JPS61250376A - Compression-ignition type internal combustion engine - Google Patents

Compression-ignition type internal combustion engine

Info

Publication number
JPS61250376A
JPS61250376A JP9259685A JP9259685A JPS61250376A JP S61250376 A JPS61250376 A JP S61250376A JP 9259685 A JP9259685 A JP 9259685A JP 9259685 A JP9259685 A JP 9259685A JP S61250376 A JPS61250376 A JP S61250376A
Authority
JP
Japan
Prior art keywords
hot spot
internal combustion
combustion engine
heating element
compression ignition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9259685A
Other languages
Japanese (ja)
Inventor
Shigenori Isomura
磯村 重則
Hidehiko Inoue
英彦 井上
Toshio Kondo
利雄 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP9259685A priority Critical patent/JPS61250376A/en
Publication of JPS61250376A publication Critical patent/JPS61250376A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition

Landscapes

  • Combustion Methods Of Internal-Combustion Engines (AREA)

Abstract

PURPOSE:To obtain an efficient heating function for fuel and air, by constituting a hot spot, provided in a predetermined position in a combustion chamber for injected fuel to pass through, of a heat generating unit, which is electrically heated, and a heat generated unit of large thermal capacity brought into contact with the heat generating unit. CONSTITUTION:A cylindrical member 7, mounted by a thread to a cylinder head, mounts a heat generated bottom end of the member 7 inserted into a combustion chamber, and this hot spot 2, comprising the heat generated unit 8 and a heat generating unit 9 arranged along the internal peripheral surface of the heat generated unit 8, screws the point end part of a fuel injection valve 1 to be fitted to an upper end part of the cylindrical member 7. The heat generated unit 8, consisting of ceramics of alumina or the like with a large thermal capacity further with excellence in insulation resistance, etc., forms space communicating with internal space of the cylindrical member 7 while a hole 8a communicating with inside the combustion chamber 3. While the heat generating unit 9, consisting of an electric resistance material, is arranged along the internal peripheral surface of the heat generated unit 8, and the heat generating unit 9 is coated on the upper with an insulating protective layer 11.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、圧縮点火式内燃機関に関するものである。[Detailed description of the invention] (Industrial application field) The present invention relates to a compression ignition internal combustion engine.

(従来の技術) 圧縮点火式内燃機関としては、従来よりディーゼル機関
、または焼玉機関が知られている。前者は吸入した空気
を高温高圧になるまで圧縮し、上死点付近で燃料を噴射
させ自発点火による燃焼を行っている。後者は燃焼室内
に焼玉を設け、始動時これを燃焼室外から重油バーナな
どであらかじめ加熱しておき、点火機能を助けている。
(Prior Art) As a compression ignition internal combustion engine, a diesel engine or a broiled engine is conventionally known. The former compresses the inhaled air to high temperature and pressure, injects fuel near top dead center, and performs combustion through spontaneous ignition. The latter has a broiled ball inside the combustion chamber, which is preheated from outside the combustion chamber with a heavy oil burner to aid in ignition.

上述の従来のディーゼル機関においては、自発点火方式
であるためシリンダ内で圧縮された空気の温度が燃料の
点火温度に達する必要があるため圧縮比が高くなり、最
高燃焼室圧力はガソリン機関の2倍程度となっている。
In the above-mentioned conventional diesel engine, since it uses a spontaneous ignition system, the temperature of the air compressed in the cylinder must reach the ignition temperature of the fuel, so the compression ratio is high, and the maximum combustion chamber pressure is equal to that of a gasoline engine. It's about double that.

その結果機関の構造を頑丈にする必要があり、機関の最
高回転速度は制限され、また比出力の低下、機関の振動
騒音などが問題となる。
As a result, the structure of the engine needs to be made stronger, the maximum rotational speed of the engine is limited, and problems such as a decrease in specific output and engine vibration and noise arise.

また上述の焼玉機関については、現在小形船舶なとにし
か用いられず、加熱機構も原始的であり、その効率も現
状では内燃機関に比して著しく劣っている。
Furthermore, the above-mentioned hot-pot engine is currently used only in small ships, its heating mechanism is primitive, and its efficiency is currently significantly inferior to that of internal combustion engines.

このような欠点を克服するために、特開昭58−352
72号公報に示されるような内燃機関が提案されており
、この公報に示される内燃機関ではホットスポットによ
り燃料が気化されると共に、ホットスポット周囲の空気
はホットスポットの発熱部により加熱されており、圧縮
作用とこの加熱作用により混合気の高温化が促進される
ので、従来の圧縮比より低い圧縮比での自発点火が実現
でき、上記のディーゼル機関に関する種々の問題が改善
できるものである。
In order to overcome these drawbacks, Japanese Patent Application Laid-Open No. 58-352
An internal combustion engine as shown in Publication No. 72 has been proposed, and in the internal combustion engine shown in this publication, fuel is vaporized by a hot spot, and the air around the hot spot is heated by the heat generating part of the hot spot. Since the compression action and the heating action promote the temperature increase of the air-fuel mixture, spontaneous ignition can be achieved at a compression ratio lower than that of conventional compression ratios, and the various problems associated with diesel engines described above can be improved.

(発明が解決しようとする問題点) しかしながら、上記公報に示されるホットスポット部の
発熱体ならびに発熱体により加熱された被発熱体による
熱が燃料や空気の加熱に充分に寄与しておらず有効に機
能していないという問題点があった。
(Problems to be Solved by the Invention) However, the heat generated by the heating element in the hot spot portion shown in the above publication and the heated body heated by the heating element do not sufficiently contribute to heating the fuel and air, making it ineffective. The problem was that it was not functioning.

従って本発明の目的は、上述の問題点に鑑み、燃料や空
気に対して効率よい加熱機能を有するホットスポ7)を
備えた効率の高い圧縮点火式内燃機関を提供することで
ある。
Therefore, in view of the above problems, an object of the present invention is to provide a highly efficient compression ignition internal combustion engine equipped with a hot spot 7) having an efficient heating function for fuel and air.

(問題点を解決するための手段) 上記の問題点を解決するために、本発明においては、圧
縮点火式内燃機関の噴射弁から噴射される液状燃料が通
る燃焼室内の所定位置に、その温度が制御されるホット
スポットを有する圧縮点火式内燃機関において、前記ホ
ットスポットは電気加熱される発熱体とこの発熱体に接
触し熱容量大の被発熱体とを有し、前記圧縮点火式内燃
機関に対する前記ホットスポットの取付は部分には前記
ホットスポットの熱が前記圧縮点火式内燃機関側に伝達
するのを抑制する抑制手段が介在し、前記・噴射燃料が
前記発熱部および前記被発熱体に直接に接触するよう構
成されていることを特徴とする圧縮点火式内燃機関とし
ている。
(Means for Solving the Problems) In order to solve the above-mentioned problems, in the present invention, the liquid fuel injected from the injection valve of the compression ignition internal combustion engine is placed at a predetermined position in the combustion chamber through which the liquid fuel is heated. In the compression ignition internal combustion engine, the hot spot has a heating element that is electrically heated and a heating element having a large heat capacity that contacts the heating element, and the hot spot has a hot spot that is controlled. The hot spot is mounted with a suppressing means for suppressing the heat of the hot spot from being transmitted to the compression ignition internal combustion engine, and the injected fuel is directly directed to the heat generating part and the heat generating body. This is a compression ignition internal combustion engine characterized by being configured so as to be in contact with the engine.

(実施例) 以下、本発明の一実施例を図面に基づいて説明する。(Example) Hereinafter, one embodiment of the present invention will be described based on the drawings.

第1図は本実施例の構成を示す全体構成図であり、この
図において、燃料は噴射ポンプ4により、機関の圧縮行
程終了近傍において、噴射弁1から噴射される。この際
噴射された燃料は噴射弁1の先端に設けられたホットス
ポット2に当り、ホットスポット2により加熱気化され
て燃焼室3へと流れる。ホットスポット2に設けられる
発熱体は通電に応じて発熱するもので、この発熱体には
電源6から電流制御回路5を介して電力が提供されてい
る。
FIG. 1 is an overall configuration diagram showing the configuration of this embodiment. In this figure, fuel is injected from an injection valve 1 by an injection pump 4 near the end of the compression stroke of the engine. At this time, the injected fuel hits a hot spot 2 provided at the tip of the injection valve 1, is heated and vaporized by the hot spot 2, and flows into the combustion chamber 3. A heating element provided at the hot spot 2 generates heat in response to electricity, and power is supplied to this heating element from a power source 6 via a current control circuit 5.

第2図(a)は第1図における噴射弁1の先端部分なら
びにホットスポット2の構成を示す断面図であり、この
図において、噴射弁1の先端部分外周には雄ネジ部1a
が形成されており、この雄ネジ部1aに噴射弁1を機関
に取付固定する取付部材である中空の円筒部材7がネジ
込まれている。
FIG. 2(a) is a cross-sectional view showing the structure of the tip of the injection valve 1 and the hot spot 2 in FIG.
A hollow cylindrical member 7, which is a mounting member for mounting and fixing the injection valve 1 to the engine, is screwed into this male threaded portion 1a.

つまり、円筒部材7の一端側内周には雌ネジ部7aが形
成されている。この円筒部材7の外周の一部には、機関
への固定のための凪ネジ部7bが形成されており、また
円筒部材7の他端側内周にはホットスポット2の被発熱
体8がネジ込まれる雌ネジ部7Cが形成されている。
That is, a female threaded portion 7a is formed on the inner periphery of one end of the cylindrical member 7. A flat threaded portion 7b for fixing to the engine is formed on a part of the outer periphery of the cylindrical member 7, and a heated body 8 of the hot spot 2 is formed on the inner periphery of the other end of the cylindrical member 7. A female screw portion 7C to be screwed is formed.

ホットスポット2は前記被発熱体8および発熱体9から
構成されるものであって、被発熱体8ば熱容量の大きく
、そして絶縁抵抗、高温強度、耐熱衝撃性等に優れたア
ルミナ(A Ig Oりまたは窒化ケイ素(Si3N*
)等のセラミックスからなり、円筒部材7の内部空間と
連通ずる空間および第2図(b)に示すような燃焼室3
内に通じる孔8aが形成さねている。また被発熱体8の
端部には円筒部材7の雌ネジ部7Cにネジ込まれる雄ネ
ジ部8bが形成されており、両者7,8が結合する部分
には石綿等の断熱材10が介在されている。
The hot spot 2 is composed of the heating element 8 and the heating element 9. The heating element 8 is made of alumina (A IgO) which has a large heat capacity and is excellent in insulation resistance, high temperature strength, thermal shock resistance, etc. or silicon nitride (Si3N*
), etc., and a space communicating with the internal space of the cylindrical member 7 and a combustion chamber 3 as shown in FIG. 2(b).
A hole 8a communicating inside is formed. Furthermore, a male threaded part 8b is formed at the end of the heated body 8, and is screwed into the female threaded part 7C of the cylindrical member 7, and a heat insulating material 10 such as asbestos is interposed at the part where both 7 and 8 are joined. has been done.

発熱体9は白金、ニッケル、ニッケル・クロム合金、タ
ングステン等からなる電気抵抗体により構成されており
、被発熱体8の内周面に沿って配設され、この発熱体9
の上には絶縁保護層11がコーティングされている。そ
して発熱体9をなす電気抵抗体ならびに絶縁保護層11
は被発熱体8の焼結前に内周面に沿って配線ならびにコ
ーティングされ、一体に焼結して成形されるものである
The heating element 9 is made of an electrical resistor made of platinum, nickel, nickel-chromium alloy, tungsten, etc., and is arranged along the inner peripheral surface of the heating element 8.
An insulating protective layer 11 is coated thereon. And an electrical resistor forming the heating element 9 and an insulating protective layer 11
is wired and coated along the inner circumferential surface of the heating element 8 before sintering, and is sintered and molded as one piece.

なお円筒部材7の内部には発熱体9に電源6からの電力
を供給するためのリード線12が設けられており、円筒
部材7の内周表面に形成された導体配線13に接続され
、この導体配線I3を介して発熱体9に電力が供給され
る。そして電流制御回路5により供給される電力が制御
される。
Note that a lead wire 12 for supplying power from the power source 6 to the heating element 9 is provided inside the cylindrical member 7, and is connected to a conductor wiring 13 formed on the inner peripheral surface of the cylindrical member 7. Power is supplied to the heating element 9 via the conductor wiring I3. The electric power supplied by the current control circuit 5 is then controlled.

発熱体9の電気抵抗体の配線パターンは第3図(A)に
示す如く直列に配線したものであっても良いが、直列の
場合、使用中に1ケ所でも断線すると発熱機能が失なわ
れてしまうので、同図(B)(C)に示す如く並列に配
線する方が好ましく、このように並列に配線すれば、1
ケ所断線しても発熱機能は保持可能なものとなる。
The wiring pattern of the electric resistor of the heating element 9 may be wired in series as shown in FIG. Therefore, it is preferable to wire in parallel as shown in (B) and (C) of the same figure.If wired in parallel like this, 1
The heat generating function can be maintained even if the wire is broken in some places.

上述した噴射弁1およびホットスポット2を備えた圧縮
点火式内燃機関において、いま圧縮行程終了近傍で、高
圧燃料が噴射弁1から噴射されると、噴射された燃料は
先ずホットスポット2の内壁部分で気化し、霧状となり
、加熱されているホットスポット2の発熱部(発熱体9
.被発熱体8)周辺にただようことになる。一方ホット
スポット2の周辺の空気は、断熱圧縮により温度上昇に
加え、ホットスポット2の発熱部により更に加熱される
ことによりすでに充分な高温状態となっており、上記の
気化された燃料と混合し高温の混合気体を形成し、着火
条件が整った領域から逐次燃焼が進行する。
In the compression ignition internal combustion engine equipped with the above-described injection valve 1 and hot spot 2, when high-pressure fuel is injected from the injection valve 1 near the end of the compression stroke, the injected fuel first reaches the inner wall portion of the hot spot 2. The heat generating part of the hot spot 2 (heating element 9
.. It will float around the heated body 8). On the other hand, the air around hot spot 2 is already at a sufficiently high temperature due to the temperature rise due to adiabatic compression and further heating by the heat generating part of hot spot 2, and the air is already at a sufficiently high temperature that it is mixed with the vaporized fuel. A high-temperature gas mixture is formed, and combustion proceeds sequentially from the region where ignition conditions are met.

この際、自発点火に必要な圧縮空気の高温度は、ホット
スポット2の加熱作用と断熱圧縮作用とにより得られる
ので、断熱圧縮のみに頼る従来のディーゼル機関に比し
て、圧縮比を下げることが可能である。その結果、最高
燃焼圧力も低くなり、強度剛性上の要求が緩和されて軽
量な構造となり、機関の騒音、振動などの環境上の問題
も緩和され、また性能上からは高速運転が可能となり、
着火遅れに対しても有利である。
At this time, the high temperature of the compressed air required for spontaneous ignition is obtained by the heating action of the hot spot 2 and the adiabatic compression action, so the compression ratio can be lowered compared to a conventional diesel engine that relies only on adiabatic compression. is possible. As a result, the maximum combustion pressure is lower, requirements for strength and rigidity are relaxed, resulting in a lightweight structure, environmental problems such as engine noise and vibration are alleviated, and from a performance standpoint, high-speed operation is possible.
It is also advantageous in terms of ignition delay.

さらに、上述のように本実施例のホットスポット2は外
部から所望の温度になるよう制御出来るので、種々の点
火温度を有する燃料に対して対応可能であり、また機関
の回転数等の運転状態に応じて温度を変化させることに
より、効率を向上させることも可能である。例えば、始
動時には発熱体9への供給電力を増やして発熱体9を高
温に制御することにより噴射燃料を着火させ、始動後に
は燃焼熱により高温となっている被発熱体により噴射燃
料を着火させて発熱体9への供給電力を減らす。これに
より発熱体9への供給電力の省力化がはかれ、始動、非
始動ともに良好で効率よく内燃機関を運転することがで
きる。
Furthermore, as mentioned above, the hot spot 2 of this embodiment can be externally controlled to a desired temperature, so it can be used with fuels having various ignition temperatures, and can also be controlled depending on the operating conditions such as engine speed. It is also possible to improve efficiency by varying the temperature accordingly. For example, at the time of starting, the injected fuel is ignited by increasing the power supplied to the heating element 9 and controlling the heating element 9 to a high temperature, and after starting, the injected fuel is ignited by the heated element that has become high temperature due to combustion heat. to reduce the power supplied to the heating element 9. As a result, the amount of power supplied to the heating element 9 can be saved, and the internal combustion engine can be operated efficiently and with good starting and non-starting conditions.

また円筒部材7をホットスポット2との接合部分には断
熱材10が配設されているので、ホットスポット2での
熱の円筒部材7、ならびに円筒部材7を介して内燃機関
例への伝達が抑制され、効率良くホットスポット2の熱
が燃料や空気の加熱に寄与し、従って発熱体9への供給
電力を低減することが可能となる。
Further, since the heat insulating material 10 is provided at the joint between the cylindrical member 7 and the hot spot 2, the heat at the hot spot 2 is not transmitted to the cylindrical member 7 and to the internal combustion engine via the cylindrical member 7. The heat of the hot spot 2 is suppressed and efficiently contributes to the heating of the fuel and air, thus making it possible to reduce the power supplied to the heating element 9.

また発熱体9をなす電気抵抗体の配線パターンを並列に
することで、配線の一部が断線した場合であっても通電
を確保できるので、発熱体9の発熱機能は保持可能なも
のとなり、信軌性が向上する。
Furthermore, by arranging the wiring patterns of the electric resistors forming the heating element 9 in parallel, it is possible to ensure electricity supply even if a part of the wiring is disconnected, so that the heating function of the heating element 9 can be maintained. Improves reliability.

さらにホットスポット2の被発熱体8はセラミックス材
料からなり、発熱体9をなす電気抵抗体とともに一体に
成形できるので、簡単に製作できるものである。
Furthermore, the heated element 8 of the hot spot 2 is made of a ceramic material and can be molded integrally with the electric resistor forming the heating element 9, so that it can be manufactured easily.

次に本発明の他の実施例について第4図を用いて説明す
る。
Next, another embodiment of the present invention will be described using FIG. 4.

本実施例の構成は前記実施例の構成と略同じであり、同
一の部分には同じ符号を符して、その説明は省略する。
The configuration of this embodiment is substantially the same as the configuration of the previous embodiment, and the same parts are denoted by the same reference numerals and the explanation thereof will be omitted.

前記実施例においては円筒部材7にホットスポット2の
被発熱体8をネジ込んで両者を連結していたが、本実施
例においては被発熱体8の端部に凹状の溝を形成して、
この凹状の溝部分に円筒部材7の先端を断熱材工1を介
して嵌合させると共に、この嵌合部分にて両者を貫通す
るビン14を複数本配設することで円筒部材7にホット
スポット2が確実に連結される。なおピン14と被発熱
体8との間にも断熱材が配設されている。
In the embodiment described above, the heated body 8 of the hot spot 2 was screwed into the cylindrical member 7 to connect the two, but in this embodiment, a concave groove is formed at the end of the heated body 8,
The tip of the cylindrical member 7 is fitted into this concave groove portion via the heat insulating material 1, and a plurality of bottles 14 are provided that penetrate through both at this fitting portion, thereby making the cylindrical member 7 a hot spot. 2 are definitely connected. Note that a heat insulating material is also provided between the pin 14 and the heat generating element 8.

このようにすることで、両者の連結部分の形状は極めて
単純な形状となり、製作がさらに簡単となるものである
By doing so, the shape of the connecting portion between the two becomes extremely simple, making manufacturing even easier.

また、上記各実施例ではともに円筒部材7と被発熱体8
との間に断熱体11を介在させる構成であったが、この
断熱材11を排し、円筒部材7を熱伝導率の低い材料で
構成すれば、ホットスポット2の熱は機関側に逃げにく
くなり、上記各実施例と同様の効果が得られる。
Further, in each of the above embodiments, the cylindrical member 7 and the heated body 8
However, if this heat insulating material 11 is eliminated and the cylindrical member 7 is made of a material with low thermal conductivity, the heat from the hot spot 2 will be difficult to escape to the engine side. Therefore, the same effects as in each of the above embodiments can be obtained.

さらに上記各実施例では、直接噴射式の内燃機関に適用
した例を示しているが予熱室式の内燃機関の予熱室に適
用してもよい。
Further, in each of the above embodiments, an example is shown in which the present invention is applied to a direct injection type internal combustion engine, but the present invention may also be applied to a preheating chamber of a preheating chamber type internal combustion engine.

(発明の効果) 以上述べたように本発明によれば、圧縮点火式内燃機関
の噴射弁から噴射される液状燃料が通る燃焼室内の所定
位置に、その温度が制御されるホットスポットを有する
圧縮点火式内燃機関において、前記ホットスポットは電
気加熱される発熱体とこの発熱体に接触し熱容量大の被
発熱体とを有し、前記圧縮点火式内燃機関に対する前記
ホットスポットの取付は部分には前記ホットスポットの
熱が前記圧縮点火式内燃機関側に伝達するのを抑制する
抑制手段が介在し、前記噴射燃料が前記発熱体および前
記被発熱体に直接接触するよう構成されていることを特
徴とする圧縮点火式内燃機関とし′たことから、ホット
スポットでの熱の内燃機関側への伝達が抑制されるので
、ホットスポットの熱は効率良く燃料や空気の加熱に寄
与するようになって発熱体への供給電力は充分に低減で
きるようになると共に、ホットスポットの熱が燃料や空
気に効率良く伝わり、また噴射燃料が発熱体、被発熱体
に直接接触するので、燃料や空気は充分に速く加熱され
るようになって、この結果、内燃機関は効率を損なうこ
となく圧縮比を下げることが可能であり、騒音振動は減
少し、高速回路が可能となり、また着火遅れの現象も改
善され、併せて、点火温度を異にする各種の燃料を使用
することが可能となり、さらに希薄燃焼が可能となるた
め有害な排気ガスの排出を低減出来るという効果を有し
ている。
(Effects of the Invention) As described above, according to the present invention, the compression ignition internal combustion engine has a hot spot whose temperature is controlled at a predetermined position in the combustion chamber through which liquid fuel injected from the injection valve of a compression ignition internal combustion engine passes. In the ignition type internal combustion engine, the hot spot has a heating element that is electrically heated and a heating element having a large heat capacity in contact with the heating element, and the hot spot is installed in the compression ignition type internal combustion engine in part. A suppressing means for suppressing heat from the hot spot from being transmitted to the compression ignition internal combustion engine is interposed, and the injected fuel is configured to directly contact the heat generating element and the heated body. Since it is a compression ignition internal combustion engine, the transfer of heat from hot spots to the internal combustion engine is suppressed, so the heat from hot spots efficiently contributes to heating the fuel and air. The power supplied to the heating element can be sufficiently reduced, and the heat in the hot spot is efficiently transferred to the fuel and air, and the injected fuel comes into direct contact with the heating element and the heated element, so the fuel and air are sufficient. As a result, the internal combustion engine can lower the compression ratio without losing efficiency, reducing noise and vibration, enabling high-speed circuits, and improving the phenomenon of ignition delay. In addition, it is possible to use various fuels with different ignition temperatures, and lean combustion is also possible, which has the effect of reducing harmful exhaust gas emissions.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の構成を示す全体構成図、第
2図(a)は第1図中のホットスポットならびにその近
傍の部材の構成を示す構成図、第2図(b)は第2図(
a)のA−A断面図、第3図(A)、  (B)、  
(C)は発熱体をなす電気抵抗体の配線パターン、第4
図は本発明の他の実施例におけるホットスポットならび
にその近傍の部材の構成を示す構成図である。 1・・・噴射弁、2・・・ホットスポット、3・・・燃
焼室。 4・・・噴射ポンプ、5・・・電流制御回路、6・・・
電源。 7・・・円筒部材、8・・・被発熱体、9・・・発熱体
、10・・・断熱体、11・・・絶縁保護層。
FIG. 1 is an overall configuration diagram showing the configuration of an embodiment of the present invention, FIG. 2(a) is a configuration diagram showing the configuration of the hot spot in FIG. 1 and members in its vicinity, and FIG. 2(b) is shown in Figure 2 (
A-A sectional view of a), Figure 3 (A), (B),
(C) is the wiring pattern of the electric resistor forming the heating element, the fourth
The figure is a configuration diagram showing the configuration of a hot spot and members in its vicinity in another embodiment of the present invention. 1...Injection valve, 2...Hot spot, 3...Combustion chamber. 4... Injection pump, 5... Current control circuit, 6...
power supply. 7... Cylindrical member, 8... Heated element, 9... Heating element, 10... Heat insulator, 11... Insulating protective layer.

Claims (3)

【特許請求の範囲】[Claims] (1) 圧縮点火式内燃機関の噴射弁から噴射される液
状燃料が通る燃焼室内の所定位置に、その温度が制御さ
れるホットスポットを有する圧縮点火式内燃機関におい
て、前記ホットスポットは電気加熱される発熱体とこの
発熱体に接触し熱容量大の被発熱体とを有し、前記圧縮
点火式内燃機関に対する前記ホットスポットの取付け部
分には前記ホットスポットの熱が前記圧縮点火式内燃機
関側に伝達するのを抑制する抑制手段が介在し、前記噴
射燃料が前記発熱体および前記被発熱体に直接に接触す
るよう構成されていることを特徴とする圧縮点火式内燃
機関。
(1) In a compression ignition internal combustion engine that has a hot spot whose temperature is controlled at a predetermined position in a combustion chamber through which liquid fuel injected from an injection valve passes, the hot spot is electrically heated. The hot spot is attached to the compression ignition internal combustion engine, and the heat from the hot spot is transferred to the compression ignition internal combustion engine side. 1. A compression ignition internal combustion engine, characterized in that a suppressing means for suppressing transmission is interposed so that the injected fuel directly contacts the heating element and the heated element.
(2) 特許請求の範囲第1項に記載の圧縮点火式内燃
機関において、前記ホットスポットの電気加熱される発
熱体は並列に接続された複数の電気抵抗体により構成さ
れていることを特徴とする圧縮点火式内燃機関。
(2) In the compression ignition internal combustion engine according to claim 1, the heating element electrically heated at the hot spot is composed of a plurality of electrical resistors connected in parallel. Compression ignition internal combustion engine.
(3) 特許請求の範囲第1項に記載の圧縮点火式内燃
機関において、前記ホットスポットの被発熱体はセラミ
ックス材料からなり、前記発熱体をなす電気抵抗体を前
記噴射燃料が接触する面に配設し一体に焼結して成形さ
れていることを特徴とする圧縮点火式内燃機関。
(3) In the compression ignition internal combustion engine according to claim 1, the heating element of the hot spot is made of a ceramic material, and an electric resistor forming the heating element is placed on a surface that is in contact with the injected fuel. A compression ignition internal combustion engine characterized by being arranged and integrally sintered and molded.
JP9259685A 1985-04-29 1985-04-29 Compression-ignition type internal combustion engine Pending JPS61250376A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9259685A JPS61250376A (en) 1985-04-29 1985-04-29 Compression-ignition type internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9259685A JPS61250376A (en) 1985-04-29 1985-04-29 Compression-ignition type internal combustion engine

Publications (1)

Publication Number Publication Date
JPS61250376A true JPS61250376A (en) 1986-11-07

Family

ID=14058829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9259685A Pending JPS61250376A (en) 1985-04-29 1985-04-29 Compression-ignition type internal combustion engine

Country Status (1)

Country Link
JP (1) JPS61250376A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016507693A (en) * 2013-02-11 2016-03-10 コンツアー・ハードニング・インコーポレーテッド Combustion ignition system
JP2019100972A (en) * 2017-12-07 2019-06-24 株式会社リコー Liquid detection device, image formation apparatus with the same, liquid detection method, and program for liquid detection

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016507693A (en) * 2013-02-11 2016-03-10 コンツアー・ハードニング・インコーポレーテッド Combustion ignition system
JP2019100972A (en) * 2017-12-07 2019-06-24 株式会社リコー Liquid detection device, image formation apparatus with the same, liquid detection method, and program for liquid detection

Similar Documents

Publication Publication Date Title
JP5795782B2 (en) Induction drive ignition system
JP2502945B2 (en) Injection internal combustion engine
CA2046923C (en) Method of operating i.c. engines and apparatus thereof
JPS638312B2 (en)
US4682008A (en) Self-temperature control type glow plug
US20150337793A1 (en) Combustion ignition system
JPS5835272A (en) Internal-combustion engine
US4914274A (en) Diesel engine glow plug having SiALON heater
JPS61250376A (en) Compression-ignition type internal combustion engine
JP2004514822A (en) Internal combustion engine having at least one cylinder and a reciprocating piston movable in the cylinder
TW200301340A (en) Plug heater for a pencil-type glow plug and corresponding glow plug
JPWO2013077382A1 (en) Spark plug and internal combustion engine
JPH0216148Y2 (en)
EP0594794A1 (en) Injection combustion engine with fuel heating element.
JPS63297924A (en) Glow plug for diesel engine
JPS60128925A (en) Compression-ignition internal-combustion engine
JPH0645625Y2 (en) Direct injection diesel engine starter
KR20060056806A (en) Structure of glow plug for internal engine
JPS58150715A (en) Preheating plug of diesel engine
JPS60216126A (en) Two-wire type ceramic glow plug
KR100335937B1 (en) A glow plug for diesel engines
JPH0227679A (en) Spark plug for internal combustion engine
KR200190235Y1 (en) Exchange of heat
JPS62186127A (en) Self-control type glow plug
JP2645279B2 (en) Ceramic swirl chamber of internal combustion engine