JPS61252368A - Method for imparting water and oil repellency to porous hollow yarn - Google Patents

Method for imparting water and oil repellency to porous hollow yarn

Info

Publication number
JPS61252368A
JPS61252368A JP9225585A JP9225585A JPS61252368A JP S61252368 A JPS61252368 A JP S61252368A JP 9225585 A JP9225585 A JP 9225585A JP 9225585 A JP9225585 A JP 9225585A JP S61252368 A JPS61252368 A JP S61252368A
Authority
JP
Japan
Prior art keywords
water
oil
hollow fibers
solvent
repellent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9225585A
Other languages
Japanese (ja)
Inventor
永井 昭一
三郎 平岡
久仁夫 三十尾
角元 義裕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP9225585A priority Critical patent/JPS61252368A/en
Publication of JPS61252368A publication Critical patent/JPS61252368A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は多孔質中空糸への撥水撥油性賦与方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for imparting water and oil repellency to porous hollow fibers.

〔従来の技術および問題点〕[Conventional technology and problems]

最近、種々の素材を用いた多孔質中空糸が開発されてお
り、微細物質を除去する分離膜として各種の水処理、ま
たは人工臓器等に応用されている。
Recently, porous hollow fibers made of various materials have been developed and are being applied to various water treatments, artificial organs, etc. as separation membranes for removing fine substances.

これらの多孔質中空糸は平膜に比べ非常に大きな表面積
を有するので、濾過効率に優れており、−iにセルロー
ス、アクリル系共重合体、ポリアミド等の親水性高分子
またはポリエチレン、ポリプロピレン、フッ素系重合体
等の疎水性高分子が用いられている。水および水性の液
体を分離する場合は多孔質中空糸表面が水に濡れ易い親
水性多孔質中空糸が適しているが、後者の疎水性材料を
用いた多孔質中空糸では親水化処理を行なう必要があり
種々の親水化処理方法が提案されている。
These porous hollow fibers have a much larger surface area than flat membranes, so they have excellent filtration efficiency. Hydrophobic polymers such as polymers are used. When separating water and aqueous liquids, hydrophilic porous hollow fibers whose surfaces are easily wetted by water are suitable, but the latter porous hollow fibers made of hydrophobic materials require hydrophilic treatment. Various hydrophilic treatment methods have been proposed as necessary.

一方人工肺のように血液のガス交換を多孔質中杢糸を介
して行なう場合には親水性中空糸では中空糸内に血液等
の液体が侵入してしまうので好ましくない。
On the other hand, when blood gas exchange is performed through porous hollow fibers as in an artificial lung, hydrophilic hollow fibers are not preferred because liquids such as blood may enter the hollow fibers.

これに対して疎水性多孔質中空糸では表面が血液等の液
体に濡れないので、多孔質内に液体が侵入せず、人工肺
向は膜に適している。しかしながら疎水性中空糸を用い
た人工肺モジュールでも長時間使用すると、血液中に含
まれるリン脂質等の界面活性能を有する油状物質が中空
糸壁面に付着して積層構造の内部に浸透し、単分子被膜
を形成するので、中空糸表面が親水化され、血液漏れが
生じるという問題を有している。
On the other hand, the surface of hydrophobic porous hollow fibers is not wetted by liquids such as blood, so liquids do not penetrate into the pores, making them suitable for use in oxygenators as membranes. However, when an oxygenator module using hydrophobic hollow fibers is used for a long time, oily substances with surfactant properties such as phospholipids contained in blood adhere to the hollow fiber walls and penetrate into the laminated structure. Since a molecular film is formed, the surface of the hollow fiber becomes hydrophilic, causing a problem of blood leakage.

この問題を解決する手段として撥水撥油性能の優れたフ
ッ素系重合体で被覆した多孔質中空糸を用いることが考
えられるが、中空糸全体が高い撥水撥油性を有するので
、何らかの原因により気泡が入った場合気泡が会合して
成長し易く、また中空糸表面から気泡が離れる際に要す
るエネルギーも大きくなるため表面から気泡を除去する
のが困難となるという問題がある。
One possible solution to this problem is to use porous hollow fibers coated with a fluoropolymer that has excellent water and oil repellency, but since the entire hollow fiber has high water and oil repellency, When air bubbles are introduced, the air bubbles tend to aggregate and grow, and the energy required to separate the air bubbles from the surface of the hollow fiber increases, making it difficult to remove the air bubbles from the surface.

従って、気体と接する表面は高い撥水撥油性能を有し、
血液等の液体と接する表面はそれより弱い疎水性を有す
る多孔質中空糸が望まれている。
Therefore, the surface that comes into contact with gas has high water and oil repellency,
It is desired that the surface of the porous hollow fiber that comes into contact with liquid such as blood has weaker hydrophobicity.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点は微小空孔が中空糸の内壁面と外壁面とを連
通ずる中空糸の内壁面および外壁面のいずれか一つの壁
面に、撥水撥油剤Aと;これを溶解する溶剤Bとに相溶
性のない溶剤Cを接触させ、次に溶剤Cと接触していな
い他の壁面に溶剤Bに溶解した撥水撥油剤Aの溶液を接
触させて中空糸の積層構造の内部に浸透させ、その後脱
溶剤処理を行なって中空糸の一つの壁面のみに撥水撥油
性物質を被覆することを特徴とする、多孔質中空糸への
撥水撥油性賦与方法に関する。
The above problem is that the micropores communicate with the inner and outer wall surfaces of the hollow fibers, and the water and oil repellent agent A; the solvent B that dissolves the same, and the is brought into contact with an incompatible solvent C, and then a solution of water and oil repellent agent A dissolved in solvent B is brought into contact with another wall surface that is not in contact with solvent C to penetrate into the inside of the laminated structure of hollow fibers. The present invention relates to a method for imparting water and oil repellency to porous hollow fibers, which comprises subsequently performing a solvent removal treatment to coat only one wall surface of the hollow fibers with a water and oil repellent substance.

微小空孔が中空糸の内壁面と外壁面とを連通ずる多孔質
中空糸としては先に特開昭57−42919等で示した
ポリオレフィン系中空糸の他にアクリロニトリル系共重
合体、セルロース等の親水性中空糸が挙げられるが、こ
れらのうち人工肺のようにガス交換を行なう目的の場合
にはガス交換能に優れ化学的安定性、機械的特性および
生体適合性の良好なポリオレフィン系中空糸が好ましい
Porous hollow fibers in which micropores communicate between the inner and outer wall surfaces of the hollow fibers include polyolefin hollow fibers as previously shown in JP-A-57-42919, as well as acrylonitrile copolymers, cellulose, etc. Hydrophilic hollow fibers are used, but among these, polyolefin hollow fibers with excellent gas exchange ability, chemical stability, mechanical properties, and biocompatibility are used for purposes such as oxygen exchange. is preferred.

使用する力水ta油剤Aとしてはフッ素系樹脂やを機シ
リコン系樹脂等が挙げられるが、優れた撥水撥油性能を
得るのにはパーフルオロアルキル鎖を含むフッ素系樹脂
が好ましい。さらにポリオレフィン系中空糸のような疎
水性素材の場合は撥水撥油剤を均一に被覆するので溶剤
型の撥水撥油剤を用いるのが好ましい。溶剤Bはt8水
撥油剤Aを容易に溶解し、さらに常温で揮発性の優れた
溶剤が好ましく、トリクロロエタン、ジクロロエタン、
酢酸エチル、メチルエチルケトン、テトラヒドロフラン
、アセトン等が挙げられる。
Examples of the water-based oil agent A to be used include fluororesins and silicone-based resins, but fluororesins containing perfluoroalkyl chains are preferred in order to obtain excellent water and oil repellency. Furthermore, in the case of a hydrophobic material such as a polyolefin hollow fiber, it is preferable to use a solvent-type water and oil repellent because the material is uniformly coated with the water and oil repellent. Solvent B is preferably a solvent that easily dissolves T8 water and oil repellent A and is highly volatile at room temperature, such as trichloroethane, dichloroethane,
Examples include ethyl acetate, methyl ethyl ketone, tetrahydrofuran, and acetone.

一方、多孔質中空糸の内壁面および外壁面のいずれか一
つの壁面に接触させる溶剤Cとしては、撥水撥油剤Aと
これを溶解する溶剤Bとに相溶性のない任意の溶剤を使
用できるが用途によっては安全性、揮発性の優れたもの
が好ましく水、または水とエタノールとの混合溶液等が
適している。
On the other hand, as the solvent C that is brought into contact with either the inner wall surface or the outer wall surface of the porous hollow fiber, any solvent that is incompatible with the water and oil repellent agent A and the solvent B that dissolves it can be used. However, depending on the purpose, a material with excellent safety and volatility is preferable, and water or a mixed solution of water and ethanol is suitable.

多孔質中空糸の内壁面または外壁面に溶剤Cを接触させ
る方法としては、例えば多孔質中空糸を束ねて両端をポ
ツティング材で固定した後に中空糸の内壁面または外壁
面に溶剤Cが均一に接触するように充填する。なおこの
場合溶剤Cは中空糸の多孔質壁部を容易に通過してしま
うものは好ましくなく、中空AI材に接触させたときに
通過し難い溶剤を選択することが重要である。
As a method of bringing the solvent C into contact with the inner or outer wall surface of the porous hollow fibers, for example, after bundling the porous hollow fibers and fixing both ends with a potting material, the solvent C is uniformly applied to the inner or outer wall surface of the hollow fibers. Fill to make contact. In this case, it is not preferable that the solvent C easily pass through the porous wall of the hollow fiber, and it is important to select a solvent that does not easily pass through when brought into contact with the hollow AI material.

溶剤Cと接触していない中空糸の壁面に撥水撥油性物質
を被覆する方法としては撥水撥油剤Aを溶剤Bに溶解し
て所定濃度とした溶液を用意し、外壁面に被覆する場合
は溶剤Cを中空糸内部に充填した状態でt8水撥油剤中
に所定時間浸漬した後に引き上げて溶剤Bを十分に蒸発
、乾燥させ、次に中空糸内部に充填した溶剤Cを抜き取
ればよい。
A method of coating the wall surface of the hollow fiber that is not in contact with solvent C with a water- and oil-repellent substance is to prepare a solution of water- and oil-repellent agent A dissolved in solvent B to a predetermined concentration and coat it on the outer wall surface. In this case, the hollow fibers are filled with solvent C and then immersed in T8 water and oil repellent for a predetermined period of time, then pulled out to sufficiently evaporate and dry the solvent B, and then the solvent C filled inside the hollow fibers is extracted. .

また中空糸内壁面に撥水撥油剤を被覆する場合は中空糸
の外壁面に溶剤Cを、均一に接触させた状態で中空糸内
壁面に所定濃度の撥水撥油剤溶液を通過させた後に溶剤
Bを蒸発、乾燥させることによって得られるが、中空糸
内に撥水撥油剤溶液を通過させる場合はアスピレータ−
等を用いて所定量の撥水撥油剤溶液を他端から吸引させ
る方法が撥水撥油性物質の均一な処理を行なうのに好ま
しい。なお撥水撥油剤の濃度は065〜30重量%の範
囲が好ましい、これは0.5重量%未満では十分な撥水
撥油性能が得られず、30重量%より濃いときは撥水撥
油剤樹脂による多孔質層の目詰りが多数発生するためで
ある。
In addition, when coating the inner wall surface of the hollow fiber with a water and oil repellent, apply solvent C to the outer wall surface of the hollow fiber, and after passing a water and oil repellent solution of a predetermined concentration over the inner wall surface of the hollow fiber in a state in which it is in uniform contact with the inner wall surface of the hollow fiber. It can be obtained by evaporating and drying the solvent B, but when passing the water and oil repellent solution through the hollow fibers, an aspirator is used.
A method of suctioning a predetermined amount of the water/oil repellent solution from the other end using a vacuum cleaner or the like is preferable in order to uniformly treat the water/oil repellent material. The concentration of the water and oil repellent is preferably in the range of 0.65 to 30% by weight; if it is less than 0.5% by weight, sufficient water and oil repellency cannot be obtained, and if it is more than 30% by weight, the water and oil repellent is This is because the porous layer is often clogged with resin.

このようにして得られた撥水撥油性多孔質中空糸は外壁
面および内壁面のいずれか一つの壁面に撥水1Ω油性物
質が被覆されているので、優れた撥水撥油性能を有し、
特に人工肺のように血液のガス交換を中空糸を介して行
なう場合は血液中に含まれる親水化物質の付着および積
層構造の内部への浸透を気体側の撥水撥油性物質により
抑制することが可能となる。しかも他の壁面は中空糸の
素材、本来の性質を有していので様々な用途へ展開がで
きる。
The thus obtained water- and oil-repellent porous hollow fibers have excellent water- and oil-repellent performance because either the outer wall surface or the inner wall surface is coated with a water-repellent 1Ω oil-based substance. ,
Particularly when blood gas exchange is performed through hollow fibers, such as in an artificial lung, the adhesion and penetration of hydrophilic substances contained in the blood into the interior of the laminated structure must be suppressed by water- and oil-repellent substances on the gas side. becomes possible. Moreover, the other wall surfaces are made of hollow fiber material and have the original properties, so it can be used for a variety of purposes.

以下、実施例により本発明を説明する。The present invention will be explained below with reference to Examples.

〔実施例〕〔Example〕

大施炭上 ポリプロピレン製多孔質中空糸KPF (三菱レイヨン
)400本を束ねウレタン系ポツティング材にて両端を
固定した長さ10値のモジュールを用い、モジュール内
に純水を充填して、中空糸の外壁面に純水を十分に接触
させた。
Using a module with a length of 10, which is made by bundling 400 large carbonized polypropylene porous hollow fibers KPF (Mitsubishi Rayon) and fixing both ends with urethane potting material, the module is filled with pure water, and the hollow fibers are Pure water was brought into sufficient contact with the outer wall surface of the

次にフッ素系撥水撥油剤ディックガードF−320(大
日本インキ化学)30重量部トリクロロエタン70重量
部に溶解した溶剤溶液を室温においてモジュールの下端
から上端ヘアスピレーターで吸引することにより、中空
糸内壁面に接触させ、外壁に通過させた後にトリクロロ
エタンを蒸発させた。
Next, a solvent solution dissolved in 30 parts by weight of fluorine-based water and oil repellent DickGuard F-320 (Dainippon Ink Chemical) and 70 parts by weight of trichloroethane was sucked into the hollow fibers from the lower end of the module to the upper end of the module at room temperature. Trichloroethane was evaporated after contacting the wall and passing through the outer wall.

モジュールに接触させていた純水を抜き取り、真空乾燥
機にて十分な乾燥を行ない、多孔質中空糸の内壁面に撥
水撥油性物質を被覆した撥水撥油性多孔質中空糸を得た
The pure water that had been in contact with the module was removed and sufficiently dried in a vacuum dryer to obtain a water- and oil-repellent porous hollow fiber in which the inner wall surface of the porous hollow fiber was coated with a water- and oil-repellent substance.

この撥水撥油多孔質中空糸を用いてミニモジュールを作
製し、エタノール中にレシチンを2重量%溶解したレシ
チン溶液50ccと同量の水とを混合した溶液中に10
分間浸漬し、ミニモジュールに親水化物質を強制的に付
着させた後に再び真空乾燥機にて十分な乾燥を行なった
。引続きこのミニモジュールについて、耐水圧を測定し
たところ、1、5 kg f /ciを示し、撥水撥油
性多孔質中空糸を用いた場合親水化物質であるレシチン
の付着および浸透が起こりにくくなっていることが明ら
かとなった。
A mini-module was made using this water- and oil-repellent porous hollow fiber, and 10 cc of lecithin solution was mixed with 50 cc of lecithin solution (2% by weight of lecithin dissolved in ethanol) and the same amount of water.
The mini module was immersed for a minute to forcibly adhere the hydrophilic substance to the mini module, and then sufficiently dried again in a vacuum dryer. Subsequently, we measured the water pressure resistance of this mini module and found that it was 1.5 kg f /ci, indicating that when water- and oil-repellent porous hollow fibers were used, the adhesion and penetration of lecithin, a hydrophilic substance, was less likely to occur. It became clear that there was.

次にモジュールをエタノールに浸漬して十分に親水化し
た後に水フラフクスを測定したところ0、9 cc /
 el+! ・min ・(kg/ cd)であり、1
8水撥油剤の被覆による多孔質の目詰りは生じていない
ことが確認された。
Next, after soaking the module in ethanol to make it sufficiently hydrophilic, the water flux was measured and it was 0.9 cc/
el+!・min ・(kg/cd), and 1
It was confirmed that no porous clogging occurred due to the coating with the 8 water oil repellent.

去豆拠1 ポリエチレン製多孔質中空糸EHF−270T (三菱
レイヨン)を400本束ねて作製したモジュール内に純
水を充填して、中空糸内壁面に純水を均一に接触させた
後に、フッ素糸撥水撥油剤アサヒガードAG−650(
明成化学)25重量部をトリクロロエタン75重量部に
溶解した溶液中に30秒間浸漬し引き上げてトリクロロ
エタンを常温にて蒸発させ、中空糸外壁面に撥水撥油性
物質を被覆した後に中空糸内部に充填してあった水を 
抜取り真空乾燥機にて十分に乾燥を行なった。
A module made by bundling 400 polyethylene porous hollow fibers EHF-270T (Mitsubishi Rayon) is filled with pure water, and after uniformly contacting the inner wall surface of the hollow fibers, the fluorine Thread water and oil repellent Asahi Guard AG-650 (
Meisei Chemical) was immersed in a solution of 25 parts by weight dissolved in 75 parts by weight of trichloroethane for 30 seconds and pulled up to evaporate the trichloroethane at room temperature. After coating the outer wall of the hollow fiber with a water- and oil-repellent substance, it was filled inside the hollow fiber. the water that had been
It was thoroughly dried using a sampling vacuum dryer.

上記の撥水撥油処理したモジュールを用いて実施例1−
1−と同様に親水性物質を強制的に付着させた後に再び
真空乾燥機にて十分な乾燥を行なった。
Example 1 using the above water- and oil-repellent module
After the hydrophilic substance was forcibly attached in the same manner as in 1-, sufficient drying was performed again using the vacuum dryer.

引続きこのモジュールの耐水圧を測定したところ1.6
 kg f /ruJであった。また水フラックスの測
定及び電子顕微鏡による表面観察から孔の目詰りは生じ
ていないことを確認した。
I subsequently measured the water pressure resistance of this module and found it to be 1.6.
kg f /ruJ. Furthermore, water flux measurements and surface observation using an electron microscope confirmed that the pores were not clogged.

几較±1 撥水撥油剤処理をしないことの他は実施例1と同様にし
てモジュールを作製し、耐水圧を測定したところ、0.
5 kg f /cjと低く、またモジュールをエタノ
ールに浸漬して十分に親水化した後に水フラフクスを測
定したところQ、 8cc / al−win・(kg
 / cd )であり、実施例1の撥水ta油剤被覆の
モジュールはこれと同程度であることより、18水撥油
処理による影響のないことが明かになった。
Comparison ±1 A module was fabricated in the same manner as in Example 1 except that no water/oil repellent treatment was applied, and the water pressure resistance was measured.
Q, 8cc/al-win・(kg
/cd), and the water-repellent TA-oil agent coated module of Example 1 had the same level of properties as this, which revealed that there was no influence from the 18 water-oil repellent treatment.

よ較五至 ta水水油油処理しないことの他は実施例2と同様にし
てモジュールを作製し、耐水圧を測定したところ、0゜
8 kg f /cs[と低く、またモジュールをエタ
ノールに浸漬して十分に親水化した後に水フラックスを
測定したところ、0.8 cc / cla・ −in
・(kg / cj )であり、実施例2の撥水tn油
剤被覆のモジュールはこれと同程度であることにより、
撥水f8油処理による影響のないことが明らかになった
A module was fabricated in the same manner as in Example 2, except that it was not treated with water, water, oil, or oil. When the water pressure resistance was measured, it was as low as 0°8 kgf/cs. When the water flux was measured after being immersed to make it sufficiently hydrophilic, it was 0.8 cc/cla-in.
・(kg/cj), and the water-repellent tn oil coated module of Example 2 is about the same level, so
It became clear that the water-repellent F8 oil treatment had no effect.

〔発明の効果〕〔Effect of the invention〕

本発明の多孔質中空糸の内壁面あるいは外壁面にta水
水油油性物質被覆した撥水撥油性多孔質中空糸は優れた
撥水撥油性を有するので人工肺に見られるような中空糸
を介してのガス交換を行なう場合に生じる血液中の親水
化物質の付着、侵入を抑制することが可能となり、しか
も血液と接触する中空糸壁面には撥水IB油性物質が付
着していないので何らかの原因で気泡が付着しても容易
に中空系から剥離するので血液からの気泡の除去が容易
となり、又(θ水損油性物質の溶血性が低いので安全で
ある。
The water- and oil-repellent porous hollow fibers of the present invention whose inner or outer wall surfaces are coated with a Ta-water-water-oil-based substance have excellent water- and oil-repellency. This makes it possible to suppress the adhesion and intrusion of hydrophilic substances in the blood that occur when gas exchange is carried out through Even if air bubbles are attached due to this, they can be easily peeled off from the hollow system, making it easy to remove air bubbles from the blood, and (θ water loss) is safe because the oily substance has low hemolytic properties.

Claims (1)

【特許請求の範囲】 1、微小空孔が中空糸の内壁面と外壁面とを連通する中
空糸の内壁面および外壁面のいずれか一つの壁面に、撥
水撥油剤Aとこれを溶解する溶剤Bとに相溶性のない溶
剤Cを接触させ、次に溶剤Cと接触していない他の壁面
に、溶剤Bに溶解した撥水撥油剤Aの溶液を接触させて
中空糸の積層構造の内部に浸透させ、その後に脱溶剤処
理を行なうことにより、中空糸の一つの壁面のみに撥水
撥油性物質を被覆することを特徴とする、多孔質中空糸
への撥水撥油性賦与方法。 2、多孔中空糸がポリオレフィン系高分子からなる、特
許請求の範囲第1項記載の方法。 3、撥水撥油剤Aがフッ素系樹脂である特許請求の範囲
第1項記載の方法。
[Claims] 1. Water and oil repellent A and the water and oil repellent agent A are dissolved in one of the inner and outer wall surfaces of the hollow fiber where the micropores communicate with the inner and outer wall surfaces of the hollow fiber. Solvent C, which is incompatible with Solvent B, is brought into contact, and then a solution of water and oil repellent A dissolved in Solvent B is brought into contact with the other wall surface that is not in contact with Solvent C to form a laminated structure of hollow fibers. A method for imparting water and oil repellency to porous hollow fibers, the method comprising coating only one wall surface of the hollow fibers with a water and oil repellent substance by allowing the material to penetrate inside and then performing a solvent removal treatment. 2. The method according to claim 1, wherein the porous hollow fibers are made of a polyolefin polymer. 3. The method according to claim 1, wherein the water and oil repellent A is a fluororesin.
JP9225585A 1985-05-01 1985-05-01 Method for imparting water and oil repellency to porous hollow yarn Pending JPS61252368A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9225585A JPS61252368A (en) 1985-05-01 1985-05-01 Method for imparting water and oil repellency to porous hollow yarn

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9225585A JPS61252368A (en) 1985-05-01 1985-05-01 Method for imparting water and oil repellency to porous hollow yarn

Publications (1)

Publication Number Publication Date
JPS61252368A true JPS61252368A (en) 1986-11-10

Family

ID=14049309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9225585A Pending JPS61252368A (en) 1985-05-01 1985-05-01 Method for imparting water and oil repellency to porous hollow yarn

Country Status (1)

Country Link
JP (1) JPS61252368A (en)

Similar Documents

Publication Publication Date Title
CA1338233C (en) Hydrophobic membranes
US20110087187A1 (en) Hydrophobic deaeration membrane
CN104874297B (en) Porous polymer film with pore volume high
US4909989A (en) Gas-exchange membrane for an artificial lung
US4501785A (en) Hydrophilized membrane of porous hydrophobic material and process of producing same
EP2913096B1 (en) Porous polymeric membrane with high void volume
US5232600A (en) Hydrophobic membranes
US4654265A (en) Porous hollow fiber
US4985280A (en) Process for hydrophobization of microbacteria retaining air filter
US20040043224A1 (en) Enhanced hydrophobic membranes and methods for making such membranes
WO2001005492A1 (en) Polyvinylidene difluoride membranes and methods for making such membranes
WO1984000015A1 (en) Wettable hydrophobic hollow fibers
JPS61252368A (en) Method for imparting water and oil repellency to porous hollow yarn
JPH04346825A (en) Production of hydrophilic porous membrane
JP2888607B2 (en) Composite membrane for artificial lung, method for producing the same, and composite membrane-type artificial lung using the same
JP2001017841A (en) Hydrophilic filtration membrane
JPH0116504B2 (en)
JPH0548135B2 (en)
JPS6219208A (en) Process for affording hydrophilic property to hydrophobic porous film
JP3090701B2 (en) Composite membrane for artificial lung, method for producing the same, and composite membrane-type artificial lung using the same
JP3385755B2 (en) Hydrophilic membrane and method for producing the same
JPS6342705A (en) Production of composite hollow yarn membrane
JPH08131790A (en) Film for donating hydrophilic effects and manufacture thereof
JPS631861B2 (en)
JP3358340B2 (en) Hydrophilic membrane and method for producing the same