JPS61252464A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JPS61252464A
JPS61252464A JP9315085A JP9315085A JPS61252464A JP S61252464 A JPS61252464 A JP S61252464A JP 9315085 A JP9315085 A JP 9315085A JP 9315085 A JP9315085 A JP 9315085A JP S61252464 A JPS61252464 A JP S61252464A
Authority
JP
Japan
Prior art keywords
compressor
phase
temperature
electric
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9315085A
Other languages
Japanese (ja)
Inventor
優 松本
寛 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP9315085A priority Critical patent/JPS61252464A/en
Publication of JPS61252464A publication Critical patent/JPS61252464A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Positive-Displacement Pumps (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は三相電力により駆動される逆転防止が必要な電
動圧縮機を備えた空調装置に関し、特に誤配線等による
電動圧縮機の逆転防止手段の改良に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an air conditioner equipped with an electric compressor that is driven by three-phase power and requires prevention of reverse rotation, and in particular to prevention of reverse rotation of the electric compressor due to incorrect wiring, etc. Concerning improvements in means.

〔従来の技術〕[Conventional technology]

空調装置に用いられる電動圧縮機には、駆動用三相電動
機が正逆いずれの方向に回転しても支障のない例えばレ
シプロ形圧縮機がある。レシプロ形圧縮機は、三相電動
機が正逆いずれの方向に回転した場合においても、冷媒
を正方向に流すものとなっている。しかしこのような型
式の電動圧縮機は、構造が複雑で、信頼性に乏しく、か
つコスト高になる難点がある。したがって、一般にはロ
ータリ形電動圧縮機やスクロール形電動圧縮機が多用さ
れている。
BACKGROUND ART Electric compressors used in air conditioners include, for example, reciprocating compressors in which a three-phase drive motor rotates in either forward or reverse direction without any problem. A reciprocating compressor allows refrigerant to flow in the forward direction even when the three-phase motor rotates in either the forward or reverse direction. However, this type of electric compressor has the drawbacks of a complicated structure, poor reliability, and high cost. Therefore, rotary type electric compressors and scroll type electric compressors are generally used frequently.

第5図は、ロータリ形電動圧縮機を用いた従来の空調装
置における冷媒循環系統図である。第5図において、1
はロータリ形電動圧縮機、2は吐出配管、3は凝縮器、
4は配管、5は減圧器、6は蒸発器、7は吸入配管であ
る。
FIG. 5 is a refrigerant circulation system diagram in a conventional air conditioner using a rotary electric compressor. In Figure 5, 1
is a rotary electric compressor, 2 is a discharge pipe, 3 is a condenser,
4 is a pipe, 5 is a pressure reducer, 6 is an evaporator, and 7 is a suction pipe.

電動圧縮機1が正方向に回転すると、冷媒は実線矢印の
ように流れる。すなわち、圧縮機1から吐出されたa温
高圧のガス冷媒は、吐出配管2を通って凝縮器3に入り
、ここで冷却凝縮されて高圧液冷媒となる。この高圧液
冷媒は配t!!4を通って減圧器5に入り、ここで減圧
され低圧の液・ガス混合冷媒となる。この液・ガス混合
冷媒は蒸発器6に入り、ここで加熱されることにより液
冷媒が蒸発して低圧ガス冷媒となる。この低圧ガス冷媒
は吸入配管7を通って圧縮機1へ吸入される。
When the electric compressor 1 rotates in the forward direction, the refrigerant flows as indicated by the solid arrow. That is, the gas refrigerant at a temperature and high pressure discharged from the compressor 1 passes through the discharge pipe 2 and enters the condenser 3, where it is cooled and condensed to become a high-pressure liquid refrigerant. This high pressure liquid refrigerant is distributed! ! The refrigerant passes through the refrigerant 4 and enters the decompressor 5, where it is decompressed and becomes a low-pressure liquid/gas mixed refrigerant. This liquid/gas mixed refrigerant enters the evaporator 6 and is heated there, whereby the liquid refrigerant evaporates and becomes a low-pressure gas refrigerant. This low pressure gas refrigerant is sucked into the compressor 1 through the suction pipe 7.

ところで、電動圧縮機1が逆方向に回転すると、冷媒は
点線矢印のように流れる。そうすると高温高圧のガス冷
媒が、冷房に使用する目的の蒸発器6に流れ込むので、
冷房機としての癲能が失われてしまう。そして電動圧縮
tI11が逆方向に回転し続けると、この電動圧縮!1
11には異常な負担が加わることになり、故障発生を招
くことになる。
By the way, when the electric compressor 1 rotates in the opposite direction, the refrigerant flows as indicated by the dotted arrow. Then, the high-temperature, high-pressure gas refrigerant flows into the evaporator 6, which is used for cooling.
It loses its ability to function as an air conditioner. When the electric compression tI11 continues to rotate in the opposite direction, this electric compression! 1
11 will be subjected to an abnormal load, leading to a failure.

第6図は上記のような事態の発生を防止するために、三
相電力の逆相検知による圧縮I11の逆転防止手段を備
えた空調装置の圧縮機駆動用電気回路図である。第6図
において、11は圧縮機駆動用の三相電動機、12は上
記三相電動機に電力を供給する三相電源端子、13は上
記三相電源端子に接続された逆相検知器、14.15は
上記逆相検知器の切換え接点13Gにより選択的に付勢
され、位相順が互いに逆転するように配線接続された接
点140.15Gを備えた電磁接触器である。
FIG. 6 is an electric circuit diagram for driving a compressor of an air conditioner equipped with means for preventing reversal of the compression I11 by detecting the reverse phase of three-phase electric power in order to prevent the above situation from occurring. In FIG. 6, 11 is a three-phase electric motor for driving the compressor, 12 is a three-phase power supply terminal for supplying power to the three-phase electric motor, 13 is a negative phase detector connected to the three-phase power supply terminal, and 14. Reference numeral 15 denotes an electromagnetic contactor which is selectively energized by the switching contact 13G of the reverse phase detector and includes contacts 140.15G connected by wiring so that the phase order is reversed to each other.

今、三相電源端子12から供給される三相電力の位相順
が、正相順R→S−+T・・・となるように電源配線が
施されているときは、逆相検知器13は作動しない。こ
のため、上記検知器13の切換え接点13Cは、第6図
に示すようにb側に切り換わった状態となっている。し
たがってこの場合は電磁接触器14が付勢され、その接
点14Cが閉じた状態となる。このため三相電動機11
には位相順がU+v→W・・・となる電力が供給される
ことになり正回転する。したがって圧縮11!1も正回
転する。
Now, when the power supply wiring is arranged so that the phase order of the three-phase power supplied from the three-phase power supply terminal 12 is positive phase order R→S-+T..., the negative phase detector 13 is It doesn't work. Therefore, the switching contact 13C of the detector 13 is switched to the b side as shown in FIG. Therefore, in this case, the electromagnetic contactor 14 is energized and its contact 14C is in a closed state. Therefore, the three-phase motor 11
is supplied with power with a phase order of U+v→W... and rotates in the normal direction. Therefore, the compression 11!1 also rotates in the normal direction.

一方、三相電力の位相順が逆相順T−8−R・・・とな
るように、電源配線が施されているときは、逆相検知器
13が作動する。このため切換え接点13Cがa側に切
り換わり、電磁接触器15が付勢される。その結果、接
点15Cが閉じ、接点14Cが開く。このため三相電動
機11には前の場合と同様に位相順がU→V→Wとなる
電力が供給されることになる。このように、三相電源端
子12から供給される三相電力の位相順が逆になってい
ても、逆相検知器13と電磁接触器14゜15の組合わ
せにより、三相電動機11を常に正回転させ得、圧縮1
111を正回転させることができる。
On the other hand, when the power supply wiring is arranged so that the phase order of the three-phase power becomes the reverse phase order T-8-R..., the reverse phase detector 13 is activated. Therefore, the switching contact 13C is switched to the a side, and the electromagnetic contactor 15 is energized. As a result, contact 15C closes and contact 14C opens. Therefore, the three-phase motor 11 is supplied with power in the phase order U→V→W as in the previous case. In this way, even if the phase order of the three-phase power supplied from the three-phase power supply terminal 12 is reversed, the combination of the reverse phase detector 13 and the electromagnetic contactor 14, 15 ensures that the three-phase motor 11 is always activated. Can be rotated forward, compression 1
111 can be rotated forward.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記構成の従来の空調装置には次のような問題があった
。すなわち、電磁接触器14の接点14Cにおける端子
d、e、fおよび電磁接触器15の接点15Gにおける
端子j、に、Iに対する三相電動機11の端子U、V、
Wの接続を誤った場合、三相電動機11は逆回転してし
まい、故障発生となるおそれがあった。例えば、三相電
動機11の端子Uと■との結線が入替わってしまってい
る場合、三相電源端子12からR−8→T・・・なる正
相順の三相電力が与えられると、上記位相順によっては
位相検知器13は作動しないので、電磁接触器14が付
勢される。その結果、正相順の三相電力が接点14Cを
介して三相電動機11に供給されようとする。しかるに
、この三相電力は、前記接続誤りによって三相電動機1
1の端子に対しては、W−+V−4U・・・なる位相順
に供給されることになる。その結果、圧縮機1が逆回転
してしまい、故障発生のおそれがあった。
The conventional air conditioner having the above configuration has the following problems. That is, the terminals d, e, f at the contact point 14C of the electromagnetic contactor 14 and the terminal j at the contact point 15G of the electromagnetic contactor 15, the terminals U, V, of the three-phase motor 11 for I,
If W is incorrectly connected, the three-phase motor 11 will rotate in the opposite direction, potentially causing a failure. For example, if the connections between terminals U and ■ of the three-phase motor 11 have been swapped, and three-phase power is supplied from the three-phase power supply terminal 12 in the positive phase order of R-8 → T... Since the phase detector 13 does not operate depending on the above phase order, the electromagnetic contactor 14 is energized. As a result, three-phase power in positive phase order is about to be supplied to the three-phase motor 11 via the contact 14C. However, this three-phase power is not connected to the three-phase motor 1 due to the connection error.
To the terminal No. 1, the signals are supplied in the phase order W-+V-4U, . . . . As a result, the compressor 1 rotates in the opposite direction, leading to a risk of failure.

そこで本発明は、たとえ三相電動機への誤配線等があっ
ても電動圧縮機の逆回転による故障発生を未然に防止で
きる逆転防止手段を備えた空調装置を提供することを目
的とする。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide an air conditioner equipped with a reversal prevention means that can prevent malfunctions due to reverse rotation of an electric compressor even if there is incorrect wiring to a three-phase electric motor.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上記問題点を解決し目的を達成するために、次
の如き手段を講じたこを特徴としている。
In order to solve the above problems and achieve the objects, the present invention is characterized by taking the following measures.

すなわち本発明の空調装置は、回転方向検知手段により
電動圧縮機の吸入配管または吐出配管の少なくとも一方
を流れる冷媒の温度または圧力を検出して前記電動圧縮
機の回転方向を検知し、この検知された回転方向に対応
して正回転駆動手段により前記電動圧縮機を正回転駆動
するようにしたことを特徴としている。
That is, the air conditioner of the present invention detects the rotation direction of the electric compressor by detecting the temperature or pressure of the refrigerant flowing through at least one of the suction piping and the discharge piping of the electric compressor using the rotation direction detection means, and The electric compressor is characterized in that the electric compressor is driven to rotate in the forward direction by the forward rotation driving means in accordance with the direction of rotation.

〔作用〕[Effect]

上記のような手段を講じたことにより、電動圧縮機が逆
回転をはじめると、その逆回転による濃度、圧力等の情
報が正常回転時とは異なったものであることが検出され
、圧縮機の正回転駆動制御が行なわれることになる。
By taking the above measures, when the electric compressor starts to rotate in reverse, it is detected that the concentration, pressure, etc. information due to the reverse rotation is different from that during normal rotation, and the compressor is Forward rotation drive control will be performed.

〔実施例) 第1図は本発明の第1の実施例の冷媒循環系統図であり
、第2図は同実施例の圧縮機駆動用電気回路面である。
[Embodiment] FIG. 1 is a refrigerant circulation system diagram according to a first embodiment of the present invention, and FIG. 2 is an electric circuit diagram for driving a compressor of the same embodiment.

なお第5図および第6図と同一部分には同一符号を付し
、その部分の詳細な説明は省略する。
Note that the same parts as in FIGS. 5 and 6 are given the same reference numerals, and detailed explanations of those parts will be omitted.

第1図において21は圧縮機1の吐出配管2に取付けら
れた温度検知器であり、吐出配管2内を流れる冷媒の温
度を検知し、コントローラ22に検知信号を供給するも
のとなっている。
In FIG. 1, reference numeral 21 denotes a temperature sensor attached to the discharge pipe 2 of the compressor 1, which detects the temperature of the refrigerant flowing within the discharge pipe 2 and supplies a detection signal to the controller 22.

第2図に示すようにコントローラ22は、前記検知信号
に応じて作動し、電磁接触器14.15を選択的に付勢
するための切換えスイッチ23の切換え制御を行なうよ
うになっている。
As shown in FIG. 2, the controller 22 operates in response to the detection signal and controls switching of a changeover switch 23 for selectively energizing the electromagnetic contactors 14, 15.

このように構成された本実施例においては、コントロー
ラ22に作動指令を与えると、コントローラ22から第
1の切換え制御信号が出力され、切換えスイッチ23が
b側に切換え接続される。
In this embodiment configured as described above, when an operation command is given to the controller 22, the first switching control signal is output from the controller 22, and the changeover switch 23 is switched to the b side.

このため電磁接触器14が付勢され、その接点14Gが
閉じる。したがって誤配線等がなければ三相電動機11
は正回転し、圧縮機1も正回転する。その結果、冷媒が
第1図中実線矢印のように流れる。このとき吐出配管2
の温度は運転前よりも高い温度となる。この温度は温度
検知器21により検知され、その検知信号がコントロー
ラ22に供給される。そうすると、コントローラ22に
おいて、圧縮11が正回転していると判定され、コント
ローラ22からは信号が出力されない。したがって切換
えスイッチ23はそのままb側に保持される。
Therefore, the electromagnetic contactor 14 is energized and its contact 14G is closed. Therefore, if there is no incorrect wiring etc., the three-phase motor 11
rotates in the normal direction, and the compressor 1 also rotates in the normal direction. As a result, the refrigerant flows as indicated by the solid line arrow in FIG. At this time, the discharge pipe 2
The temperature will be higher than before operation. This temperature is detected by a temperature sensor 21, and a detection signal thereof is supplied to a controller 22. Then, the controller 22 determines that the compression 11 is rotating in the forward direction, and no signal is output from the controller 22. Therefore, the changeover switch 23 is maintained at the b side.

一方、誤配線等により電動圧縮機1が逆回転すると、冷
媒は第1図中点線矢印方向に流れる。そうすると吐出配
管2の温度は運転前よりも低い温度となる。この温度は
温度検知器21により検知され、その検知信号がコント
ローラ22に供給される。そうすると、コントローラ2
2において、圧縮機1が逆回転していると判定され、コ
ントローラ22から第2の切換え制御信号が出力される
On the other hand, if the electric compressor 1 rotates in the opposite direction due to incorrect wiring or the like, the refrigerant flows in the direction of the dotted line arrow in FIG. Then, the temperature of the discharge pipe 2 becomes lower than that before operation. This temperature is detected by a temperature sensor 21, and a detection signal thereof is supplied to a controller 22. Then controller 2
2, it is determined that the compressor 1 is rotating in reverse, and the controller 22 outputs a second switching control signal.

したがって切換えスイッチ23はb側からa側に切換え
られる。このため電磁接触器14の付勢が断たれ、電磁
接触器15が付勢される。このため接点14Cが開き、
接点15Gが閉じる。上記接点15Cは接点14Gとは
位相順が逆となるように配線接続されているので、三相
電動機11には正相順の三相電力が供給される。このた
め三相電動1111が正回転し、圧縮機1も正回転する
Therefore, the changeover switch 23 is switched from the b side to the a side. Therefore, the energization of the electromagnetic contactor 14 is cut off, and the energization of the electromagnetic contactor 15 is energized. Therefore, contact 14C opens,
Contact 15G closes. Since the contact 15C is wire-connected so that the phase order is opposite to that of the contact 14G, the three-phase motor 11 is supplied with three-phase power in the normal phase order. Therefore, the three-phase electric motor 1111 rotates in the forward direction, and the compressor 1 also rotates in the forward direction.

このように本実施例によれば、たとえ三相電動機11の
端子U、V、Wへの誤配線があっても圧縮機1の逆回転
を初期段階で阻止でき、しかもただちに正回転に直すこ
とができる。なお、本実施例においては吐出配管2を流
れる冷媒の温度検知により圧縮機1の逆回転を検知する
ようにしているので、単に三相電動機11の端子への誤
接続による逆回転防止だけでなく、電源配線の逆相類に
よる圧縮機1の逆回転等も防止可能であるのは勿論であ
る。
In this way, according to this embodiment, even if there is incorrect wiring to the terminals U, V, and W of the three-phase motor 11, reverse rotation of the compressor 1 can be prevented at an initial stage, and moreover, it is possible to immediately restore normal rotation. I can do it. In this embodiment, reverse rotation of the compressor 1 is detected by detecting the temperature of the refrigerant flowing through the discharge pipe 2, so it is not only possible to prevent reverse rotation due to incorrect connection to the terminals of the three-phase motor 11. Of course, it is also possible to prevent reverse rotation of the compressor 1 due to reverse phase of the power supply wiring.

第3図は本発明の第2の実施例における冷媒循環系統の
主要部を示す図である。この第2の実施例が前記第1の
実施例と異なる点は、吸入配管7に温度検知器24を取
付けた点である。
FIG. 3 is a diagram showing the main parts of a refrigerant circulation system in a second embodiment of the present invention. This second embodiment differs from the first embodiment in that a temperature sensor 24 is attached to the suction pipe 7.

この第2の実施例においては、温度検知器24により、
吸入配管7を流れる冷媒の温度が運転前の温度よりも低
い温度になっていることが検知されたときは、圧縮機1
が正回転していると判定され、運転前よりも高い温度に
なっていることが検窄されたときは逆回転と判定される
。かくして前述と同様に切換えスイッチ23の切換え制
御が行なわれ、圧縮l1i1を正回転させ得る。
In this second embodiment, the temperature sensor 24
When it is detected that the temperature of the refrigerant flowing through the suction pipe 7 is lower than the temperature before operation, the compressor 1
is determined to be rotating in the forward direction, and when it is determined that the temperature is higher than before operation, it is determined to be rotating in the reverse direction. Thus, the switching control of the changeover switch 23 is performed in the same manner as described above, and the compression l1i1 can be rotated in the forward direction.

第4図は本発明の第3の実施例を示す冷媒循環系統図で
ある。この第3の実施例が前記第1.第2の実施例と異
なる点は、吐出配管2および吸入配管7の双方に検知器
21と24とを取付けた点である。
FIG. 4 is a refrigerant circulation system diagram showing a third embodiment of the present invention. This third embodiment is similar to the first embodiment. The difference from the second embodiment is that detectors 21 and 24 are attached to both the discharge pipe 2 and the suction pipe 7.

この第3の実施例においては、圧縮機1が正回転してい
る場合には、温度検知器21で検知される吐出配管2を
流れる冷媒の温度は、温度検知器24で検知される吸入
配管7を流れる冷媒の温度よりも高い。そこで上記湿度
差を示す信号がコントローラに供給されたときは、圧縮
機1が正回転しているものと判定し、切換えスイッチ2
3をb側に保持するように制御する。また圧縮機1が逆
回転している場合には、吐出配管2を流れる冷媒の温度
よりも吸入配管7を流れる冷媒の温度の方が高くなる。
In this third embodiment, when the compressor 1 is rotating in the forward direction, the temperature of the refrigerant flowing through the discharge pipe 2 detected by the temperature sensor 21 is the same as that of the suction pipe detected by the temperature sensor 24. higher than the temperature of the refrigerant flowing through 7. Therefore, when a signal indicating the humidity difference is supplied to the controller, it is determined that the compressor 1 is rotating in the forward direction, and the changeover switch 2
3 is controlled to be held on the b side. Further, when the compressor 1 is rotating in the opposite direction, the temperature of the refrigerant flowing through the suction pipe 7 becomes higher than the temperature of the refrigerant flowing through the discharge pipe 2.

そこでこのような温度差を示す検知信号がコントローラ
22に供給されたときは、圧縮機1が逆回転しているも
のと判定し、切換えスイッチ23をa側に切換える。こ
のようにすることによって、前記各実施例と同様の作用
効果を奏する。また周囲温度の影響等により運転前と運
転後の配管温度に差が生じがたい場合であっても吐出配
管2と吸入配管7との温度差は必ず生じるので冷媒の流
れ方向すなわち圧縮1g11の回転方向をより適確に検
知できる利点がある。
Therefore, when a detection signal indicating such a temperature difference is supplied to the controller 22, it is determined that the compressor 1 is rotating in reverse, and the changeover switch 23 is switched to the a side. By doing so, the same effects as in each of the embodiments described above can be achieved. Furthermore, even if there is little difference between the pipe temperatures before and after operation due to the influence of ambient temperature, etc., there will always be a temperature difference between the discharge pipe 2 and the suction pipe 7. This has the advantage that the direction can be detected more accurately.

なお本発明は前記各実施例に限定されるものではない。Note that the present invention is not limited to the above embodiments.

例えば、前記実施例では圧縮機1の回転方向検知手段と
して、配管内を流れる冷媒の温度を検知する手段を示し
たが、前記温度検知器21あるいは24の代りに圧力検
知器を取付け、配管内を流れる冷媒の圧力を検知するこ
とにより、圧縮機1の回転方向を検知するようにしても
よい。
For example, in the embodiment described above, a means for detecting the temperature of the refrigerant flowing in the piping was shown as a means for detecting the rotational direction of the compressor 1, but a pressure sensor is installed in place of the temperature sensor 21 or 24, The rotation direction of the compressor 1 may be detected by detecting the pressure of the refrigerant flowing through the compressor 1.

また前記各実施例は本発明を冷房機に適用した例を示し
たが、ヒートポンプ機等にも適用可能である。このほか
本発明の要旨を逸脱しない範囲で種々変形実施可能であ
るのは勿論である。
Furthermore, although the above embodiments show examples in which the present invention is applied to air conditioners, it is also applicable to heat pump machines and the like. It goes without saying that various other modifications can be made without departing from the gist of the present invention.

〔発明の効果〕〔Effect of the invention〕

本発明の空調装置は、回転方向検知手段により電動圧縮
機の吸入配管または吐出配管の少なくとも一方を流れる
冷媒の温度または圧力を検出して前記電動圧縮機の回転
方向を検知し、この検知された回転方向に対応して正回
転駆動手段により前記電動圧縮機を正回転駆動するよう
にしたことを特徴としている。
The air conditioner of the present invention detects the rotation direction of the electric compressor by detecting the temperature or pressure of the refrigerant flowing through at least one of the suction piping and the discharge piping of the electric compressor using the rotation direction detection means, and The electric compressor is characterized in that the electric compressor is driven to rotate in a forward direction by a forward rotation drive means corresponding to the rotation direction.

したがって本発明によれば、電動圧縮機が逆回転をはじ
めると、その逆回転による温度、圧力等の情報が正常回
転時とは異なったものであることが検出され、圧縮機の
正回転駆動制御が行なわれることになる。その結果、た
とえ三相電動機への誤配線等があっても電動圧縮機の逆
回転による故障発生を未然に防止できる逆転防止手段を
備えた空調装置を提供できる。
Therefore, according to the present invention, when the electric compressor starts to rotate in reverse, it is detected that information such as temperature and pressure due to the reverse rotation is different from that during normal rotation, and the forward rotation drive control of the compressor is performed. will be carried out. As a result, it is possible to provide an air conditioner equipped with a reverse rotation prevention means that can prevent failures due to reverse rotation of the electric compressor even if there is incorrect wiring to the three-phase motor.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1の実施例の冷媒循環系統を示す図
、第2図は同実施例の圧縮機駆動用の電気回路図、第3
図は本発明の第2の実施例の冷媒循環系統の主要部を示
す図、第4図は本発明の第3の実施例の冷媒循環系統を
示す図である。第5図は従来装置の冷媒循環系統を示す
図、第6図は同従来装置の圧縮機駆動用の電気回路図で
ある。 1・・・電動圧縮機、2・・・吐出配管、7・・・吸入
配管、11・・・圧縮機駆動用の三相電動機、13・・
・逆相検知器、14.15・・・電磁接触器、21.2
4・・・温度検知器、22・・・コントローラ、23・
・・切換えスイッチ。 出願人復代理人 弁理士 鈴江武彦 第1図 112図 jI!3図 第4図 第5図
FIG. 1 is a diagram showing a refrigerant circulation system according to a first embodiment of the present invention, FIG. 2 is an electric circuit diagram for driving a compressor of the same embodiment, and FIG.
This figure shows the main parts of a refrigerant circulation system according to a second embodiment of the present invention, and FIG. 4 is a diagram showing a refrigerant circulation system according to a third embodiment of the present invention. FIG. 5 is a diagram showing a refrigerant circulation system of a conventional device, and FIG. 6 is an electric circuit diagram for driving a compressor of the conventional device. DESCRIPTION OF SYMBOLS 1... Electric compressor, 2... Discharge piping, 7... Suction piping, 11... Three-phase electric motor for driving the compressor, 13...
・Reverse phase detector, 14.15...Magnetic contactor, 21.2
4...Temperature detector, 22...Controller, 23.
...Selector switch. Applicant Sub-Agent Patent Attorney Takehiko Suzue Figure 1 Figure 112 jI! Figure 3 Figure 4 Figure 5

Claims (1)

【特許請求の範囲】[Claims] 三相電力により駆動される逆転防止が必要な電動圧縮機
を備えた空調装置において、電動圧縮機の吸入配管また
は吐出配管の少なくとも一方を流れる冷媒の温度または
圧力を検出して前記電動圧縮機の回転方向を検知する回
転方向検知手段と、この回転方向検知手段にて検知され
た回転方向に対応して前記電動圧縮機を正回転駆動する
正回転駆動手段とを具備したことを特徴とする空調装置
In an air conditioner equipped with an electric compressor that is driven by three-phase power and requires reverse rotation prevention, the temperature or pressure of the refrigerant flowing through at least one of the suction piping or the discharge piping of the electric compressor is detected. An air conditioner comprising: a rotational direction detection means for detecting a rotational direction; and a forward rotation drive means for driving the electric compressor in a forward rotation in accordance with the rotational direction detected by the rotational direction detection means. Device.
JP9315085A 1985-04-30 1985-04-30 Air conditioner Pending JPS61252464A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9315085A JPS61252464A (en) 1985-04-30 1985-04-30 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9315085A JPS61252464A (en) 1985-04-30 1985-04-30 Air conditioner

Publications (1)

Publication Number Publication Date
JPS61252464A true JPS61252464A (en) 1986-11-10

Family

ID=14074507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9315085A Pending JPS61252464A (en) 1985-04-30 1985-04-30 Air conditioner

Country Status (1)

Country Link
JP (1) JPS61252464A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05180547A (en) * 1991-07-12 1993-07-23 Mitsubishi Electric Corp C0ntr0ller of air conditioner
JPH0569539U (en) * 1992-02-24 1993-09-21 三菱電機株式会社 Air-cooled refrigerator
JPH09280700A (en) * 1996-04-10 1997-10-31 Denso Corp Failure detector of air conditioner
JP2008064331A (en) * 2006-09-05 2008-03-21 Daikin Ind Ltd Negative phase detecting device, air conditioner having the same, and negative phase detecting method
JP2013083361A (en) * 2011-10-06 2013-05-09 Panasonic Corp Refrigeration cycle device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05180547A (en) * 1991-07-12 1993-07-23 Mitsubishi Electric Corp C0ntr0ller of air conditioner
JPH0569539U (en) * 1992-02-24 1993-09-21 三菱電機株式会社 Air-cooled refrigerator
JPH09280700A (en) * 1996-04-10 1997-10-31 Denso Corp Failure detector of air conditioner
JP2008064331A (en) * 2006-09-05 2008-03-21 Daikin Ind Ltd Negative phase detecting device, air conditioner having the same, and negative phase detecting method
JP2013083361A (en) * 2011-10-06 2013-05-09 Panasonic Corp Refrigeration cycle device

Similar Documents

Publication Publication Date Title
JP3703346B2 (en) Air conditioner
US5062278A (en) Air-conditioning apparatus including an indoor unit and an outdoor unit having its compressor driven by a three-phase AC power supply
EP2745395B1 (en) Reverse rotation braking for a permanent magnet motor
JP5031547B2 (en) Compressor drive device and refrigeration cycle device
KR890000942B1 (en) Control circuit for air conditioner
JPS61252464A (en) Air conditioner
US20010045101A1 (en) Locomotive air conditioner control system and related methods
JP3199527B2 (en) Refrigeration cycle equipment
US6171064B1 (en) Reverse rotation detection for scroll compressor utilizing suction temperature
JPH07218059A (en) Air conditioner provided with reverse rotation-preventing function
US20120100012A1 (en) Method for controlling electric compressor
JPH05256543A (en) Operational failure detector for air conditioner
JPH0442591B2 (en)
JP2518114B2 (en) Compressor drive
JP2002147906A (en) Refrigerating plant
JPS61184362A (en) Refrigerating air-conditioning device
US12018875B2 (en) Motor braking for air conditioning system
JPH0378598A (en) Compressor for refrigerator
JP4015665B2 (en) Air conditioner
JPH0444985Y2 (en)
JPH1193859A (en) Pump driving device
JPH0745978B2 (en) Backup circuit for high pressure control of refrigeration equipment
JPH0460360A (en) Apparatus for air conditioning
JP2670133B2 (en) Drive unit for electric compressor
KR950001075Y1 (en) Apparatus for controlling outdoor machine of air conditioner