JPS6125126B2 - - Google Patents

Info

Publication number
JPS6125126B2
JPS6125126B2 JP13240878A JP13240878A JPS6125126B2 JP S6125126 B2 JPS6125126 B2 JP S6125126B2 JP 13240878 A JP13240878 A JP 13240878A JP 13240878 A JP13240878 A JP 13240878A JP S6125126 B2 JPS6125126 B2 JP S6125126B2
Authority
JP
Japan
Prior art keywords
lens
exceeded
aberration
equation
positive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13240878A
Other languages
Japanese (ja)
Other versions
JPS5559418A (en
Inventor
Hideo Yokota
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP13240878A priority Critical patent/JPS5559418A/en
Publication of JPS5559418A publication Critical patent/JPS5559418A/en
Publication of JPS6125126B2 publication Critical patent/JPS6125126B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はテツサー型レンズに関し、殊に後絞り
テツサー型レンズに適したものである。 カメラ全体を小型化し、鏡筒構造を筒素化する
上からも後絞りテツサー型レンズは極めて有用な
ものである。これを小型化の見地から見ると、例
えば59度以上の画角を有し、Fナンバー2.8に達
する明るさを持つようなレンズでも、その焦点距
離をfとした時、レンズ第1面から焦点面までの
全長を1.16f以内に短縮可能である。 しかしながら、全長を短縮した後絞りテツサー
型レンズでは、入射高中間部の球面収差の補正機
能を持つ中間両凹レンズ前面に於いて軸外光束中
の最大入射高部分の光束に対する屈折作用が過大
となるため、中間画角より周辺画角でコマ・フレ
アーが大きくなるという欠点を持つている。従つ
て、これまでこの欠点を克服するため、種々の改
善が行なわれてきた。 その主たる改善手段は、第1レンズの屈折率を
1.78程度より大きくすることで球面収差の最大発
生面である第1面での球面収差の発生を抑制し、
両凹レンズ前面による球面収差の補正作用を弱め
ることによつてコマ・フレアーの減少を計るもの
であつた。 これに対し、第1レンズの屈折率を1.78より大
きくすると、普通に入手できる硝種内の選択で
は、選択した硝材のアツベ数は45以上となるた
め、倍率の色収差の補正が困難になると云う悪影
響が付随する。 本発明の目的は、第1レンズにアツベ数が48よ
り大きい硝材を選択した場合でも色収差を良好に
補正することにあり、しかも他の収差の補正も向
上させることにある。 そのため、メニスカス正レンズ及び両凹レン
ズ、そしてメニスカス負レンズと両凸レンズを貼
合わせた正レンズを順置し、riを順次曲率半径、
di順次レンズ厚もしくは面間隔、N4を両凸レンズ
の屈折率、νをメニスカス正レンズのアツベ
数、νを両凹レンズのアツベ数そしてfを焦点
距離とするとき、以下の諸条件式を満たす。 (1) 0.34f< r1 <0.37 f (2) 0.95f< r2 <1.3 f (3) 1.3f< |r3| <1.6 f,r3<0 (4) 0.31f< r4 <0.37 f (5) 1.6f< r5 <2.7 f (6) 0.74f< |r7| <0.84 f (7) 0.1f< d1 <0.12 f (8) 0.05f< d3 <0.065f (9) 0.1f<d5+d6 <0.13 f (10) 1.78 <N4 (11) 48 <ν (12) ν < 30 次に各条件の極限の意義を説明するが、説明中
に記載する各収差が収差図の収差曲線のどの部分
に特徴的に現われるかを、参考として示すため第
1図を添付する。 まず(1)の上限値を越えると、バツクフオーカス
が長くなり、全長を短くするといつた目的を達成
できない。下限値を越えると、球面収差の補正が
不足し、球面収差中間部のふくらみが過大とな
る。 (2)式の上限値を越えると、負の非点収差が過大
となり、下限値を越えると、画面周辺での正の球
欠像面湾曲が過大となる。 (3)式の上限値を越えると負の非点収差が過大と
なり、球面収差の補正が不足し、下限値を越える
と画面中間から周辺でのコマフレアーが著るしく
なる。 (4)式の上限値を越えると球面収差の補正が不足
し、下限値を越えると輪帯の球面収差が補正過剰
となる。 (5)式の上限値を越えると、画面周辺での正の子
午、球欠像面湾曲が過大となり下限値を越えると
負の非点収差が過大となる。 (6)式の上限値を越えると画面中間から周辺での
内向性コマ収差が増大し、下限値を越えると負の
非点収差が過大となると同時に画面周辺での外向
性コマ収差が増大する。 (7)式の上限値を越えると球面収差の補正が不足
し、下限値を越えると負の非点収差が過大とな
る。 (8)式の上限値を越えると画面周辺での内向性コ
マ収差が増大し、下限値を越えると負の非点収差
が過大となる。 (9)式の上限値を越えると周辺で正の子午、球欠
像面湾曲が過大となり、下限値を越えると負の非
点収差が過大となると伴に、画面中間から周辺で
外向性コマ収差が発生する。 (10)式の範囲を越えるとペツツバール和が増大
し、画面中間での負の球欠像面湾曲が過大とな
る。 (11)式の範囲を越えると倍率色収差の補正が困難
となる。 (12)式の範囲を越えると軸上色収差の補正が困難
となる。 以下に後絞りテツサー型レンズの数値実施例を
記載するが、各実施例は焦点距離をf=1に規格
化してあり、またRは被写体側から順次数えたレ
ンズ面の曲率半径、Dは被写体側から順次数えた
レンズ厚もしくは面間隔、Ndは被写体側から順
次数えた媒質のd線屈折率、νdは被写体側から
順次数えた媒質のアツベ数を示す。更に第2図は
レンズ断面形状を示し、収差曲線を示す第3図乃
至第6図は順に実施例1乃至実施例4の収差補正
の様子を示す。
The present invention relates to a Tessar type lens, and is particularly suitable for a Tessar type lens with a rear aperture. The rear aperture Tetsusar type lens is extremely useful in terms of downsizing the entire camera and making the lens barrel structure cylindrical. Looking at this from the standpoint of miniaturization, for example, even if a lens has an angle of view of 59 degrees or more and is bright enough to reach an F number of 2.8, if its focal length is f, then the focus will be from the first surface of the lens. The total length to the surface can be shortened to within 1.16f. However, in a Tetsusar type lens with a shortened overall length, the front surface of the intermediate biconcave lens, which has the function of correcting spherical aberration in the middle part of the incident height, has an excessive refractive effect on the light beam at the maximum incident height part of the off-axis light beam. Therefore, it has the disadvantage that coma and flare are larger at peripheral angles of view than at intermediate angles of view. Therefore, various improvements have been made to overcome this drawback. The main means of improvement is to increase the refractive index of the first lens.
By making it larger than about 1.78, the occurrence of spherical aberration at the first surface, which is the surface where the maximum spherical aberration occurs, is suppressed,
The objective was to reduce coma and flare by weakening the spherical aberration correcting effect of the front surface of the biconcave lens. On the other hand, if the refractive index of the first lens is made larger than 1.78, the Abe number of the selected glass material will be 45 or more if the selected glass material is selected from among commonly available glass types, which has the negative effect of making it difficult to correct chromatic aberration of magnification. accompanies. An object of the present invention is to satisfactorily correct chromatic aberration even when a glass material with an Abbe number greater than 48 is selected for the first lens, and also to improve correction of other aberrations. Therefore, a positive meniscus lens, a biconcave lens, and a positive lens consisting of a negative meniscus lens and a biconvex lens are placed in order, and ri is successively set to the radius of curvature,
When di is the sequential lens thickness or surface spacing, N 4 is the refractive index of a biconvex lens, ν 1 is the Atsube number of a positive meniscus lens, ν 2 is the Atsube number of a biconcave lens, and f is the focal length, the following conditional expressions are written. Fulfill. (1) 0.34f< r 1 <0.37 f (2) 0.95f< r 2 <1.3 f (3) 1.3f< |r 3 | <1.6 f, r 3 <0 (4) 0.31f< r 4 <0.37 f (5) 1.6f< r 5 <2.7 f (6) 0.74f< | r 7 | <0.84 f (7) 0.1f< d 1 <0.12 f (8) 0.05f< d 3 <0.065f (9) 0.1f<d 5 +d 6 <0.13 f (10) 1.78 <N 4 (11) 48 <ν 1 (12) ν 2 < 30 Next, we will explain the significance of the limits of each condition, but each of the For reference, FIG. 1 is attached to show in which part of the aberration curve in the aberration diagram the aberration characteristically appears. First, if the upper limit of (1) is exceeded, the back focus becomes long, and the purpose of shortening the total length cannot be achieved. If the lower limit is exceeded, the spherical aberration will be insufficiently corrected, and the bulge in the middle portion of the spherical aberration will become excessive. When the upper limit of equation (2) is exceeded, the negative astigmatism becomes excessive, and when the lower limit is exceeded, the positive spherical field curvature at the periphery of the screen becomes excessive. If the upper limit of equation (3) is exceeded, the negative astigmatism becomes excessive and spherical aberration is insufficiently corrected, and if the lower limit is exceeded, coma flare becomes noticeable from the center to the periphery of the screen. If the upper limit of equation (4) is exceeded, the spherical aberration will be insufficiently corrected, and if the lower limit is exceeded, the spherical aberration of the annular zone will be overcorrected. When the upper limit of equation (5) is exceeded, the positive meridian and field curvature at the periphery of the screen become excessive, and when the lower limit is exceeded, the negative astigmatism becomes excessive. When the upper limit of equation (6) is exceeded, the introverted coma aberration increases from the center to the periphery of the screen, and when the lower limit is exceeded, the negative astigmatism becomes excessive and at the same time, the extroverted coma aberration increases at the periphery of the screen. . When the upper limit of equation (7) is exceeded, correction of spherical aberration becomes insufficient, and when the lower limit is exceeded, negative astigmatism becomes excessive. When the upper limit of equation (8) is exceeded, inward coma aberration at the periphery of the screen increases, and when the lower limit is exceeded, negative astigmatism becomes excessive. If the upper limit of equation (9) is exceeded, the positive meridian and field curvature will be excessive at the periphery, and if the lower limit is exceeded, the negative astigmatism will be excessive and the extroverted coma will be excessive from the center to the periphery. Aberrations occur. When the range of equation (10) is exceeded, the Petzval sum increases, and the negative spherical field curvature at the center of the screen becomes excessive. If the range of equation (11) is exceeded, it becomes difficult to correct lateral chromatic aberration. If the range of equation (12) is exceeded, it becomes difficult to correct longitudinal chromatic aberration. Numerical examples of rear aperture Tetsusar type lenses are described below, but the focal length of each example is standardized to f = 1, R is the radius of curvature of the lens surface counted sequentially from the subject side, and D is the subject Nd is the d-line refractive index of the medium counted sequentially from the subject side, and νd is the Atsube number of the medium counted sequentially from the subject side. Further, FIG. 2 shows the cross-sectional shape of the lens, and FIGS. 3 to 6, which show aberration curves, show the aberration correction in Examples 1 to 4 in order.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】 また次の実施例1と3の三次収差係数をあげ
る。
[Table] In addition, the third-order aberration coefficients of Examples 1 and 3 are listed below.

【表】【table】

【表】 SAは球面収差係数、CMはコマ収差係数、ASは
非点収差係数、PTはペツツバール和、DSは歪曲
係数
[Table] SA is the spherical aberration coefficient, CM is the comatic aberration coefficient, AS is the astigmatism coefficient, PT is the Petzval sum, and DS is the distortion coefficient.

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

第1図は収差曲線の傾向と収差との関係を示す
図。第2図はレンズ断面図。第3図,第4図,第
5図,第6図は夫々各実施例の収差曲線図。 図中、Rはレンズ面、Dはレンズ厚もしくは面
間隔、Mはメリデイオナル焦線、サジタル焦線で
ある。
FIG. 1 is a diagram showing the relationship between the tendency of an aberration curve and aberration. Figure 2 is a sectional view of the lens. FIG. 3, FIG. 4, FIG. 5, and FIG. 6 are aberration curve diagrams of each example. In the figure, R is a lens surface, D is a lens thickness or surface spacing, and M is a meridional focal line and a sagittal focal line.

Claims (1)

【特許請求の範囲】 1 メニスカス正レンズ及び両凹レンズ、そして
メニスカス負レンズと両凸レンズを貼合わせた正
レンズから成るテツサー型レンズにおいて、riを
順次曲率半径、diを順次レンズ厚もしくは面間
隔、N4を両凸レンズの屈折率、νをメニスカ
ス正レンズのアツベ数、νを両凹レンズのアツ
ベ数そしてfを焦点距離とするとき、 (1) 0.34f<r1<0.37f (2) 0.95f<r2<1.3f (3) 1.3f<|r3|<1.6f,r3<0 (4) 0.31f<r4<0.37f (5) 1.6f<r5<2.7 f (6) 0.74f<|r7|<0.87f (7) 0.10f<d1<0.12f (8) 0.05f<d3<0.065f (9) 0.10f<d5+d6<0.13f (10) 1.78<N4 (11) 48<ν (12) ν<30 上記各条件を満たすことを特徴とするテツサー
型レンズ。
[Claims] 1. In a Tetsusar type lens consisting of a positive meniscus lens, a biconcave lens, and a positive lens made by laminating a negative meniscus lens and a biconvex lens, ri is the radius of curvature, di is the lens thickness or surface spacing, and N is When 4 is the refractive index of a biconvex lens, ν 1 is the Atsube number of a positive meniscus lens, ν 2 is the Atsube number of a biconcave lens, and f is the focal length, (1) 0.34f<r 1 <0.37f (2) 0.95 f<r 2 <1.3f (3) 1.3f<|r 3 |<1.6f, r 3 <0 (4) 0.31f<r 4 <0.37f (5) 1.6f<r 5 <2.7 f (6) 0.74f<|r 7 |<0.87f (7) 0.10f<d 1 <0.12f (8) 0.05f<d 3 <0.065f (9) 0.10f<d 5 +d 6 <0.13f (10) 1.78< N 4 (11) 48<ν 1 (12) ν 2 <30 A Tetsusar-type lens characterized by satisfying each of the above conditions.
JP13240878A 1978-10-27 1978-10-27 Tessar-type lens Granted JPS5559418A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13240878A JPS5559418A (en) 1978-10-27 1978-10-27 Tessar-type lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13240878A JPS5559418A (en) 1978-10-27 1978-10-27 Tessar-type lens

Publications (2)

Publication Number Publication Date
JPS5559418A JPS5559418A (en) 1980-05-02
JPS6125126B2 true JPS6125126B2 (en) 1986-06-14

Family

ID=15080681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13240878A Granted JPS5559418A (en) 1978-10-27 1978-10-27 Tessar-type lens

Country Status (1)

Country Link
JP (1) JPS5559418A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5918916A (en) * 1982-07-23 1984-01-31 Canon Inc Tessar type photographic lens
DE3332480C2 (en) * 1982-09-16 1985-12-05 Olympus Optical Co., Ltd., Tokio/Tokyo Lens system
JP4850032B2 (en) 2006-11-08 2012-01-11 日立マクセル株式会社 Optical pickup lens

Also Published As

Publication number Publication date
JPS5559418A (en) 1980-05-02

Similar Documents

Publication Publication Date Title
US4606607A (en) Photographic lens system with a short overall length
US5808808A (en) Wide-angle lens system
JPH01126614A (en) Zoom lens
JPS6119008B2 (en)
JPH06324264A (en) Wide angle lens
JPS6243613A (en) Converter lens
US4643536A (en) Rear conversion lens
JPS627525B2 (en)
JPS6125122B2 (en)
JPS6134125B2 (en)
US4251131A (en) Microscope objective
JPS6153695B2 (en)
JPS6128972B2 (en)
JPH07168095A (en) Triplet lens
US4257678A (en) Wide angle photographic lens
US4348085A (en) Inverted telephoto type wide angle lens
JPS6042452B2 (en) zoom lens
US4435049A (en) Telephoto lens system
US4212517A (en) Photographic lens system
JPS6125126B2 (en)
US4281908A (en) Tesser type objective lens system having a rear aperture stop
JPH0251115A (en) Retrofocus type wide-angle lens
JPS6113723B2 (en)
JPS6358324B2 (en)
US4176914A (en) Compact retrofocus wide angle objective