JPS6125037B2 - - Google Patents

Info

Publication number
JPS6125037B2
JPS6125037B2 JP9404777A JP9404777A JPS6125037B2 JP S6125037 B2 JPS6125037 B2 JP S6125037B2 JP 9404777 A JP9404777 A JP 9404777A JP 9404777 A JP9404777 A JP 9404777A JP S6125037 B2 JPS6125037 B2 JP S6125037B2
Authority
JP
Japan
Prior art keywords
bismuth
carbonate
malachite
salt
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9404777A
Other languages
Japanese (ja)
Other versions
JPS5340700A (en
Inventor
Merubin Furemonto Josefu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EIDP Inc
Original Assignee
EI Du Pont de Nemours and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US05/803,261 external-priority patent/US4110249A/en
Application filed by EI Du Pont de Nemours and Co filed Critical EI Du Pont de Nemours and Co
Publication of JPS5340700A publication Critical patent/JPS5340700A/en
Publication of JPS6125037B2 publication Critical patent/JPS6125037B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F1/00Compounds containing elements of Groups 1 or 11 of the Periodic Table
    • C07F1/08Copper compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/843Arsenic, antimony or bismuth
    • B01J23/8437Bismuth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/06Halogens; Compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G29/00Compounds of bismuth
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G3/00Compounds of copper
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C33/00Unsaturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms
    • C07C33/04Acyclic alcohols with carbon-to-carbon triple bonds
    • C07C33/042Acyclic alcohols with carbon-to-carbon triple bonds with only one triple bond
    • C07C33/044Alkynediols
    • C07C33/046Butynediols
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F1/00Compounds containing elements of Groups 1 or 11 of the Periodic Table
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/50Agglomerated particles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/60Optical properties, e.g. expressed in CIELAB-values

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)

Description

【発明の詳細な説明】 本発明は、ビスマス変性された回転楕円体状マ
ラカイトの製造方法ならびにそのようなマラカイ
トからの銅アセチリド錯体の生成およびその触媒
としての使用に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a process for the production of bismuth-modified spheroidal malachite and to the production of copper acetylide complexes from such malachite and their use as catalysts.

触媒として銅アセチリド錯体を用いるホルムア
ルデヒドおよびアセチレンの反応による1,4−
ブチンジオールの製造方法は周知でありそして長
年用いられている。周知のように、この反応は、
フイルターを詰まらせる傾向がありしかもこの方
法に悪影響を有するクブレンを生成する。
1,4- by reaction of formaldehyde and acetylene using copper acetylide complex as catalyst
Methods for making butynediol are well known and have been used for many years. As is well known, this reaction is
It produces cuberene which tends to clog the filter and has a negative impact on the process.

反応中のクブレンの生成を防止するために一般
に用いられている一つの方法は、元素状形態ある
いはビスマス化合物の形態のいずれかのビスマス
の存在下で反応を実施することである。たとえば
米国特許第3650985号明細書(例39)では、オキ
シ炭酸ビスマスを銅アセチリド触媒を形成するた
めに用いられる塩基性銅炭酸塩(マラカイト)と
直接に混合することによりこの方法の初期工程に
おけるクブレン防止剤として用いうることが示さ
れている。このようにして用いられたビスマスは
クブレンの生成を防止するが、これはしばらくす
ると触媒から分離する傾向があり、そのことは不
満足な結果をもたらす。
One method commonly used to prevent the formation of cuberene during the reaction is to carry out the reaction in the presence of bismuth, either in elemental form or in the form of bismuth compounds. For example, U.S. Pat. No. 3,650,985 (Example 39) discloses that the cublene in the initial step of the process is prepared by directly mixing bismuth oxycarbonate with the basic copper carbonate (malachite) used to form the copper acetylide catalyst. It has been shown that it can be used as an inhibitor. Although the bismuth used in this way prevents the formation of cuberene, it tends to separate from the catalyst after a while, which leads to unsatisfactory results.

触媒からのビスマスの分離を処理する一つの方
法はベルギー特許第825446号明細書に示されてい
る。これによれば、最初に水和された炭酸銅粒子
を調製し、核として作用させそしてこれらの粒子
を加熱することによつてマラカイトに変換するこ
とにより、ビスマスをマラカイト前駆体中にそし
て続いて銅アセチリド触媒自体中に均一に分散
せ、そして次に水スラリーに銅塩、ビスマス塩お
よびアルカリ金属の炭酸塩の溶液を加えることに
より均一に分散されたオキシ炭酸ビスマスを含有
するマラカイトの集合体(アグロメレート)を生
長させる。このマラカイトは容易に銅アセチリド
触媒へ変換しうる。
One method for handling the separation of bismuth from catalysts is shown in Belgian Patent No. 825,446. According to this, bismuth is introduced into malachite precursors and subsequently by first preparing hydrated copper carbonate particles, converting them to malachite by acting as nuclei and heating these particles. Aggregates of malachite containing bismuth oxycarbonate ( agglomerates). This malachite can be easily converted to copper acetylide catalyst.

このように製造された触媒中のビスマス化合物
はその位置に留まる傾向があるが、この触媒はプ
チンジオール反応が進行する間の摩滅により崩壊
される角状結晶の集合体から構成され、このこと
は反応効率を阻害する。
Although the bismuth compound in the catalyst thus prepared tends to remain in place, this suggests that the catalyst is composed of agglomerates of angular crystals that are disintegrated by attrition while the putynediol reaction proceeds. Inhibits reaction efficiency.

この問題は上述されたその他の問題と同様に本
発明によつて製造されたマラカイトおよび銅アセ
チリド触媒の使用によつて最小化される。こうし
た触媒の集合体は回転楕円体状であり、そして均
一に分散されたオキシ炭酸ビスマスを含有してい
る。
This problem, as well as the other problems mentioned above, is minimized by the use of malachite and copper acetylide catalysts made in accordance with the present invention. These catalyst assemblies are spheroidal and contain homogeneously dispersed bismuth oxycarbonate.

マラカイトの回転楕円体状集合体は本発明によ
れば第二銅塩の水溶液、ビスマス塩の水溶液およ
びアルカリ金属炭酸塩または重炭酸塩の水溶液を
撹拌下に混合してまず最初に水和された炭酸銅の
塊りを形成することにより製造される。次にこの
混合物は約55℃以下の温度で撹拌あるいはかきま
ぜをなすことなしに保持され、その際マラカイト
結晶の回転楕円体状集合体が形成する。
According to the invention, the spheroidal aggregates of malachite are first hydrated by mixing an aqueous solution of a cupric salt, an aqueous solution of a bismuth salt and an aqueous solution of an alkali metal carbonate or bicarbonate under stirring. Manufactured by forming lumps of copper carbonate. This mixture is then held without stirring or agitation at a temperature below about 55° C., during which spheroidal aggregates of malachite crystals form.

これらの集合体は次いでそれらを水中でスラリ
ーとしそしてアセチレンおよびホルムアルデヒド
の作用を受けさせることにより銅アセチリド錯体
に変換される。
These aggregates are then converted to copper acetylide complexes by slurrying them in water and subjecting them to acetylene and formaldehyde.

本発明の方法においては任意の水溶液第二銅塩
を使用しうる。硝酸第二銅、塩化第二銅、および
硫酸第二銅はその例である。溶解性および入手の
容易性の故に硝酸第二銅が好ましい。
Any aqueous cupric salt may be used in the method of the invention. Cupric nitrate, cupric chloride, and cupric sulfate are examples. Cupric nitrate is preferred because of its solubility and availability.

同様に、任意の水溶性ビスマス塩を使用しう
る。硝酸塩、オキシ炭酸塩、クエン酸塩、硫酸塩
およびリン酸塩はその例である。溶解性および入
手の容易性の故に硝酸ビスマスが好ましい。
Similarly, any water soluble bismuth salt can be used. Nitrates, oxycarbonates, citrates, sulfates and phosphates are examples. Bismuth nitrate is preferred because of its solubility and availability.

使用しうるアルカリ金属の炭酸塩および重炭酸
塩のうちでは、炭酸ナトリウムおよび重炭酸ナト
リウムがそれらの低コストの故に好ましい。
Among the alkali metal carbonates and bicarbonates that can be used, sodium carbonate and sodium bicarbonate are preferred because of their low cost.

各塩の溶液は、放置時または使用中に溶液から
の塩の析出を伴なうことなくできるだけ多くの塩
を溶液が含有するように調製される。これらの溶
液は次に得られる混合物のPHが約5.5〜7.5好まし
くは6.0〜7.0であるような割合で一緒にされる。
通常の場合には、このPHの範囲はアルカリ金属の
炭酸塩または重炭酸塩の適当量の使用によつて達
成できる。ビスマス塩は通常得られる混合物中に
銅含有量の1〜10重量%の濃度で存在する。
Solutions of each salt are prepared such that the solution contains as much salt as possible without precipitation of the salt from the solution upon standing or during use. These solutions are then combined in proportions such that the pH of the resulting mixture is about 5.5-7.5, preferably 6.0-7.0.
In normal cases, this PH range can be achieved by the use of appropriate amounts of alkali metal carbonates or bicarbonates. The bismuth salt is usually present in the resulting mixture in a concentration of 1 to 10% by weight of the copper content.

これらの溶液は一般に20〜60分かけて任意の順
序で一緒にされ、そして次に撹拌またはかきまぜ
によつて混合される。好ましい態様では、銅塩お
よびビスマス塩の溶液が調製されそしてこれを同
時に実施例1で示すようにアルカリ金属炭酸塩ま
たは重炭酸塩の溶液とともに水の少量の流れ(ヒ
ール)に供給する。
These solutions are generally combined in any order over a period of 20 to 60 minutes and then mixed by stirring or agitation. In a preferred embodiment, a solution of copper and bismuth salts is prepared and fed into a heel of water simultaneously with a solution of alkali metal carbonate or bicarbonate as shown in Example 1.

最初に希硝酸で洗浄することによりマラカイト
核を洗い落した容器中にこれらの溶液を一緒に注
入することが重要である。
It is important to pour these solutions together into a container that has first been washed of malachite kernels by washing with dilute nitric acid.

得られる混合物を媒質の氷点よりわずかに高い
温度から約55℃まで、好ましくは35゜〜50℃の温
度に撹拌またはかきまぜを行ないつつ保持する。
ゲル状の水和炭酸銅の無足形の塊りが直ちに形成
する。
The resulting mixture is maintained at a temperature slightly above the freezing point of the medium to about 55°C, preferably between 35° and 50°C, with stirring or agitation.
A foot-shaped mass of gel-like hydrated copper carbonate forms immediately.

マラカイトの集合体は次にこの水和炭酸銅から
撹拌またはかきまぜを全くせずにゲル形成工程に
おいて用いられたのとほぼ同一の温度で炭酸塩の
含有されている液体を保持することにより調製さ
れる。二酸化炭素が発生し始めそしてマラカイト
の集合体が生成する。この生成は普通約1〜3時
間で完了する。
Malachite aggregates are then prepared from this hydrated copper carbonate by holding the carbonate-containing liquid at approximately the same temperature used in the gel formation step without any stirring or agitation. Ru. Carbon dioxide begins to evolve and malachite aggregates form. This production is usually complete in about 1 to 3 hours.

このように生成されたマラカイトは塩基性炭酸
銅結晶の回転楕円体状の集合体からなる。これら
の集合体の少なくとも約80%は、標準に対して光
学的に測定された場合に、最長の寸法で約5〜12
ミクロンである。この集合体は均一に分散したオ
キシ炭酸ビスマスを1〜4重量%好ましくは2〜
3重量%含有する。「均一に分散した」とはオキ
シ炭酸塩が分子スケールで集合体全体に均等に分
配されていることを意味する。
The malachite produced in this way consists of a spheroidal aggregate of basic copper carbonate crystals. At least about 80% of these aggregates have a diameter of about 5 to 12 in their longest dimension when optically measured against a standard.
It is micron. This aggregate contains 1 to 4% by weight of uniformly dispersed bismuth oxycarbonate, preferably 2 to 4% by weight.
Contains 3% by weight. By "uniformly dispersed" is meant that the oxycarbonate is evenly distributed throughout the mass on a molecular scale.

こうした集合体は次に反応塊から過により分
離され、そして水で洗浄して遊離塩を除く。集合
体の調製に際して高濃度のビスマスを用いた場合
には、残留するゲルおよびより小さな集合体は
過工の前に反応混合物をハイドロクローニング
(hydrocloning)により除去することが望まし
い。ハイドロクローニングとは液体サイクロンま
たはハイドローリツクサイクロンとも呼ばれるも
ので、ここでは約5ミクロンより小さい寸法の小
粒子を除去するための液圧法を意味する。この工
程に適した装置は、Dorr−Oliver社製の「Dorr
Olone」である。
These aggregates are then separated from the reaction mass by filtration and washed with water to remove free salts. If high concentrations of bismuth are used in the preparation of the aggregates, it is desirable to remove residual gel and smaller aggregates by hydrocloning the reaction mixture before overworking. Hydrocloning, also referred to as hydrocyclone or hydraulic cyclone, refers here to a hydraulic method for removing small particles with dimensions less than about 5 microns. A suitable device for this process is the “Dorr
"Olone".

これらのマラカイト集合体は、集合体の水中ス
ラリーを調製しそして次にこのスラリーを米国特
許第3650985号明細書(第5欄参照)の記載に従
い、実質上中性の水性媒体中2.0気圧より大きく
ない部分圧の下50〜120℃でホルムアルデヒドお
よびアセチレンを同時に作用させることにより銅
アセチリド触媒に変換しうる。
These malachite aggregates are prepared by preparing a slurry of the aggregates in water and then subjecting the slurry to greater than 2.0 atmospheres in a substantially neutral aqueous medium as described in U.S. Pat. No. 3,650,985 (see column 5). It can be converted to copper acetylide catalyst by simultaneous action of formaldehyde and acetylene at 50-120°C under no partial pressure.

このように調製された銅アセチリド錯体は、こ
の錯体が調製されたマラカイトのそれと平行した
濃度で均一に分散されたオキシ炭酸ビスマスを含
有する回転楕円体状の集合体の形態をしている。
The copper acetylide complex thus prepared is in the form of spheroidal aggregates containing homogeneously dispersed bismuth oxycarbonate in a concentration parallel to that of the malachite from which the complex was prepared.

この錯体はアセチレンおよびホルムアルデヒド
から1,4−ブチンジオールを生成する反応のた
めの触媒として用いうる。この錯体は通常の方法
および普通の量で使用されそして特別な技術ある
いは措置は必要としない。このような使用のため
の詳細は米国特許第3650985号明細書に見出しう
る。
This complex can be used as a catalyst for the reaction to produce 1,4-butynediol from acetylene and formaldehyde. The complexes are used in conventional manner and in conventional amounts and require no special techniques or measures. Details for such use can be found in US Pat. No. 3,650,985.

実施例 1 100mlの水にCu(NO32・3H2O95g、濃硝酸10
mlおよびBi(NO33・5H2O1.74gを溶解した。得
られる溶液を撹拌しながら35℃に保持された300
mlの水に40分間かけて加えた。Na2CO3の飽和水
溶液を充分加えて溶液にPHを6.7〜7.2に保持し
た。
Example 1 95g of Cu(NO 3 ) 2・3H 2 O and 10% of concentrated nitric acid in 100ml of water
ml and 1.74 g of Bi(NO 3 ) 3 ·5H 2 O were dissolved. The resulting solution was kept at 35 °C with stirring for 300 min.
ml of water over 40 minutes. Sufficient saturated aqueous solution of Na 2 CO 3 was added to maintain the pH of the solution between 6.7 and 7.2.

次に撹拌を停止し、そしてその溶液を35℃に保
持した。容器は青色ゲルで満たされていた。この
ゲルは約2.5時間にそのもとの体積の1/8に縮
小されてマラカイト結晶の回転楕円体状の集合体
を形成した。このマラカイト結晶を過により液
体から分離し、水で洗浄しそして次に1時間100
℃で乾燥した。この生成物を次にDorr−Oliver社
製の液体遠心分離器(Hydraulic Centrifugal
Separator)を用い圧力低下約4気圧および室温
にてハイドロクローニング処理して残存ゲルおよ
び小粒子を除去した。
Stirring was then stopped and the solution was kept at 35°C. The container was filled with blue gel. The gel was reduced to 1/8 of its original volume in about 2.5 hours to form a spheroidal aggregate of malachite crystals. The malachite crystals were separated from the liquid by filtration, washed with water and then heated at 100 °C for 1 hour.
Dry at °C. This product is then transferred to a Dorr-Oliver Hydraulic Centrifugal separator.
Residual gel and small particles were removed by hydrocloning at a pressure drop of approximately 4 atm and room temperature using a 100% Separator (Separator).

この集合体の少なくとも80%は、最長の寸法に
おいて5〜12ミクロンであつた。
At least 80% of the aggregates were between 5 and 12 microns in their longest dimension.

実施例 2 ガラス容器に実施例1のマラカイト45g、ホル
ムアルデヒド(37%水溶液)600gおよび
CaCO32gを仕込んだ。90容量%の窒素を含有す
るアセチレン流を毎分2の速度でその容器を通
過せしめた。容器内の圧力を1.27〜1.34気圧(4
〜5psig)そして反応塊の温度を70゜〜80℃に保
持した。発生する二酸化炭素は外部に排気され
た。
Example 2 45 g of malachite from Example 1, 600 g of formaldehyde (37% aqueous solution) and
2 g of CaCO 3 was charged. A stream of acetylene containing 90% nitrogen by volume was passed through the vessel at a rate of 2 per minute. Reduce the pressure inside the container to 1.27 to 1.34 atm (4
~5 psig) and the temperature of the reaction mass was maintained at 70°-80°C. The carbon dioxide generated was vented to the outside.

二酸化炭素の発生が停止したら、容器の内容物
を冷却し、容器から除去しそして水で洗浄した。
Once the evolution of carbon dioxide had ceased, the contents of the vessel were cooled, removed from the vessel and washed with water.

得られる銅アセチリド錯体は使用されるまで水
中に貯蔵した。
The resulting copper acetylide complex was stored in water until used.

実施例 3 反応器に実施例2の銅アセチリド錯体45gおよ
びホルムアルデヒド(15%水溶液)600mlを仕込
んだ。アセチレンを毎分300mlの速度で連続的に
その容器を通過せしめ、圧力は約1.34気圧
(5psig)に保持された。ホルムアルデヒドの37%
水溶液の充分量を反応器に供給してホルムアルデ
ヒド濃度を約10重量%に保持した。同様に重炭酸
ナトリウムの飽和溶液を連続的に反応器に供給し
て内容物のPHを6.0〜6.2に保持した。生成物であ
る1,4−ブチンジオールを過により連続的に
除去した。
Example 3 A reactor was charged with 45 g of the copper acetylide complex of Example 2 and 600 ml of formaldehyde (15% aqueous solution). Acetylene was passed continuously through the vessel at a rate of 300 ml per minute and the pressure was maintained at approximately 1.34 atmospheres (5 psig). 37% of formaldehyde
A sufficient amount of aqueous solution was fed to the reactor to maintain the formaldehyde concentration at about 10% by weight. Similarly, a saturated solution of sodium bicarbonate was continuously fed to the reactor to maintain the pH of the contents between 6.0 and 6.2. The product, 1,4-butynediol, was continuously removed by filtration.

100時間の連続使用後に、この触媒を反応器よ
り取出し、X線回折走査により分析した。金属銅
は検出されず、触媒は安定且つ有用な状態にある
ことを示した。
After 100 hours of continuous use, the catalyst was removed from the reactor and analyzed by X-ray diffraction scanning. No metallic copper was detected, indicating that the catalyst was stable and useful.

実施例 4 硝酸ビスマス1.74gのかわりに5.8gを使用し
て実施例1の方法を繰返した。
Example 4 The method of Example 1 was repeated using 5.8 g of bismuth nitrate instead of 1.74 g.

得られるマラカイトの回転楕円体状集合体は、
4重量%の均一に分散されたオキシ炭酸ビスマス
を含有していた。
The resulting malachite spheroidal aggregate is
It contained 4% by weight of homogeneously dispersed bismuth oxycarbonate.

これらの集合体は実施例2に示されたように銅
アセチリド触媒に変換でき、これは次いで1.4−
ブチンジオールを生成させるために実施例3に示
した方法に使用できる。
These aggregates can be converted to copper acetylide catalysts as shown in Example 2, which are then converted into 1.4-
It can be used in the method shown in Example 3 to produce butyne diol.

Claims (1)

【特許請求の範囲】 1 実質的に、第二銅塩の水溶液、ビスマス塩の
水溶液およびアルカリ金属炭酸塩またはアルカリ
金属重炭酸塩の水溶液のそれぞれを混合物のPH値
を5.5〜7.5に保つに充分量において約55℃以下の
温度で撹拌下に一緒にすることによつて無定形の
ゲル状の水和炭酸銅を形成させそして次いで前記
に得られた混合物を撹拌を行なうことなしに約55
℃以下の温度に保持することにより得られた塩基
性炭酸銅結晶の回転楕円状集合体を水性媒体中の
スラリーとしてホルムアルデヒドおよびアセチレ
ンの作用に付すことからなる銅アセチリド錯体の
生成方法。 2 前記の第二銅塩が硝酸第二銅であり、ビスマ
ス塩が硝酸ビスマスでありそしてアルカリ金属炭
酸塩が炭酸ナトリウムである前記第1項記載の方
法。
[Claims] 1. Substantially each of an aqueous solution of a cupric salt, an aqueous solution of a bismuth salt, and an aqueous solution of an alkali metal carbonate or alkali metal bicarbonate is sufficient to maintain the PH value of the mixture between 5.5 and 7.5. an amorphous gel-like hydrated copper carbonate is formed by combining the amounts under stirring at a temperature below about 55°C and then the mixture obtained above is heated to about 55°C without stirring.
1. A method for producing a copper acetylide complex, which comprises subjecting a spheroidal aggregate of basic copper carbonate crystals obtained by maintaining the temperature below °C as a slurry in an aqueous medium to the action of formaldehyde and acetylene. 2. The method of claim 1, wherein the cupric salt is cupric nitrate, the bismuth salt is bismuth nitrate, and the alkali metal carbonate is sodium carbonate.
JP9404777A 1976-08-05 1977-08-05 Process for preparing modified malachite Granted JPS5340700A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US71172476A 1976-08-05 1976-08-05
US05/803,261 US4110249A (en) 1976-08-05 1977-06-06 Preparation of bismuth modified spheroidal malachite

Publications (2)

Publication Number Publication Date
JPS5340700A JPS5340700A (en) 1978-04-13
JPS6125037B2 true JPS6125037B2 (en) 1986-06-13

Family

ID=27108686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9404777A Granted JPS5340700A (en) 1976-08-05 1977-08-05 Process for preparing modified malachite

Country Status (7)

Country Link
JP (1) JPS5340700A (en)
CA (1) CA1096134A (en)
DE (1) DE2735465C2 (en)
FR (2) FR2366222A1 (en)
GB (1) GB1579039A (en)
IT (1) IT1085695B (en)
NL (1) NL7708642A (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57145523A (en) * 1981-03-04 1982-09-08 Kato Giichirou Lightning warning device utilizing transmission line
JPS6042680A (en) * 1983-08-17 1985-03-06 M Syst Giken:Kk Thunderbolt sensor
US4536491A (en) * 1984-06-04 1985-08-20 E. I. Dupont De Nemours And Company Agglomerates of malachite crystals and method for their preparation
RU2225360C1 (en) * 2003-02-25 2004-03-10 Соколов Валерий Васильевич Malachite and a method for preparation thereof
CN105709758B (en) * 2014-12-04 2018-02-09 中国石油化工股份有限公司 A kind of copper bismuth catalyst and preparation method thereof
CN105709759B (en) * 2014-12-04 2018-04-10 中国石油化工股份有限公司 A kind of copper bismuth catalyst preparation method for being used to synthesize 1,4 butynediols
CN105642303B (en) * 2014-12-04 2018-02-09 中国石油化工股份有限公司 Synthesize copper bismuth catalyst of 1,4 butynediols and preparation method thereof
CN105642301B (en) * 2014-12-04 2018-02-09 中国石油化工股份有限公司 A kind of preparation method for being used to synthesize the copper bismuth catalyst of 1,4 butynediols
CN112023963B (en) * 2020-09-02 2023-07-07 河北瑞克新能源科技有限公司 Catalyst for synthesizing 1, 4-butynediol and application

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3294849A (en) * 1965-04-15 1966-12-27 Gen Aniline & Film Corp Production of alkynols and alkynediols using continuous phase silica gel carrier impregnated with 15 to 20 percent copper and 2 to 9 percent bismuth
US3650985A (en) * 1967-10-23 1972-03-21 Du Pont Ethynylation catalyst catalyst preparation and process
US3560576A (en) * 1967-10-23 1971-02-02 Du Pont Ethynylation of formaldehyde
BE825446A (en) * 1974-02-25 1975-08-12 PROCESS FOR CO-PRECIPITATION OF MALACHITE AND BISMUTH, PROCESS FOR PREPARATION OF A COPPERY ACETYLIDE COMPLEX FROM THE CO-PRECIPITE OBTAINED, AND COMPLEX THUS PRODUCED

Also Published As

Publication number Publication date
FR2366299A1 (en) 1978-04-28
DE2735465A1 (en) 1978-02-09
IT1085695B (en) 1985-05-28
NL7708642A (en) 1978-02-07
FR2366222B1 (en) 1984-06-08
JPS5340700A (en) 1978-04-13
FR2366299B1 (en) 1984-10-05
DE2735465C2 (en) 1986-05-07
GB1579039A (en) 1980-11-12
CA1096134A (en) 1981-02-24
FR2366222A1 (en) 1978-04-28

Similar Documents

Publication Publication Date Title
JPS5973421A (en) Preparation of zeolite l
JPS6125037B2 (en)
US4536491A (en) Agglomerates of malachite crystals and method for their preparation
JP2002518281A (en) Production method of potassium sulfate
US4110249A (en) Preparation of bismuth modified spheroidal malachite
US4127734A (en) Preparation of butynediol using bismuth modified spheroidal malachite
US3868444A (en) Process for the preparation of porous sodium bicarbonate
US3274121A (en) Trilithium phosphate isomerization catalyst
US4584418A (en) Preparation of butynediol
JPH01133919A (en) Preparation of anhydrous magnesium carbonate
CA1106136A (en) Process for producing sodium percarbonate from a soda solution of suspension
US4118466A (en) Process for the production of compact, coarse sodium percarbonate
JPH04228420A (en) Basic magnesium carbonate and its production
US1660053A (en) Prepared calcium chloride and method of making same
CA1111056A (en) Preparation of bismuth-modified spheroidal malachite
US4727166A (en) Agglomerates of malachite and method for their preparation
JPS5835935B2 (en) Manufacturing method of strontium nitrate
US3919403A (en) Method for the production of alpha alumina monohydrate
JP2675465B2 (en) Hydrous calcium carbonate and method for producing the same
JPH0130765B2 (en)
US4364909A (en) Removal of Ca++ from MgCl2
US3378337A (en) Preparation of iodic acid and derivatives thereof
US3975500A (en) Process for producing high active oxygen, low bulk density sodium perborate
US4085151A (en) Butynediol production
CA1115931A (en) Use of polyethers to obtain anhydrous magnesium chloride