JPS61251776A - Measuring instrument for earth resistance - Google Patents

Measuring instrument for earth resistance

Info

Publication number
JPS61251776A
JPS61251776A JP9441985A JP9441985A JPS61251776A JP S61251776 A JPS61251776 A JP S61251776A JP 9441985 A JP9441985 A JP 9441985A JP 9441985 A JP9441985 A JP 9441985A JP S61251776 A JPS61251776 A JP S61251776A
Authority
JP
Japan
Prior art keywords
current
earth
grounding system
grounding
measuring device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9441985A
Other languages
Japanese (ja)
Other versions
JPH0467631B2 (en
Inventor
Hiromichi Tomura
戸村 宏通
Naota Yamashita
山下 直太
Hideo Kawakami
川上 英雄
Akio Sato
彰男 佐藤
Osamu Katayama
片山 攻
Hiromichi Hirane
平根 弘道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NF KAIRO SEKKEI BLOCK KK
Chubu Electric Power Co Inc
Original Assignee
NF KAIRO SEKKEI BLOCK KK
Chubu Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NF KAIRO SEKKEI BLOCK KK, Chubu Electric Power Co Inc filed Critical NF KAIRO SEKKEI BLOCK KK
Priority to JP9441985A priority Critical patent/JPS61251776A/en
Publication of JPS61251776A publication Critical patent/JPS61251776A/en
Publication of JPH0467631B2 publication Critical patent/JPH0467631B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)

Abstract

PURPOSE:To detect real earth resistance by subtracting the current of an earth system which is connected to an earth system to be detected from a current flowing through the latter system. CONSTITUTION:Earth networks 121 and 122 of other electric stations are connected to an earth network 7 through aerial earth wires. A current transformer 13 is connected between a constant current amplifier 5 and the earth network 7 to detect a current I flowing through the earth network 7 and current transformers 141 and 142 are connected between the earth network 7 and other earth networks 121 and 122 to detect currents I1 and I2 flowing through the earth networks 121 and 122. An adder 15 is connected to output terminals of the current transformers 13, 141, and 142 and the currents I1 and I2 flowing to other earth systems are subtracted from the current I flowing to the earth system to be measured, thus obtaining a current I0. The current I0 is the earth current of this electric station and the current voltage V is measured by a voltage measuring part 8 to measure only the earth resistance of this electric station with high precision.

Description

【発明の詳細な説明】 この発明は超高圧の変電所、開閉所などの電気所におけ
る接地抵抗の測定ζご用いられる接地抵抗測定装置に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a grounding resistance measuring device used for measuring grounding resistance in electrical stations such as ultra-high voltage substations and switchyards.

超高圧の変電所や開閉所では機器の保護と取扱上の安全
を確保するため所謂接地接続がなされている。
In ultra-high voltage substations and switchyards, so-called grounding connections are made to protect equipment and ensure safe handling.

この場合、このような接地接続による大地間の抵抗には
限界値が定められており常に規定以下になるようにしな
ければならない。
In this case, a limit value is determined for the resistance between the earth and the ground due to such a ground connection, and it must be kept below the specified value at all times.

このため、従来よりかかる接地抵抗を測定するものとし
て各種の測定装置が考えられている。
For this reason, various measuring devices have been conventionally considered for measuring such ground resistance.

第1図は従来のこの種の接地抵抗測定装置の一例を示す
もので商用周波電源AC(=200V)をスイッチS8
、ヒーーズF、オートトランスT1を介して絶縁トラン
スT、に接続し、このトランスT、の2次巻線側を切換
スイッチS2.電流計Aを介して被測定系たる接地網に
接続し、この接地網Nと零電位の間に電圧計Vを接続し
、オートトランスTIにて電流計Aに流れる電流値Iを
調整するとともにスイッチS2を左右に切換えたときの
電圧計Vの指示値B1.E、を夫々読み取ることにより
接地抵抗Rを求めるようにしている。
Figure 1 shows an example of a conventional ground resistance measuring device of this type.
, heats F are connected to an isolation transformer T via an autotransformer T1, and the secondary winding side of this transformer T is connected to a selector switch S2. Connect to the grounding network that is the system to be measured via ammeter A, connect voltmeter V between this grounding network N and zero potential, and adjust the current value I flowing through ammeter A with autotransformer TI. The indicated value B1 of the voltmeter V when the switch S2 is switched left and right. The grounding resistance R is determined by reading E and E, respectively.

この場合、電気所が運転状態にあって浮遊電位(工=0
のときの電圧計Vの指示値)をE、とすると、第2図に
示すベクトル合成関係が成立し、となり、これにより接
地抵抗Rが求められる。つまり接地抵抗几は電圧計Vの
指示値Fli、、Fli、および電流計Aの指示値工に
加えて浮遊電位E、によって求められることになる。
In this case, when the electric station is in operation and the floating potential (min = 0
When the indicated value of the voltmeter V at the time of E is E, the vector composition relationship shown in FIG. 2 is established, and from this, the ground resistance R is obtained. In other words, the grounding resistance is determined by the floating potential E in addition to the readings Fli, Fli of the voltmeter V and the readings Fli of the ammeter A.

ところが、周知のように浮遊電位E、は周囲条件により
変動し易いだけでなく再現性にも欠けるため、かかる浮
遊電位E、の影響を大きく受ける上述の装置では正確な
測定結果が得られない欠点があった。
However, as is well known, the floating potential E not only fluctuates easily depending on the surrounding conditions but also lacks reproducibility, so the above-mentioned device, which is greatly affected by the floating potential E, has the disadvantage that accurate measurement results cannot be obtained. was there.

そこで、従来では浮遊電位ffoの影響を極力小さくす
るため電流計Aに流れる電流工を大きくするなどしてい
るが、これによるとトランス容量がいたずらに大きくな
るため装置が大形になるだけでなく価格的にも高価なも
のになってしまう。一方、接地抵抗を測定する際変電所
や開閉所などの電気所を一時全面停電させ1浮遊電位E
oの影響を除去することも考えられる゛が、このように
運転中の変電所や開閉所を全面停電することは容易でな
いため運転開始前の建設時に将来必要となる接続抵抗ま
で下げておくことが必要となり、このためのt行投資を
要するという欠点がある。
Therefore, in the past, in order to minimize the influence of the floating potential ffo, the current flowing through the ammeter A was increased, but this not only increased the transformer capacity unnecessarily, but also made the device larger. It also becomes expensive. On the other hand, when measuring ground resistance, a temporary total power outage is performed at electrical stations such as substations and switchyards, and 1 floating potential E
It is possible to eliminate the effects of 2. However, since it is not easy to cause a complete power outage to substations and switchyards that are in operation, it is necessary to lower the connection resistance to the level that will be required in the future during construction before commencing operation. The disadvantage is that this requires t investment.

このような従来の事情に鑑み本出願人は先の出、  願
(特願昭58−75262号)にて電気所が運転状態の
ままでも浮遊電位Eoの影響を受けることなく高精度に
接地抵抗を測定することができる接地抵抗測定装置を提
案している。
In view of these conventional circumstances, the present applicant filed an earlier application (Japanese Patent Application No. 58-75262) to develop a grounding resistor with high precision without being affected by the floating potential Eo even when the electrical station is in operation. We are proposing a grounding resistance measuring device that can measure ground resistance.

すなわち、このものは第3図に示すように構成している
That is, this device is constructed as shown in FIG.

図において1は電源で、この′電源1にスイッチ2、ヒ
ーーズ3を介して発振器4を接続していもこの発振器4
はAcos&It 、As1rsQItの信号を第1お
よび第2の参照信号として出力するようにしている。
In the figure, 1 is a power supply, and even if an oscillator 4 is connected to this power supply 1 via a switch 2 and a heater 3, the oscillator 4
outputs the Acos&It and As1rsQIt signals as the first and second reference signals.

このときこれら信号の周波数ωは周波数の差による誤差
低減のためラインの商用周波数ω0とわずかに異なるよ
うにしている。
At this time, the frequencies ω of these signals are set to be slightly different from the line commercial frequency ω0 in order to reduce errors due to frequency differences.

発振器4に電流発生手段例えば定電流増巾器5を接続し
ている。この増巾器5は上記第1又は第2の参照信号が
与えられこれを一定振巾の電流に変換するもので一方の
出力端子を補助接地するとともに他方の出力端子を電流
計6を介して被測定接地系例えば接地網7に接続し、常
時電流計6を介して定電流I cos (ωを一θ)を
与えるようにしている。
A current generating means such as a constant current amplifier 5 is connected to the oscillator 4. This amplifier 5 is provided with the first or second reference signal and converts it into a current with a constant amplitude.One output terminal is auxiliary grounded, and the other output terminal is connected via an ammeter 6. It is connected to a grounding system to be measured, for example, a grounding network 7, and a constant current I cos (ω is - θ) is constantly applied via an ammeter 6.

接地網7と零電位の間に演算手段として電圧測定部8を
接続している。この測定部8には上記発振器4の参照信
号が与えられている。この場合、測定部8は第4図に示
すようIこ測定人力Vが与えられるとともに上記発振器
4より参照信号Acosωt。
A voltage measuring section 8 is connected between the grounding network 7 and the zero potential as a calculation means. A reference signal from the oscillator 4 is given to this measuring section 8 . In this case, the measuring section 8 is supplied with a measuring force V as shown in FIG. 4, and receives a reference signal Acosωt from the oscillator 4.

As1nωtが各別に与えられる乗算器811,812
、これら乗算器811,812の出力x、yが与えられ
る狭帯域のローパスフィルタ821,822 、これら
ローパスフィルタ821.822の出力x、yが与えら
れる二乗器831゜832、これら二乗器831,83
2の出力を加算する加算器84およびこの加算器84の
出方を開平する開平器85を有している。
Multipliers 811 and 812 to which As1nωt are given separately
, narrowband low-pass filters 821, 822 to which the outputs x, y of these multipliers 811, 812 are given, squarers 831, 832, to which outputs x, y of these low-pass filters 821, 822 are given, these squarers 831, 83.
It has an adder 84 that adds the outputs of 2 and a squarer 85 that squares the output of the adder 84.

こうするといま、発振器4より参照信号Acosωt。In this case, the oscillator 4 now generates the reference signal Acosωt.

As1nωtが電圧測定器8に与えられ、また定電流増
巾器5より定電流1cos (ωを一θ)が電流計6を
通して与えられているものとすると、電圧測定部8には
測定人力Vとして浮遊電位Eocosωo1と測定信号
IRcos (ωト0を重畳した V+++=Eocosω、t−1−IRcos(ωを一
θ)が得られる。この測定力Vは乗算器811,812
に夫々与えられ参照信号と乗算される。すると乗算器8
11より が得られ、また乗算器812より が得られる。そして、これら出力x、yがローパスフィ
ルタ821 、822に与えられるとs  ”tyの各
項のうち交流成分が減衰され参照信号で同期検波された
直流成分のみ残され、これにより が得られる。さらにこれらの直流成分振幅値の出力x、
yは二乗器831,832を介して加算器84に与えら
れx+yが得られ、これを開平器85を介して演算する
と 5の出力電流として電流計64ごて直読でき、またAは
任意に定めることができるのでA−2とすればR−E/
Iとなり上記指示値より接地抵抗Rを容易に算出できる
ことになる。
Assuming that As1nωt is applied to the voltage measuring device 8, and a constant current 1cos (ω is - θ) is applied from the constant current amplifier 5 through the ammeter 6, the voltage measuring unit 8 receives the measured human power V. The floating potential Eocosωo1 and the measurement signal IRcos (ω and 0 are superimposed, V+++=Eocosω, t−1−IRcos (ω is one θ) are obtained. This measurement force V is applied to the multipliers 811 and 812.
are respectively given and multiplied by the reference signal. Then multiplier 8
11 is obtained, and multiplier 812 is obtained. Then, when these outputs x and y are given to low-pass filters 821 and 822, the AC component of each term of s''ty is attenuated, leaving only the DC component that has been synchronously detected with the reference signal, thereby obtaining. The output x of these DC component amplitude values,
y is given to the adder 84 via the squarer 831, 832 to obtain x+y, and when this is calculated via the squarer 85, it can be directly read with the ammeter 64 as the output current of 5, and A is arbitrarily determined. Therefore, if it is A-2, then R-E/
I, and the grounding resistance R can be easily calculated from the above indicated value.

したがって、このような構成によれば浮遊電位開閉所の
諸設備が運転中にあっても浮遊電位E0の影響を何ら受
けることなく高精度に接地抵抗Rを測定できることにな
る。
Therefore, with such a configuration, even when the various equipment of the floating potential switchyard is in operation, the grounding resistance R can be measured with high precision without being affected by the floating potential E0.

ところで、変電所や開閉所などの電気所は電力系統の規
模に応じて複数個所に設けられることがあり、これら複
数個所の電気所は運転開始後空中接地線を介して互に接
続されている。
By the way, electrical stations such as substations and switchyards may be installed in multiple locations depending on the scale of the power system, and these multiple electrical stations are connected to each other via aerial grounding wires after the start of operation. .

このため、このような条件の下で運転される変電所や開
閉所では上述した測定装置に1接地抵抗を測定すると、
空中接地線を介して接続される他の電気所の接地抵抗あ
るいは途中の鉄塔などの接地抵抗をも全て含めて測定す
ることになり、自己の電気所での真の接地抵抗を測定で
きないおそれがある。
For this reason, in substations and switchyards that operate under such conditions, when measuring the ground resistance with the above-mentioned measuring device,
The measurement will include all the grounding resistances of other electrical stations connected via the aerial grounding wire, as well as the grounding resistances of steel towers along the way, and there is a risk that the true grounding resistance of your own electrical station cannot be measured. be.

この発明は上記の欠点を除去するためなされたもので自
己の電気所での真の接地抵抗を運転状態のままで浮遊電
位E0の影響を何ら受けることなく高精度に測定するこ
とができる接地抵抗測定装置を提供することを目的とす
る。
This invention was made in order to eliminate the above-mentioned drawbacks, and it is possible to measure the true ground resistance of one's own electrical station with high accuracy while it is in operation without being affected by the floating potential E0. The purpose is to provide a measuring device.

以下、この発明の一実施例を図面に従い説明する。An embodiment of the present invention will be described below with reference to the drawings.

第5図は同実施例の概略的構成図を示すもので、第3図
と同一部分には同符号を付している。
FIG. 5 shows a schematic configuration diagram of the same embodiment, and the same parts as in FIG. 3 are given the same reference numerals.

この場合定電流増巾器5の他方出力端子を被測定接地系
例え゛ば接地網7に直接接続している。
In this case, the other output terminal of the constant current amplifier 5 is directly connected to the ground system to be measured, for example, the ground network 7.

この接地網7には空中接地線などを介して接続される他
の電気所の接地系として接地網121 、122が接続
されている。図示例では他の電気所が2系統接続されて
いる場合を示しているが、これ以外であってもよく、ま
た鉄塔などの接地系であってもよい。
Grounding networks 121 and 122 are connected to this grounding network 7 as grounding systems for other electrical stations connected via aerial grounding wires or the like. Although the illustrated example shows a case where two systems are connected to other electric stations, other electric stations may be connected, and a grounding system such as a steel tower may also be used.

定電流増巾器5と接地網7との間の線路に電流検出手段
として変流器13を接続し、定電流増巾器5より接地網
7に流れる電流■を検出するようにしている。同様にし
て接地網7さ他の電気所の接地網121,122との間
の線路にも電流検出手段として夫々変流器141 、1
42を接続し、接地網7より他の電気所の各接地網12
1,122に流れる電流11.I。
A current transformer 13 is connected as a current detection means to the line between the constant current amplifier 5 and the grounding network 7, so that the current (2) flowing from the constant current amplifier 5 to the grounding network 7 is detected. Similarly, current transformers 141 and 1 are installed as current detection means on the lines between the grounding network 7 and the grounding networks 121 and 122 of other electrical stations, respectively.
42 and connect each grounding network 12 of the other electric station from the grounding network 7.
Current flowing through 1,122 11. I.

を夫々検出するようにしている。are detected respectively.

そしてこれら変流器13,141,142の出力端子に
加算器15を接続している。この場合加算器15には各
変流器13,141,142の出力を差し引いた加算出
力I0を発生するようにしている。
An adder 15 is connected to the output terminals of these current transformers 13, 141, and 142. In this case, the adder 15 is configured to generate an addition output I0 obtained by subtracting the outputs of the current transformers 13, 141, and 142.

その他は第3図と同様であり、ここでの説明は省略する
。また第5図中の電圧測定部8についても第4図と同様
であり、ここでの説明を省略すもことにより浮遊電位E
0の影響を受けることなく接地抵抗を測定できることが
判る。したがって、ここでは他の電気所の接地系の抵抗
を除いた自己の電気所の被測定接地系の接地抵抗のみを
測定できる点について述べる。
The rest is the same as in FIG. 3, and the explanation here will be omitted. Furthermore, the voltage measuring section 8 in FIG. 5 is the same as that in FIG. 4, and the explanation here will be omitted.
It can be seen that the ground resistance can be measured without being affected by zero. Therefore, here we will discuss the point that only the grounding resistance of the grounding system to be measured at the own electrical station, excluding the resistance of the grounding systems of other electrical stations, can be measured.

ところで、かかる第5図は第6図にて示す等価回路で表
わすことができる。ここで2..2m、2.は各線路の
インピーダンス、Roは測定対象の接地網7(こよる接
地抵抗、R1,R,は夫々他の電気所の接地網1λ1,
112による接地抵抗である。
Incidentally, FIG. 5 can be represented by an equivalent circuit shown in FIG. 6. Here 2. .. 2m, 2. is the impedance of each line, Ro is the grounding network 7 to be measured (the resulting grounding resistance, R1, R is the grounding network 1λ1,
112 is the ground resistance.

しかして、第6図において の関係が常に成立する。However, in Figure 6 The relationship always holds true.

したがって となり 一より接地抵抗が求められるが、このままでは他の電気
所の接地抵抗も含んでおり真の接地抵抗は得られない。
Therefore, the grounding resistance can be found from the beginning, but as it stands, the grounding resistance of other electrical stations is also included, so the true grounding resistance cannot be obtained.

そこで、まず(13式において工。に注目すると、この
工0は接地網7より広範囲にわたって地球に流出するも
ので直接測定できないが、第5図に示す変流器13より
検出される電流工、同様にして変流器141,142よ
り夫々検出される電流I、 、 I、をもとに I、 =i−I、 −I、  ・・・・・・・・・・・
・・−(3)つまり、加算器15の出力として得られる
。そして、これを(2)式へ代入する。するととなり が成立する。
Therefore, first of all, if we pay attention to (in Equation 13), this current flow leaks into the earth over a wider area than the grounding network 7 and cannot be directly measured, but the current flow detected by the current transformer 13 shown in Fig. 5, Similarly, based on the currents I, , I, respectively detected from the current transformers 141 and 142, I, =i-I, -I, ......
...-(3) That is, it is obtained as the output of the adder 15. Then, substitute this into equation (2). Then, a relationship is established.

これにより最初に加算器15の出カニ。を測定しこの1
0が例えばIAとなるように定電流増巾器5の出力を調
整し、こののち電圧Vを÷÷千+セ測1゜定すれば測定
対象の電気所の被測定接地系つまり接地網7の接地抵抗
を分離して測定できることになる。
As a result, adder 15 outputs crab first. Measure this 1
If the output of the constant current amplifier 5 is adjusted so that 0 becomes, for example, IA, and then the voltage V is determined as ÷÷1,000 + 1°, the grounding system to be measured, that is, the grounding network 7 of the electrical station to be measured. This means that the ground resistance of the two can be measured separately.

したがって、このようにすれば浮遊電位Eoを含む交流
分を除去し、しかも自己の電気所の被測定接地系の接地
抵抗孔0の測定に必要な指示値のみ算出できるので変電
所や開閉所が運転中であっても浮遊電位Eoの影響を何
ら受けることなく自己の電気所の接地抵抗R6のみを高
精度に測定できることになる。これにより従来浮遊電位
E。の影響を小さくするためトランス容量を大きくする
ものに比べ装置の小形化を図り得るとともに価格的にも
安価にでき、さらに接地抵抗を将来必要とする値まで下
げておくために要する費用の先行投資を抑制することも
できる。
Therefore, in this way, the alternating current component including the floating potential Eo can be removed, and only the indicated value necessary for measuring the grounding resistance hole 0 of the grounding system to be measured at the own electric station can be calculated, so that the substation or switchyard can Even during operation, only the grounding resistance R6 of the own electric station can be measured with high precision without being affected by the floating potential Eo. This reduces the conventional floating potential E. In order to reduce the effect of can also be suppressed.

なお、この発明は上記実施例にのみ限定され黒要旨を変
更しない範囲で適宜変形して実施できる。
It should be noted that the present invention is limited only to the above-mentioned embodiments and can be implemented with appropriate modifications within the scope of the invention.

例えば上述では電圧測定部8の乗算器811,812に
測定人力■と参照信号Acosωt、As1nωtを与
えX。
For example, in the above example, the multipliers 811 and 812 of the voltage measuring section 8 are supplied with the measurement power (2) and the reference signals Acosωt and As1nωt.

yを得るようにしたが、これに代えて測定人力Vを周波
数ωの方形波にて直接スイッチングするようにしてもよ
い。また上述では電圧測定部8においてローパスフィル
タ821.822の出力x、yを二乗器831.832
を介して加算器84に与え、これを開平器85に加えて
指示値を得るようにしたが例えば第7図に示すように出
力x、yをcosωt、sinωtを基本波とする方形
波にて各別にスイッチングしたのち加算器9に与えると
、基本波成分及び高調波成分 xcosωt −1−ys inωt+高調波分ヲ得、
これをバンドパスフィルタ10で基本波成分のみを通し
たのち検波回路11にて検波することにより指示値を得
るようにしてもよい。さらに上述では定電流増巾器5よ
り定電流出力を得るようにしたが、この出力は必ずしも
定電流でなくともよい。
Although y is obtained, instead of this, the measured human power V may be directly switched using a square wave having a frequency ω. In addition, in the above description, in the voltage measuring section 8, the outputs x and y of the low-pass filters 821 and 822 are converted to the square
The output x and y are given to the adder 84 through the square waveform generator 84 and then added to the square waveform generator 85 to obtain the indicated value, for example, as shown in FIG. After switching each separately and feeding it to the adder 9, the fundamental wave component and harmonic component x cos ωt −1 − ys in ωt + harmonic component are obtained,
The indicated value may be obtained by passing only the fundamental wave component through the band-pass filter 10 and then detecting it at the detection circuit 11. Further, in the above description, a constant current output is obtained from the constant current amplifier 5, but this output does not necessarily have to be a constant current.

以上述べたようにこの発明によれば自己の電気所での真
の接地抵抗を運転状態のままで高精度に測定することが
できる接地抵抗測定装置を提供できる。
As described above, according to the present invention, it is possible to provide a grounding resistance measuring device that can measure the true grounding resistance of one's own electric station with high precision while in operation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の接地抵抗測定装置の一例を示す概略的構
成図、第2図は同装置を説明するためのベクトル図、第
3図および第4図は先に本出願人が提案した接地抵抗測
定装置を示す概略的構成図、第5図はこの発明の一実施
例を示す概略的構成図、第6図は同実施例を説明するた
めの等価回路図、第7図はこの発明の他実施例を示す概
略的構成図である。 1・・・電源      2・・・スイッチ3・・・ヒ
ユーズ    4・・・発振器5・・・定電流増巾器 
 7,121,122・・・接地網8・・・電圧測定部
   811,812・・・乗算器821.822・・
・ローパスフィルタ  831 、832・・・二乗器
           84,9・・・加算器85・・
・開平器    1゛0・・・バンドパスフィルタ11
・・・検波回路   13,141,142・・・変流
器15・・・加算器 第1図 EZ      EaE/ 第3図 第4図 第5図 17Z 第6図 第7図
Fig. 1 is a schematic configuration diagram showing an example of a conventional grounding resistance measuring device, Fig. 2 is a vector diagram for explaining the device, and Figs. 5 is a schematic configuration diagram showing an embodiment of the present invention, FIG. 6 is an equivalent circuit diagram for explaining the embodiment, and FIG. 7 is a schematic diagram showing an embodiment of the present invention. It is a schematic block diagram which shows another Example. 1... Power supply 2... Switch 3... Fuse 4... Oscillator 5... Constant current amplifier
7,121,122...Grounding network 8...Voltage measuring section 811,812...Multiplier 821,822...
・Low-pass filters 831, 832... Squarer 84, 9... Adder 85...
・Squarer 1゛0... Bandpass filter 11
...Detection circuit 13,141,142...Current transformer 15...Adder Fig. 1 EZ EaE/ Fig. 3 Fig. 4 Fig. 5 17Z Fig. 6 Fig. 7

Claims (5)

【特許請求の範囲】[Claims] (1)商用周波数とわずかに異なる周波数を有し互に9
0°位相の異なる第1および第2の参照信号を発生する
発振手段と、これらのうち1つの参照信号が与えられこ
れを一定振幅の電流に変換して被測定接地系に与える電
流発生手段と、上記被測定接地系に流れる上記電流およ
び上記被測定接地系よりこの接地系に接続される他の接
地系に流れる電流を夫々検出するとともに上記被測定接
地系に流れる電流より上記他の接地系に流れる電流を差
し引いた電流を検出する手段と、この手段の電流が上記
被測定接地系の接地抵抗に流れることにより生ずる電圧
降下および商用周波数を有する浮遊電位が重畳された測
定信号が与えられるとともにこの測定信号に上記第1の
参照信号を乗算する手段および上記測定信号に上記第2
の参照信号を乗算する手段を有しこれらの各出力より各
直流分のみを取り出しこれら二つの直流成分振幅値を各
々二乗して加算し且つ開平した値を得る演算手段とを具
備したことを特徴とする接地抵抗測定装置。
(1) Has a frequency slightly different from the commercial frequency and is 9
oscillating means for generating first and second reference signals having a 0° phase difference; and current generating means for receiving one of the reference signals, converting it into a current of constant amplitude and applying it to the grounding system under test. , detects the current flowing through the grounding system under test and the current flowing from the grounding system under test to another grounding system connected to this grounding system, and detects the current flowing through the grounding system under test from the other grounding system. means for detecting a current obtained by subtracting the current flowing through the grounding system; means for multiplying the measurement signal by the first reference signal; and means for multiplying the measurement signal by the second reference signal.
It is characterized by comprising means for multiplying by a reference signal, and a calculation means for extracting only each DC component from each of these outputs, squaring and adding these two DC component amplitude values, and obtaining a square root value. Earth resistance measuring device.
(2)上記電流発生手段は定電流を発生する定電流増巾
器からなることを特徴とする特許請求の範囲第1項記載
の接地抵抗測定装置。
(2) The earth resistance measuring device according to claim 1, wherein the current generating means comprises a constant current amplifier that generates a constant current.
(3)上記電流検出手段は複数の変流器およびこれら変
流器の出力を極性を異ならして加算する加算器を有する
ことを特徴とする特許請求の範囲第1項又は第2項記載
の接地抵抗測定装置。
(3) The current detecting means includes a plurality of current transformers and an adder that adds the outputs of these current transformers with different polarities. Earth resistance measuring device.
(4)上記演算手段は直流分のみを取り出す手段として
狭帯域のローパスフィルタを用いたことを特徴とする特
許請求の範囲第1項乃至第3項のいずれかに記載の接地
抵抗測定装置。
(4) The earth resistance measuring device according to any one of claims 1 to 3, wherein the calculation means uses a narrow band low-pass filter as a means for extracting only the DC component.
(5)上記演算手段は上記各直流成分振幅値を二乗する
二乗器、加算器および開平器を有することを特徴とする
特許請求の範囲第1項乃至第4項のいずれかに記載の接
地抵抗測定装置。
(5) The earthing resistor according to any one of claims 1 to 4, wherein the calculation means includes a squarer, an adder, and a square rooter for squaring each of the DC component amplitude values. measuring device.
JP9441985A 1985-04-30 1985-04-30 Measuring instrument for earth resistance Granted JPS61251776A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9441985A JPS61251776A (en) 1985-04-30 1985-04-30 Measuring instrument for earth resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9441985A JPS61251776A (en) 1985-04-30 1985-04-30 Measuring instrument for earth resistance

Publications (2)

Publication Number Publication Date
JPS61251776A true JPS61251776A (en) 1986-11-08
JPH0467631B2 JPH0467631B2 (en) 1992-10-28

Family

ID=14109714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9441985A Granted JPS61251776A (en) 1985-04-30 1985-04-30 Measuring instrument for earth resistance

Country Status (1)

Country Link
JP (1) JPS61251776A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105092981A (en) * 2014-05-15 2015-11-25 常州帕斯菲克自动化技术股份有限公司 Grounding resistor on-line monitor
CN105182169A (en) * 2015-10-10 2015-12-23 国网山西省电力公司临汾供电公司 Defect screening detection method and apparatus of grounding network upper guide body wire

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105092981A (en) * 2014-05-15 2015-11-25 常州帕斯菲克自动化技术股份有限公司 Grounding resistor on-line monitor
CN105182169A (en) * 2015-10-10 2015-12-23 国网山西省电力公司临汾供电公司 Defect screening detection method and apparatus of grounding network upper guide body wire

Also Published As

Publication number Publication date
JPH0467631B2 (en) 1992-10-28

Similar Documents

Publication Publication Date Title
US4851782A (en) High impedance fault analyzer in electric power distribution
EP0299060B1 (en) High impedance fault analyzer in electric power distribution
TW201621331A (en) Leakage current calculation device and leakage current calculation method
CN106771901A (en) Based on the DC system insulating monitoring method for determining frequency switching resistance principle
JP2005140532A (en) Device and method for calculating phase angle, device and method for detecting leakage current
KR20000037146A (en) A new technical method and equipment for the grounding resistance measurement on power service
JP2010256264A (en) Earth resistance measuring method
GB2227845A (en) Loop-impedance-tester
JPS61251776A (en) Measuring instrument for earth resistance
US10067167B2 (en) Method and apparatus for precision phasor measurements through a medium-voltage distribution transformer
JPS6256870A (en) Deterioration detecting device for arrester
Soeth et al. Traveling wave fault location on HVDC lines
JPH0354311B2 (en)
JPS61155869A (en) Measuring method of phase-compensated insulation resistance
RU2160673C2 (en) Contact system fault detector
EP0570654A1 (en) A remote eart resistance meter
JPS5682458A (en) Insulation resistance measuring apparatus of neutral point ground system
JPH079447B2 (en) Insulation resistance measuring method and device
SU917127A1 (en) Method of determination of insulation parameters of three-phase electric circuits with isolated neutral voltage above 1000 v
SU1320760A1 (en) Method of measuring parameters of passive complex two-element one-ports and device for effecting same
JPH1048282A (en) Method and instrument for measuring stray direct current of cable grounding conductor
JPH0428065Y2 (en)
SU740555A1 (en) Apparatus for locating the faults of traction network of electric railway
JPS58127172A (en) Insulation resistance measuring apparatus for electric line with suppressed stray capacity
JPS6154463A (en) Measuring method of earth insulating resistance of cable way