JPS61250338A - Suction device for engine - Google Patents

Suction device for engine

Info

Publication number
JPS61250338A
JPS61250338A JP9170285A JP9170285A JPS61250338A JP S61250338 A JPS61250338 A JP S61250338A JP 9170285 A JP9170285 A JP 9170285A JP 9170285 A JP9170285 A JP 9170285A JP S61250338 A JPS61250338 A JP S61250338A
Authority
JP
Japan
Prior art keywords
pressure
timing
valve
timing valve
intake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9170285A
Other languages
Japanese (ja)
Other versions
JPH0562206B2 (en
Inventor
Mitsuo Hitomi
光夫 人見
Hidetoshi Nobemoto
秀寿 延本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP9170285A priority Critical patent/JPS61250338A/en
Publication of JPS61250338A publication Critical patent/JPS61250338A/en
Publication of JPH0562206B2 publication Critical patent/JPH0562206B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/44Multiple-valve gear or arrangements, not provided for in preceding subgroups, e.g. with lift and different valves
    • F01L1/443Multiple-valve gear or arrangements, not provided for in preceding subgroups, e.g. with lift and different valves comprising a lift valve and at least one rotary valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/34403Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using helically teethed sleeve or gear moving axially between crankshaft and camshaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D9/00Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits
    • F02D9/02Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits concerning induction conduits

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Valve-Gear Or Valve Arrangements (AREA)

Abstract

PURPOSE:To prevent combustion gas inside a combustion chamber from flowing back to the inside of a suction passage, by opening this suction passage at that point that pressure at the upstream side of a timing valve, namely, suction pressure in the suction passage and pressure at the downstream side of the timing valve, namely, pressure in the combustion chamber are equalized. CONSTITUTION:A timing valve 18 is rotatably installed in a branch passage branched off from a surge tank 14 via a bearing 19. And, the timing valve 18 is connected to a timing pulley 22 via a timing advance regulating mechanism 21, and this regulating mechanism 21 is made so as to move its arm 38 in an axial direction 37 by a controlling device on the basis of each signal out of each of sensors 17, 46 and 47 detecting an engine running state. At this time, the suction passage 14 is opened by the timing valve 18 at that point that pressure P2 at the upstream side of the timing valve 18, namely suction pressure in the suction passage 14 becomes equal to pressure P1 at the downstream side of the timing valve 18, namely, pressure in a combistion chamber 11.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、4サイクルエンジンにおいて、低負荷時に
吸気通路内への燃焼ガスの逆流を防止して、燃焼性等を
改善した吸気装置に関するものである。
[Detailed Description of the Invention] (Industrial Application Field) This invention relates to an intake system for a four-stroke engine that prevents backflow of combustion gas into the intake passage at low loads and improves combustibility, etc. It is.

(従来技術) 従来、4サイクルエンジンでは、第3図に示すように、
吸気弁12と排気弁13の開放期間はオーバーラツプし
ている。このオーバーラツプOLは、高負荷時の充填効
率を向上させるために、吸気弁12の開弁時間を長くす
る結果、必然的に生じるものである。
(Prior Art) Conventionally, in a 4-cycle engine, as shown in Fig. 3,
The opening periods of the intake valve 12 and the exhaust valve 13 overlap. This overlap OL inevitably occurs as a result of lengthening the opening time of the intake valve 12 in order to improve filling efficiency under high loads.

ところが、上記オーバーラツプOLがあるために、つま
り、排気行程の末期に吸気弁12が開くために、吸気通
路の圧力が低い(負圧が大きい)低負荷時には、燃焼室
内の燃焼ガスが吸気通路内へ逆流する。このような逆流
を起こすと、この逆流した燃焼ガスが再び吸気とともに
燃焼室内へ吸入されること、および、上記逆流により燃
焼室内の圧力が低下して、排気が充分に行なわれなくな
ることの2つが原因となって、燃焼室内に燃焼ガスが残
留し、燃焼性を低下させる。
However, because of the overlap OL, that is, the intake valve 12 opens at the end of the exhaust stroke, when the pressure in the intake passage is low (the negative pressure is large) and the load is low, the combustion gas in the combustion chamber flows into the intake passage. flow back to. When such a backflow occurs, two things occur: the backflowing combustion gas is sucked into the combustion chamber together with intake air again, and the pressure inside the combustion chamber decreases due to the backflow, making it impossible to exhaust gas sufficiently. As a result, combustion gas remains in the combustion chamber, reducing combustibility.

この問題に対処するために、主吸気通路にオーバーラツ
プを有しない主吸気弁を設ける一方、副吸気通路に、オ
ーバーラツプを有する副吸気弁とロータリ弁とを設け、
上記燃焼ガスの逆流が生じやすい低負荷時には、上記ロ
ータリ弁を閉じて、主吸気弁からのみ吸気させることに
より、上記逆流の阻止を図った技術が知られている(実
開昭56−142226号公報参照)、ところが、この
従来技術では、副吸気弁を開くタイミングは一定である
から、副吸気通路から吸入が開始されるタイミングは一
定であり、負荷に応じて変更できないので、上記逆流の
防止を効果的に達成することができない。
In order to deal with this problem, a main intake valve with no overlap is provided in the main intake passage, while a auxiliary intake valve with overlap and a rotary valve are provided in the auxiliary intake passage.
There is a known technique that attempts to prevent the backflow of combustion gas by closing the rotary valve and allowing air to be taken in only from the main intake valve during low load conditions where backflow of combustion gas is likely to occur (Utility Model Application No. 56-142226). However, in this conventional technology, since the timing at which the auxiliary intake valve opens is constant, the timing at which intake starts from the auxiliary intake passage is constant and cannot be changed depending on the load, so it is difficult to prevent the above-mentioned backflow. cannot be achieved effectively.

(発明の目的) この発明は上記従来の欠点を解消するためになされたも
ので、燃焼室の圧力と吸気通路の負圧とが等しくなった
時点で吸気通路を開放することにより、燃焼室内の燃焼
ガスが吸気通路内へ逆流するのを防止して、燃焼性を向
上させることを主な目的とする。
(Object of the Invention) This invention was made to eliminate the above-mentioned conventional drawbacks, and by opening the intake passage when the pressure in the combustion chamber and the negative pressure in the intake passage become equal, The main purpose is to prevent combustion gas from flowing back into the intake passage and improve combustibility.

(発明の構成) 上記目的を達成するために、この発明は、吸気通路にタ
イミング弁を設けるとともに、少なくとも低負荷時に吸
気通路におけるタイミング弁の上流側と下流側の圧力が
一致したクランク角度でタイミング弁を開放する制御手
段を設けた構成としている。
(Structure of the Invention) In order to achieve the above object, the present invention provides a timing valve in the intake passage, and at least when the load is low, the timing is set at a crank angle such that the pressures on the upstream side and the downstream side of the timing valve in the intake passage match. The structure includes a control means for opening the valve.

これにより、タイミング弁の上流側の圧力、つまり吸気
通路の負圧と、タイミング弁の下流側の圧力、つまり燃
焼室の圧力とが等しくなった時点で吸気通路が開放され
るから、燃焼室内の燃焼ガスが吸気通路内へ逆流するの
が防止される。また、吸気通路の開放が遅れるので、吸
気通路の負圧に打ち勝って吸気を燃焼室内へ吸入するた
めの仕事、すなわちポンピングロスが減少する。
As a result, the intake passage is opened when the pressure on the upstream side of the timing valve, that is, the negative pressure in the intake passage, and the pressure on the downstream side of the timing valve, that is, the pressure in the combustion chamber, become equal. Combustion gas is prevented from flowing back into the intake passage. Furthermore, since the opening of the intake passage is delayed, the work required to overcome the negative pressure in the intake passage and draw intake air into the combustion chamber, that is, pumping loss, is reduced.

(実施例) 以下、この発明の実施例を図面にしたがって説明する。(Example) Embodiments of the present invention will be described below with reference to the drawings.

第1図において、10は複数気筒の4サイクルエンジン
で、各気筒の燃焼室11の上部に、吸気弁12と排気弁
13が設けられており、上記吸気弁12により吸気通路
14のポートが、排気弁13により排気通路15のポー
トがぞれぞれ開閉される。上記吸気通路14は、主通路
14aと。
In FIG. 1, 10 is a four-stroke engine with multiple cylinders, and an intake valve 12 and an exhaust valve 13 are provided above a combustion chamber 11 of each cylinder. The ports of the exhaust passage 15 are opened and closed by the exhaust valve 13, respectively. The intake passage 14 is a main passage 14a.

サージタンク14bと、このサージタンク14bから分
岐した分岐通路14cとからなり、上記主通路14aに
スロットル弁17が設けられ1分岐通路14cに、ロー
タリ弁からなるタイミング弁18が、軸受19を介して
回転自在に設けられている。
Consisting of a surge tank 14b and a branch passage 14c branching from the surge tank 14b, a throttle valve 17 is provided in the main passage 14a, and a timing valve 18 consisting of a rotary valve is provided in the first branch passage 14c via a bearing 19. It is rotatably provided.

上記タイミング弁18は、分岐通路14cを開閉するも
ので、後述する進角調整機構21を介してタイミングプ
ーリ22に連結されており、第2図に明示するように、
このタイミングプーリ22は、歯形ベルト23によりク
ランク軸24の出力プーリ25に連結されて、クランク
軸24の雅の回転数で回転する。
The timing valve 18 opens and closes the branch passage 14c, and is connected to a timing pulley 22 via an advance adjustment mechanism 21, which will be described later.
This timing pulley 22 is connected to an output pulley 25 of a crankshaft 24 by a toothed belt 23, and rotates at the same rotational speed of the crankshaft 24.

第1図の進角調整機構21は、ミラーサイクルのエンジ
ンなどに用いられている公知の機構であり、タイミング
弁1!3の弁軸31にヘリカルスプライン32が設けら
れ、タイミングプーリ22の回転軸33に、上記ヘリカ
ルスプライン32と逆方向のねじれを持つヘリカルスプ
ライン34が設けられており、上記両ヘリカルスプライ
ン32゜34に連結管35をかみ合わせて弁軸31と回
転軸33とを連結し、アーム38により上記連結管35
を軸方向37へ移動させるようになっている。この移動
により、弁軸31を回転軸33に対して一定方向へ相対
回動させて、タイミング弁18の開弁タイミングをクラ
ンク角度に対して、すなわち、吸気弁12の開タイミン
グに対して相対的に進退させる。
The advance angle adjustment mechanism 21 shown in FIG. A helical spline 34 having a twist in the opposite direction to the helical spline 32 is provided at 33, and a connecting pipe 35 is engaged with both the helical splines 32 and 34 to connect the valve shaft 31 and the rotating shaft 33, thereby forming an arm. 38 connects the connecting pipe 35
is moved in the axial direction 37. By this movement, the valve shaft 31 is rotated relative to the rotating shaft 33 in a certain direction, and the opening timing of the timing valve 18 is adjusted relative to the crank angle, that is, relative to the opening timing of the intake valve 12. advance and retreat.

第3図に示すように、上記吸気弁12の開タイミング4
2は、上死点TDCよりも前に設定され、排気弁13の
閉タイミング43は、上死点TDCよりも後に設定され
ている。したがって、上記吸気弁12の開タイミング4
2は、排気弁13の閉タイミング43よりも前になり、
吸気弁12と排気弁13の開放期間にオーバーラツプO
Lが生じる。
As shown in FIG. 3, the opening timing of the intake valve 12 is 4.
2 is set before the top dead center TDC, and the closing timing 43 of the exhaust valve 13 is set after the top dead center TDC. Therefore, the opening timing of the intake valve 12 is 4.
2 is before the closing timing 43 of the exhaust valve 13,
Overlap O in the opening period of the intake valve 12 and exhaust valve 13
L occurs.

第1図において、45は制御手段で、スロットル弁17
からのスロットル開度信号aと、エンジン回転数センサ
47からの回転数信号すと、サージタンク12bに設け
た圧力センサ46からの圧力信号Cとが入力されており
、進角信号dを出力して進角調整機構21のアーム38
を軸方向37へ移動させ、第3図に示したタイミング弁
18の開弁タイミング41を、吸気弁12の開タイミン
グ42に対して相対的に進退させる。
In FIG. 1, 45 is a control means, and the throttle valve 17
The throttle opening signal a from the engine, the rotational speed signal from the engine rotational speed sensor 47, and the pressure signal C from the pressure sensor 46 provided in the surge tank 12b are input, and the advance angle signal d is output. The arm 38 of the advance angle adjustment mechanism 21
is moved in the axial direction 37, and the opening timing 41 of the timing valve 18 shown in FIG. 3 is moved forward or backward relative to the opening timing 42 of the intake valve 12.

つぎに、上記制御手段45によるタイミング弁18の進
角制御について説明する。
Next, advance control of the timing valve 18 by the control means 45 will be explained.

まず、第2図の吸気通路14におけるタイミング弁18
の下流側の圧力P1は、エンジン回転数と、エンジン負
荷と、クランク角度とからほぼ決まる。そこで、上記圧
力P1を制御手段45にマツピングして記憶させておく
、上記圧力P1は燃焼室11の圧力に等しいものであり
、第3図に示すように、上死点TDCからピストンの下
降にしたがって低下する。この圧力Piが、圧力センサ
46からの圧力信号Cが示す圧力、すなわち、タイミン
グ弁18の上流側の圧力P2に等しくなるクランク角度
CDを求め、このクランク角度CDでタイミング弁18
が開くように、第1図の進角信号dを出力して、進角調
整機構21のアーム38を軸方向37へ移動させ、タイ
ミング弁18を回転軸33に対して相対回動させる。こ
のとき、エンジン負荷が低いほどタイミング弁18の上
流側の圧力P2は低いので、低負荷はどタイミング弁1
8の開タイミング41が後退(第3図の右側へ移動)す
る。
First, the timing valve 18 in the intake passage 14 in FIG.
The pressure P1 on the downstream side of the engine is approximately determined by the engine speed, engine load, and crank angle. Therefore, the pressure P1 is mapped and stored in the control means 45. The pressure P1 is equal to the pressure in the combustion chamber 11, and as shown in FIG. Therefore it decreases. The crank angle CD at which this pressure Pi is equal to the pressure indicated by the pressure signal C from the pressure sensor 46, that is, the pressure P2 on the upstream side of the timing valve 18, is determined.
1, the arm 38 of the advance adjustment mechanism 21 is moved in the axial direction 37, and the timing valve 18 is rotated relative to the rotating shaft 33. At this time, the lower the engine load, the lower the pressure P2 on the upstream side of the timing valve 18.
The opening timing 41 of No. 8 moves backward (moves to the right in FIG. 3).

このように、タイミング弁18の上流側の圧力P2.つ
まり吸気通路14の負圧・が、タイミング弁18の下流
側の圧力Pl、つまり燃焼室11の圧力に等しくなった
時点で、吸気通路14がタイミング弁18により開放さ
れるから、吸気弁12と排気弁13の開弁期間にオーバ
ーラツプOLがあるにもかかわらず、燃焼室11から燃
焼ガスが吸気通路14へ逆流するのが防止される。した
がって、排気が円滑に行なわれて、燃焼室内への燃焼ガ
スの残留がなくなり、燃焼性が向上する。
In this way, the pressure P2 on the upstream side of the timing valve 18. In other words, when the negative pressure in the intake passage 14 becomes equal to the pressure Pl on the downstream side of the timing valve 18, that is, the pressure in the combustion chamber 11, the intake passage 14 is opened by the timing valve 18. Even though there is an overlap OL during the opening period of the exhaust valve 13, combustion gas is prevented from flowing back from the combustion chamber 11 to the intake passage 14. Therefore, exhaust is performed smoothly, no combustion gas remains in the combustion chamber, and combustibility is improved.

このような制御手段45によるタイミング弁18の制御
は、エンジンlOの低負荷時にのみ行なう、つまり、タ
イミング弁18は上記進角信号dが出力されていないと
きは、その開タイミング41が吸気弁12の開タイミン
グ42に合致しており、スロットル開度信号aのレベル
が所定値以下の低負荷時のみ、進角信号dを出力して、
タイミング弁18の開タイミング41を上記の要領で進
角させる。
The timing valve 18 is controlled by the control means 45 only when the load of the engine 10 is low. In other words, when the advance signal d is not output, the opening timing 41 of the timing valve 18 is the same as that of the intake valve 12. coincides with the opening timing 42 of
The opening timing 41 of the timing valve 18 is advanced in the manner described above.

上記進角信号dのレベルが所定値以上のとき。When the level of the advance angle signal d is equal to or higher than a predetermined value.

すなわち、低負荷以外では、上記のようにタイミング弁
18の開タイミング41が吸気弁12の開タイミング4
2に合致する結果、吸気通路14は吸気弁12の開タイ
ミング42で開放される。これにより、吸気通路14の
開放期間が長くなり、充填効率が向上する。
That is, under conditions other than low load, the opening timing 41 of the timing valve 18 is the opening timing 4 of the intake valve 12 as described above.
2, the intake passage 14 is opened at the opening timing 42 of the intake valve 12. This lengthens the open period of the intake passage 14 and improves the filling efficiency.

なお、上記進角信号dを全ての負荷領域において出力し
て、タイミング弁18の開タイミング41を変更するよ
うにしてもよいことはいうまでもない。
It goes without saying that the advance angle signal d may be output in all load ranges to change the opening timing 41 of the timing valve 18.

つぎに、この発明によりエンジン10のポンピングロス
が低減する理由について説明する。
Next, the reason why the pumping loss of the engine 10 is reduced by the present invention will be explained.

まず、4サイクルエンジン10は、第4図のPV線図に
示すように、吸入、圧縮、爆発、膨張、および排気の行
程をもつ、ここで、排気行程と吸気行程とで囲まれる斜
線の部分が、吸気通路の負圧P2に打ち勝って吸気を燃
焼室内へ吸入するための仕事、すなわちポンピングロス
に相当する。
First, the four-stroke engine 10 has suction, compression, explosion, expansion, and exhaust strokes, as shown in the PV diagram in FIG. This corresponds to the work required to overcome the negative pressure P2 in the intake passage and draw intake air into the combustion chamber, that is, pumping loss.

上記タイミング弁18を有しない通常の4サイクルエン
ジンでは、第5図に明示するように、排気行程から破線
で示す垂直な経路(V=一定)をたどって吸気行程へ移
る。これに対し、この発明のエンジン10では、上死点
TDCよりも遅れた時点、つまり、燃焼室の容積Vがあ
る程度大きいvlとなった時点で、第2図のタイミング
弁18が開いて吸気通路14が開放されるから、第5図
の排気行程から実線で示す斜めの経路をたどって吸気行
程へ移る。したがって、網目ハツチングで示す部分だけ
ポンピングロスが減少する。その結果、エンジンの熱効
率が向上する。
In a normal four-stroke engine that does not have the timing valve 18, as clearly shown in FIG. 5, the engine moves from the exhaust stroke to the intake stroke by following a vertical path (V=constant) shown by a broken line. On the other hand, in the engine 10 of the present invention, the timing valve 18 shown in FIG. 14 is opened, the engine moves from the exhaust stroke in FIG. 5 to the intake stroke by following the diagonal path shown by the solid line. Therefore, the pumping loss is reduced by the area indicated by the mesh hatching. As a result, the thermal efficiency of the engine is improved.

(発明の効果) 以上説明したように、この発明によれば、タイミング弁
の上流側の圧力、つまり吸気通路の負圧と、タイミング
弁の下流側の圧力、つまり燃焼−室の圧力とが等しくな
った時点で吸気通路が開放されるから、燃焼室内の燃焼
ガスが吸気通路内へ逆流するのが防止される結果、燃焼
室内への燃焼ガスの残留がなくなり、燃焼性が向上する
(Effects of the Invention) As explained above, according to the present invention, the pressure on the upstream side of the timing valve, that is, the negative pressure in the intake passage, and the pressure on the downstream side of the timing valve, that is, the pressure in the combustion chamber, are equal. Since the intake passage is opened at the time when the combustion chamber reaches the maximum temperature, combustion gas in the combustion chamber is prevented from flowing back into the intake passage, and as a result, no combustion gas remains in the combustion chamber, improving combustibility.

また、吸気通路の開放が遅れるので、吸気通路の負圧に
打ち勝って吸気を燃焼室内へ吸入するための仕事、すな
わちボンピングロスが減少し、それだけエンジンの熱効
率が向上する。
Furthermore, since the opening of the intake passage is delayed, the work required to overcome the negative pressure in the intake passage and draw intake air into the combustion chamber, that is, the pumping loss, is reduced, and the thermal efficiency of the engine is improved accordingly.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例を示す概略平面図、第2図
は第1図の要部を示す概略側面図、第3図は吸気弁と排
気弁の開閉タイミングおよび吸気通路内の圧力を示す特
性図、第4図はエンジンのPV線図、第5図は第4の要
部を示すPv線図である。 10・・・エンジン、11・・・燃焼室、12・・・吸
気弁、13・・・排気弁、14・・・吸気通路、18・
・・タイミング弁、45・・・制御手段。 第1図 。 13:排気弁 第2図 第3図 クランク角度 燃焼室の容@V
Fig. 1 is a schematic plan view showing one embodiment of the present invention, Fig. 2 is a schematic side view showing the main parts of Fig. 1, and Fig. 3 is the opening/closing timing of the intake valve and exhaust valve and the pressure in the intake passage FIG. 4 is a PV diagram of the engine, and FIG. 5 is a PV diagram showing the fourth main part. DESCRIPTION OF SYMBOLS 10... Engine, 11... Combustion chamber, 12... Intake valve, 13... Exhaust valve, 14... Intake passage, 18...
...Timing valve, 45...Control means. Figure 1. 13: Exhaust valve Figure 2 Figure 3 Crank angle Combustion chamber volume @V

Claims (1)

【特許請求の範囲】[Claims] (1)吸気弁の開タイミングが、排気弁の閉タイミング
よりも前に設定されたエンジンの吸気装置において、吸
気通路に設けられたタイミング弁と、少なくとも低負荷
時に吸気通路におけるタイミング弁の上流側と下流側の
圧力が一致したクランク角度でタイミング弁を開放する
制御手段とを備えたことを特徴とするエンジンの吸気装
置。
(1) In an engine intake system in which the opening timing of the intake valve is set before the closing timing of the exhaust valve, the timing valve provided in the intake passage and the upstream side of the timing valve in the intake passage at least under low load and control means for opening a timing valve at a crank angle at which downstream pressures match.
JP9170285A 1985-04-26 1985-04-26 Suction device for engine Granted JPS61250338A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9170285A JPS61250338A (en) 1985-04-26 1985-04-26 Suction device for engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9170285A JPS61250338A (en) 1985-04-26 1985-04-26 Suction device for engine

Publications (2)

Publication Number Publication Date
JPS61250338A true JPS61250338A (en) 1986-11-07
JPH0562206B2 JPH0562206B2 (en) 1993-09-08

Family

ID=14033849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9170285A Granted JPS61250338A (en) 1985-04-26 1985-04-26 Suction device for engine

Country Status (1)

Country Link
JP (1) JPS61250338A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0286920A (en) * 1988-09-21 1990-03-27 Nippon Denso Co Ltd Intake air controller for internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0286920A (en) * 1988-09-21 1990-03-27 Nippon Denso Co Ltd Intake air controller for internal combustion engine

Also Published As

Publication number Publication date
JPH0562206B2 (en) 1993-09-08

Similar Documents

Publication Publication Date Title
EP0849453B1 (en) Exhaust gas recirculation system for an internal combusion engine
JPS61250338A (en) Suction device for engine
JPH0324838Y2 (en)
JP3183560B2 (en) Control device for supercharged engine
JPS61187543A (en) Control method of variable valve-timing engine
JPS61185628A (en) Controlling method of variable valve timing engine
JP2568250B2 (en) Engine valve timing controller
JPS63297729A (en) Valve timing control device for engine with supercharger
JPH02119641A (en) Valve system of engine
WO2019003326A1 (en) Internal-combustion engine control method and control device
JP2764742B2 (en) Control device for engine with turbocharged turbocharger
JPH10238334A (en) Four-cycle engine
JPH0324841Y2 (en)
JPS63159618A (en) Intake air device for engine
JPS6176730A (en) Exhaust control device in mechanical type internal-combustion engine with supercharger
JPH0238041Y2 (en)
JPS61250363A (en) Control device for fuel in engine
JPH01318A (en) supercharged engine
JPH04194318A (en) Suction device for engine
JPS6134319A (en) Intake device of direct injection type diesel engine with supercharger
JPH0214527B2 (en)
JPH0517377B2 (en)
JPH02119620A (en) Air intake device of engine with supercharger
JPH0331534A (en) Intake/exhaust timing controller for engine
JPS61234226A (en) Intake device of engine with supercharger