with a concave surface of radius R2, and the upper anti-vibration rubber fitting 56 is made of a convex surface with radius R1 (<R2). Alternatively, in the embodiment shown in FIG. 9, the shapes of the main metal fitting and the lower metal fitting can be reversed.

兄」LΩ」L釆 本発明に係る空気ばねシステムは以上の如くに空気ばね
に防振ゴム手段を直列態様にて併用するために防振装置
の、特に水平方向ばね定数を大幅に低下せしめ、それに
より空気ばねシステムの。
As described above, the air spring system according to the present invention uses the vibration isolating rubber means in series with the air spring, thereby significantly reducing the spring constant of the vibration isolating device, especially in the horizontal direction. thereby of the air spring system.

特に水平方向の固有振動数を小さくし、振動伝達率の低
下、即ち、防振性能の著しい向上を実現し得るという効
果を有する。
In particular, it has the effect of reducing the natural frequency in the horizontal direction and reducing the vibration transmissibility, that is, significantly improving the vibration damping performance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明に係る空気ばねシステムの一実施態様
を示す断面図である。 第2図は、第1図の空気ばねシステムの作動態様を示す
断面図である。 第3図は、ベローズ単体の水平方向ばね定数Kbと、第
1図の空気ばねシステムのばね定数Kt(実測値及び計
算値)との関係を示すグラフである。 第4図は、第1図の空気ばねシステムの変形実施態様を
示す断面図である。 第5図は、第1図の空気ばねシステムの更に他の変形実
施態様を示す断面図である。 第6図は、本発明に係る空気ばねシステムの他の実施態
様を示す断面図である。 第7図は、第6図の空気ばねシステムの作動態様を示す
断面図である。 第8図は、ベローズ単体の水平方向ばね定数Kbと、第
6図の空気ばねシステムのばね定数Kt(実測値及び計
算値)との関係を示すグラフである。 第9図は、第6図の空気ばねシステムの変形実施態様を
示す断面図である。 第1θ図は、従来の空気ばねシステムを示す断面図であ
る。 第11図及び第’12図は、第10図の空気ばねシステ
ムの作動態様を説明する部分断面図である。 4:防振架台(定盤) 30:空気ばね 32:空気ばね下金具 34:空気室 36:ベローズ 40:空気ばね主金具 50:防振ゴム手段 52:防振ゴム 54:防振ゴム下金具 56:防振ゴム上金具 58二連結軸 整^圧力 Kシ。m2 を九万力 Kg/Cm2 第11図
FIG. 1 is a sectional view showing one embodiment of an air spring system according to the present invention. FIG. 2 is a cross-sectional view illustrating the operation of the air spring system of FIG. FIG. 3 is a graph showing the relationship between the horizontal spring constant Kb of the bellows alone and the spring constant Kt (actually measured and calculated values) of the air spring system of FIG. 4 is a cross-sectional view of a modified embodiment of the air spring system of FIG. 1; FIG. FIG. 5 is a cross-sectional view of yet another alternative embodiment of the air spring system of FIG. FIG. 6 is a sectional view showing another embodiment of the air spring system according to the present invention. FIG. 7 is a cross-sectional view illustrating the operation of the air spring system of FIG. 6. FIG. 8 is a graph showing the relationship between the horizontal spring constant Kb of the bellows alone and the spring constant Kt (actually measured values and calculated values) of the air spring system of FIG. 9 is a cross-sectional view of a modified embodiment of the air spring system of FIG. 6; FIG. FIG. 1θ is a cross-sectional view of a conventional air spring system. FIGS. 11 and 12 are partial cross-sectional views illustrating how the air spring system of FIG. 10 operates. 4: Vibration-isolating frame (surface plate) 30: Air spring 32: Air spring lower bracket 34: Air chamber 36: Bellows 40: Air spring main bracket 50: Vibration-isolating rubber means 52: Vibration-isolating rubber 54: Vibration-isolating rubber lower bracket 56: Vibration-isolating rubber upper metal fitting 58 two-connection axis alignment ^ pressure Kshi. m2 to 90,000 Kg/Cm2 Figure 11

Claims (1)

【特許請求の範囲】 1)所定圧力に保持された空気室を有する空気ばねと、
該空気ばねに対し直列態様で該空気ばねに連結された防
振ゴム手段とを具備することを特徴とする空気ばねシス
テム。 2)防振ゴム手段は、空気ばねの上方に配置され、該空
気ばねにて担持されて成る特許請求の範囲第1項記載の
空気ばねシステム。 3)空気ばねは、防振ゴム手段の上方に配置され、該防
振ゴム手段にて担持されて成る特許請求の範囲第1項記
載の空気ばねシステム。 4)防振ゴム手段は、防振ゴムを防振ゴム下金具及び防
振ゴム上金具で挟持して構成される特許請求の範囲第2
項又は第3項記載の空気ばねシステム。 5)防振ゴム下金具及び防振ゴム上金具は平板状である
特許請求の範囲第4項記載の空気ばねシステム。 6)防振ゴム下金具は凸型半球体で、防振ゴム上金具が
凹型半球面体とされるか、又は防振ゴム下金具は凹型半
球面体で、防振ゴム上金具が凸型半球体とされて成る特
許請求の範囲第4項記載の空気ばねシステム。
[Claims] 1) an air spring having an air chamber maintained at a predetermined pressure;
an air spring system comprising: anti-vibration rubber means connected in series to the air spring; 2) The air spring system according to claim 1, wherein the vibration isolating rubber means is disposed above the air spring and supported by the air spring. 3) The air spring system according to claim 1, wherein the air spring is disposed above a vibration isolating rubber means and supported by the vibration isolating rubber means. 4) The anti-vibration rubber means is constructed by sandwiching the anti-vibration rubber between a lower anti-vibration rubber fitting and an upper anti-vibration rubber fitting.
The air spring system according to item 3 or item 3. 5) The air spring system according to claim 4, wherein the vibration-proof rubber lower metal fitting and the vibration-proof rubber upper metal fitting have a flat plate shape. 6) The lower anti-vibration rubber fitting is a convex hemisphere and the upper anti-vibration rubber fitting is a concave hemisphere, or the lower anti-vibration rubber fitting is a concave hemisphere and the upper anti-vibration rubber fitting is a convex hemisphere. An air spring system according to claim 4, comprising:
JP9126285A 1985-04-30 1985-04-30 Air spring system using vibro-isolator rubber in combination Pending JPS61252928A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9126285A JPS61252928A (en) 1985-04-30 1985-04-30 Air spring system using vibro-isolator rubber in combination

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9126285A JPS61252928A (en) 1985-04-30 1985-04-30 Air spring system using vibro-isolator rubber in combination

Publications (1)

Publication Number Publication Date
JPS61252928A true JPS61252928A (en) 1986-11-10

Family

ID=14021503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9126285A Pending JPS61252928A (en) 1985-04-30 1985-04-30 Air spring system using vibro-isolator rubber in combination

Country Status (1)

Country Link
JP (1) JPS61252928A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01176238U (en) * 1988-05-31 1989-12-15
EP1557585A1 (en) * 2004-01-22 2005-07-27 Fujikura Rubber Ltd. Air-spring vibration isolation device
NL1024886C2 (en) * 2002-11-28 2005-12-14 Fujikura Rubber Ltd Vibration isolation table.
CN110805647A (en) * 2019-10-24 2020-02-18 绍兴建元电力集团有限公司大兴电力承装分公司 Composite vibration isolation device installed inside transformer oil tank and design method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS608540B2 (en) * 1975-05-06 1985-03-04 バスフ アクチエンゲゼルシヤフト A device that applies tension to the magnetic tape when feeding it.

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS608540B2 (en) * 1975-05-06 1985-03-04 バスフ アクチエンゲゼルシヤフト A device that applies tension to the magnetic tape when feeding it.

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01176238U (en) * 1988-05-31 1989-12-15
NL1024886C2 (en) * 2002-11-28 2005-12-14 Fujikura Rubber Ltd Vibration isolation table.
EP1557585A1 (en) * 2004-01-22 2005-07-27 Fujikura Rubber Ltd. Air-spring vibration isolation device
US7125008B2 (en) 2004-01-22 2006-10-24 Fujikura Rubber Ltd. Air-spring vibration isolation device
CN110805647A (en) * 2019-10-24 2020-02-18 绍兴建元电力集团有限公司大兴电力承装分公司 Composite vibration isolation device installed inside transformer oil tank and design method
CN110805647B (en) * 2019-10-24 2024-01-12 绍兴建元电力集团有限公司大兴电力承装分公司 Composite vibration isolation device installed inside transformer oil tank and design method

Similar Documents

Publication Publication Date Title
US5310157A (en) Vibration isolation system
JP3614755B2 (en) Omnidirectional vibration isolation system
US5178357A (en) Vibration isolation system
US20140048989A1 (en) Vibration isolation systems
JPH02581B2 (en)
JPS627409B2 (en)
US10125843B2 (en) Horizontal-motion vibration isolator
US6676101B2 (en) Vibration isolation system
US5357723A (en) Vibration damping device
JPS61252928A (en) Air spring system using vibro-isolator rubber in combination
US7278623B2 (en) Vibration control unit and vibration control body
JP3797891B2 (en) Gas spring vibration isolator
JP3851654B2 (en) Vibration isolator
JP4405754B2 (en) Gas spring vibration isolator
JP3799244B2 (en) Gas spring vibration isolator
JP3754663B2 (en) Vibration control unit
EP1241371A2 (en) Vibration isolation system
JPH04113046A (en) Vibration-proof device
JPS61274128A (en) Laminate type vibro-isolating rubber combined air spring system
JPH08261280A (en) Preventing device for transmission of vibration
JP4469327B2 (en) Vibration control unit
JPS6217439A (en) Air spring system jointly using laminated type rubber vibration isolator
JPH1089412A (en) Vibration insulator
JP3131271B2 (en) Anti-vibration bearing
JP3910023B2 (en) Gas spring vibration isolator