JPS6125007B2 - - Google Patents

Info

Publication number
JPS6125007B2
JPS6125007B2 JP8290177A JP8290177A JPS6125007B2 JP S6125007 B2 JPS6125007 B2 JP S6125007B2 JP 8290177 A JP8290177 A JP 8290177A JP 8290177 A JP8290177 A JP 8290177A JP S6125007 B2 JPS6125007 B2 JP S6125007B2
Authority
JP
Japan
Prior art keywords
complexing agent
catalyst
heptane
waste liquid
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8290177A
Other languages
Japanese (ja)
Other versions
JPS5418467A (en
Inventor
Hisao Kokeguchi
Tetsunosuke Shiomura
Tetsuya Iwao
Fumihiko Yuasa
Takao Tanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP8290177A priority Critical patent/JPS5418467A/en
Publication of JPS5418467A publication Critical patent/JPS5418467A/en
Publication of JPS6125007B2 publication Critical patent/JPS6125007B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はα−オレフインの立体特異性重合用の
固体触媒である活性化チタン成分を少なくとも次
(1)〜(3)の処理工程からなる製法によつて製造し、
その際、(3)の工程から生じる廃液から不活性炭化
水素系溶媒(以下単に溶媒という)と錯化剤を分
離し、再使用の為に精製し回収する方法に関す
る。 即ち (1) 四塩化チタンをアルミニウムで還元し、 (2) 得られた還元固体を約10重量%以下のエチレ
ンまたはα−オレフインの存在下にアルキルア
ルミニウム化合物と共に共粉砕し、 (3) 次に溶媒と錯化剤と四塩化チタンにより変性
理を行なうことを含む触媒調製工程に於いて生
じる廃液である。この製法においては、溶媒と
してはn−ヘキサン、シクロヘキサンまたはn
−ヘプタンのような脂肪族または脂環式炭化水
素が用いられる。また錯化剤としては、ジ−n
−ブチルエーテル、ジ−n−アミルエーテル、
ジイソアミルエーテルなどが用いられる。 この方法により活性化チタン成分を製造する
際、上記処理工程(3)により生じる廃液から溶媒と
錯化剤を回収することが触媒の製造コスト引き下
げのため必要である。 本発明の目的は上記廃液から溶媒と錯化剤を回
収し、再使用に好適な品位に精製処理する方方法
を提供することにある。 廃液は、溶媒、錯化剤のほかに、四塩化チタ
ン、溶出した塩化アルミニウム、および微細な三
塩化チタン粒子などを含む。 本発明の方法は、チーグラー・ナツタ型触媒製
造工程に於いて生じる炭化水素系廃溶剤、及び該
工程に於いて錯化剤として用いた含酸素有機化合
物を含む廃液から該溶剤と該錯化剤をそれぞれ回
収する工程が A 該廃液をアルカリ性水溶液で処理し、 B 次に油層を水蒸気蒸溜により分離し、 C 更に該油分を精溜して炭化水素系廃溶剤と錯
化剤とを分離し、 D 精溜した該錯化剤を再使用するに先立ち、20
−800℃の温度に於いてハイドロタルサイトを
焼成したものを吸着剤として用いて、吸着処理
する ことを特徴とする回収処理方法である。 本発明の方法の一態様を、以下に説明する。 四塩化チタンをアルミニウムで還元して得られ
た、A型あるいはAA型の三塩化チタンと三塩化
アルミニウムの共晶体(以下還元固体という)
が、少量の(例えば還元固体の1/10の重量の)ジ
エチルアルミニウムクロライドと(例えば還元固
体の1/100の重量の)エチレンと共に共粉砕処理
される。粉砕は振動ミルで行なうのが好都合であ
る。粉砕機から内容物を取り出し、ヘプタンに懸
濁させる。次にジイソアミルエーテルと四塩化チ
タンを加え撹拌する。この操作により還元固体中
の塩化アルミニウムは大部分溶出する。繰り返し
ヘプタンで洗浄したあとデカントして、製品の活
性化チタン成分が得られる。 一方洗浄液はアルカリ水と混合され塩化アルミ
ニウムや塩化チタンが加水分解される。分解液を
引き続き加熱して上層の油層が消失するまで水蒸
気蒸留操作を続ける。残液は微細な白色沈殿を含
む。残液のCOD値は20ppm以下の実質的に無臭
の水であるので、沈殿を過後、廃水として放流
される。水蒸気蒸留の過程で、まずヘプタン水と
少量のジイソアミルエーテル、次いでジイソアミ
ルエーテルと水の共沸物が留出する。コンデンサ
ーで液化したあと水層を分離し、有機層を触留塔
にかける。塔頂からヘプタン、塔底からジイソア
ミルエーテルまたはジイソアミルエーテルとヘプ
タンの混合液を得る。ヘプタンは触媒製造工程に
循環再使用する。 また、精留塔の塔底部から回収された錯化剤は
そのまま触媒製造工程に戻さずに、ハイドロタル
サイトを200℃〜800℃焼成したものを吸着剤とす
る吸着塔を通して不純物を除いたのち再使用す
る。この吸着処理をした錯化剤を触媒製造に使用
すれば重合活性を下げることがない。この際吸着
除去される成分は同定し難いが、着色成分やカル
ボニル化合物は完全に除去される。吸着剤とし
て、活性アルミナ、シリカゲルあるいはモレキユ
ラシーブを用いたときは上記着色成分やカルボニ
ル化合物の除去効果が乏しい。 本発明の方法に従えば、廃水は、中和処理した
のち放流することができる。また水蒸気蒸溜によ
り残渣のケーキも無臭、無害となる利点がある。 本発明の方法は、少くとも炭化水素系不活性溶
媒と含酸素有機化合物(錯化剤)を使用して調製
するチーグラー・ナツタ型触媒であれば、触媒が
担体型であれまた非担体型であれ、その触媒製造
工程から生じる廃液について適用できる。 以下に、本発明を実施例により説明する。 実施例 1 (触媒製造) 四塩化チタンをアルミニウムで還元したものと
しては、東洋ストウフアー社製のTiCl3・1/3
AlCl3なる一般式をもつ複塩化物を用いた。(以下
AA型三塩化チタンと称する) 上記AA型三塩化チタン50gr、ジエチルアルミ
ニウムモノクロライド7.2mlを窒素置換したステ
ンレス製ボール入りの粉砕用ポツトに仕込み、粉
砕をしながらエチレン0.5grを30分間で装入し、
その後更に2時間粉砕を続けた。 粉砕処理物を窒素雰囲気中でボールと分離し、
窒素置換した1反応容器に投入し、乾燥ヘプタ
ン250mlを加え、ジイソアミルエーテル(以下
EDIAと略称)50ml、四塩化チタン40mlを添加
し、60℃で2時間撹拌し変性処理を行なつた。 デカンテーシヨンで上澄液を抜き出し次に60℃
で乾燥ヘプタン500mlずつ5回洗浄し上澄液と合
わせて廃液2735mlを得た。廃液の成分は次の通り
であつた。(重量%) ヘプタン 94.7% EDIA 1.9% TiCl4 3.4% (回収工程) 次に水2、苛性ソーダ70grを入れた容器に上
記廃液を導入した。容器を加熱すると共に水蒸気
を導入し、水蒸気蒸留を行なつた。油層の全量と
水が1.5留出したところで水蒸気の導入を止め
た。容器に残つた水は2で、COD値は
16.4ppmであつた。また沈殿の乾燥後30grであつ
た。 留出液は油水分離し、油層を段数25段の精留塔
で精留した。塔底液でのEDIA濃度が50重量%に
なるまで蒸留を続けた。 塔底液の水分は2ppmであつたが、薄く黄色に
着色していた。この塔底液を、協和化学製の合成
ハイドロタルサイトを500℃で焼成したものを内
径2cmのカラムに高さ15cm充填した吸着塔を2
ml/分の流速で通した。得られた液は無色透明で
あつた。 塔頂から留出するヘプタンは低沸前留をカツト
した後の主留を回収した。水分は8ppm、EDIA
は2ppmであつた。 (回収ヘプタン、回収EDIAの再使用による触媒
製造) 上記と同様にエチレン装入粉砕処理した固体
10grを窒素置換した容器に投入し、回収工程で得
た回収ヘプタン38mlを加え、カラムを通した塔底
液のEDIAとヘプタンとの1:1(重量比)溶液
を22ml添加し、四塩化チタン8mlを加え、60℃で
2時間変性処理を行なつた。上澄液を抜き出し、
100mlの回収ヘプタンで5回洗浄した。 (重合) 内容積5のSUS−32オートクレーブを十分に
窒素置換し、上記調製した触媒スラリーを固体成
分として0.1grになるように採取し、ジエチルア
ルミニウムモノクロライド1mlとヘプタン50mlを
窒素置換した別の容器で混合した後オートクレー
ブに装入した。オートクレーブ内をプロピレンで
充分置換した後、撹拌しながら液体プロピレン
1.5Kg装入し、続いて分子量調節のために水素を
気相分圧で1Kg/cm2装入し、60℃まで昇温し、3
時間重合反応をおこなつた。反応終了後未反応プ
ロピレンをパージした後、得られた白色粉末を60
℃で5時間減圧乾燥した。得られたポリプロピレ
ンの重量は805grで、かさ密度(以下B.D.と略
称。)は0.42gr/ml、得られた重合体のうち熱ヘ
プタンに不溶なものの重量百分率(以下全I.I)
96.7%、極限粘度(以下「η」、135℃テトラリン
中で測定)1.79、1時間当り、触媒1gr当りに得
られる重合体(ポリプロピレン)の重量で表わす
重合活性は2683gポリプロピレン/時.gr触媒で
あつた。 またゲル過クロマトグラフイーによる分子量
分布測定の結果、分子量分布指数(D−Mw/
Mn、Mw 重量平均分子量、Mn 数平均分子
量)は7であつた。 重合体の粒度分布は、10メツシユのふるいを通
らぬ粉末の割合(以下10メツシユon)は10.7%で
あり、200メツシユのふるいを通る粉末の割合
(200メツシユpass)は0.4%であつた。 得られたポリプロピレン粉末に安定剤を加えミ
キサーで配合して、押出機でペレツト化し、さら
に製膜機で、温度250℃、回転数60r.p.m.で押し
出し、Tダイ法によるフイルムを作成したとこ
ろ、かすみ度は2.9%であつた。 比較例 1 回収EDIA、回収ヘプタンを使用しての触媒製
造に際し、回収EDIAを吸着カラムを通さない塔
底液を使用した以外は実施例1と同様に触媒を製
造し、重合を行なつた。結果は表1に示す。 比較例 2 吸着剤を活性アルミナに変えた以外は実施例1
と同様に触媒を製造し、重合を行なつた。結果は
表1に示す。 比較例 3 吸着剤をシリカゲルに変えた以外は実施例1と
同様に触媒を製造し、重合を行なつた。結果は表
1に示す。 比較例 4 吸着剤をモレキユラシーブ13Xに変えた以外は
実施例1と同様に触媒を製造し、重合を行なつ
た。結果は表1に示す。
The present invention utilizes at least the following activated titanium components as solid catalysts for stereospecific polymerization of α-olefins.
Manufactured by a manufacturing method consisting of processing steps (1) to (3),
In this case, the present invention relates to a method for separating an inert hydrocarbon solvent (hereinafter simply referred to as a solvent) and a complexing agent from the waste liquid generated from the step (3), and purifying and recovering it for reuse. (1) reducing titanium tetrachloride with aluminum; (2) co-milling the resulting reduced solid with an alkyl aluminum compound in the presence of up to about 10% by weight of ethylene or alpha-olefin; (3) then This is a waste liquid produced in the catalyst preparation process, which involves a modification process using a solvent, a complexing agent, and titanium tetrachloride. In this production method, n-hexane, cyclohexane or n-hexane is used as the solvent.
-Aliphatic or cycloaliphatic hydrocarbons such as heptane are used. In addition, as a complexing agent, di-n
-butyl ether, di-n-amyl ether,
Diisoamyl ether and the like are used. When producing an activated titanium component by this method, it is necessary to recover the solvent and complexing agent from the waste liquid produced in the above treatment step (3) in order to reduce the production cost of the catalyst. An object of the present invention is to provide a method for recovering the solvent and complexing agent from the above-mentioned waste liquid and purifying it to a quality suitable for reuse. In addition to the solvent and the complexing agent, the waste liquid contains titanium tetrachloride, eluted aluminum chloride, and fine titanium trichloride particles. In the method of the present invention, a hydrocarbon waste solvent generated in the Ziegler-Natsuta type catalyst manufacturing process and a waste liquid containing an oxygen-containing organic compound used as a complexing agent in the process are extracted from the solvent and the complexing agent. The steps of recovering each are A) treating the waste liquid with an alkaline aqueous solution, B then separating the oil layer by steam distillation, C further rectifying the oil to separate the hydrocarbon waste solvent and the complexing agent, D. Before reusing the purified complexing agent, 20
This recovery treatment method is characterized by performing adsorption treatment using hydrotalcite calcined at a temperature of -800°C as an adsorbent. One embodiment of the method of the present invention is described below. A type A or AA type titanium trichloride and aluminum trichloride eutectic (hereinafter referred to as reduced solid) obtained by reducing titanium tetrachloride with aluminum.
is co-milled with a small amount of diethylaluminum chloride (eg, 1/10th the weight of the reduced solid) and ethylene (eg, 1/100th the weight of the reduced solid). Milling is conveniently carried out in a vibratory mill. Remove the contents from the grinder and suspend in heptane. Next, diisoamyl ether and titanium tetrachloride are added and stirred. By this operation, most of the aluminum chloride in the reduced solid is eluted. After repeated washing with heptane and decanting, the activated titanium component of the product is obtained. On the other hand, the cleaning solution is mixed with alkaline water to hydrolyze aluminum chloride and titanium chloride. The decomposition liquid is continuously heated and the steam distillation operation is continued until the upper oil layer disappears. The residual liquid contains fine white precipitates. Since the residual liquid is essentially odorless water with a COD value of 20 ppm or less, it is discharged as wastewater after precipitation. During the steam distillation process, first aqueous heptane and a small amount of diisoamyl ether are distilled out, and then an azeotrope of diisoamyl ether and water is distilled out. After liquefying in a condenser, the aqueous layer is separated and the organic layer is passed through a catalytic column. Heptane is obtained from the top of the column, and diisoamyl ether or a mixture of diisoamyl ether and heptane is obtained from the bottom of the column. Heptane is recycled and reused in the catalyst manufacturing process. In addition, the complexing agent recovered from the bottom of the rectification column is not directly returned to the catalyst manufacturing process, but is passed through an adsorption column using hydrotalcite calcined at 200 to 800 degrees Celsius as an adsorbent to remove impurities. Reuse. If this complexing agent subjected to adsorption treatment is used in catalyst production, the polymerization activity will not be lowered. Although it is difficult to identify the components that are adsorbed and removed at this time, colored components and carbonyl compounds are completely removed. When activated alumina, silica gel, or molecular sieve is used as an adsorbent, the removal effect of the above-mentioned colored components and carbonyl compounds is poor. According to the method of the present invention, wastewater can be discharged after being neutralized. Steam distillation also has the advantage that the residual cake is odorless and harmless. The method of the present invention can be applied to a Ziegler-Natsuta type catalyst prepared using at least a hydrocarbon inert solvent and an oxygen-containing organic compound (complexing agent), regardless of whether the catalyst is a supported type or a non-supported type. Well, it can be applied to the waste liquid generated from the catalyst manufacturing process. The present invention will be explained below using examples. Example 1 (Catalyst production) Titanium tetrachloride reduced with aluminum is TiCl 3.1 /3 manufactured by Toyo Stouffer Co., Ltd.
A double chloride with the general formula AlCl 3 was used. (below
(referred to as AA type titanium trichloride) 50 gr of the above AA type titanium trichloride and 7.2 ml of diethylaluminum monochloride were placed in a grinding pot containing a stainless steel bowl that was purged with nitrogen, and while being crushed, 0.5 gr of ethylene was charged over 30 minutes. death,
Thereafter, grinding was continued for an additional 2 hours. The crushed product is separated from the balls in a nitrogen atmosphere,
Pour into a reaction vessel purged with nitrogen, add 250 ml of dry heptane, and add diisoamyl ether (hereinafter referred to as
50 ml of titanium tetrachloride (abbreviated as EDIA) were added thereto, and the mixture was stirred at 60°C for 2 hours to perform a denaturation treatment. Remove the supernatant liquid by decantation and then 60°C.
The solution was washed five times with 500 ml of dry heptane and combined with the supernatant to obtain 2,735 ml of waste liquid. The components of the waste liquid were as follows. (Weight %) Heptane 94.7% EDIA 1.9% TiCl 4 3.4% (Recovery step) Next, the above waste liquid was introduced into a container containing 22 grams of water and 70 grams of caustic soda. Steam distillation was carried out by heating the container and introducing steam. The introduction of steam was stopped when the entire volume of the oil layer and 1.5 liters of water had been distilled out. The water remaining in the container is 2, and the COD value is
It was 16.4ppm. The precipitate was 30 gr after drying. The distillate was separated into oil and water, and the oil layer was rectified in a rectification column with 25 plates. Distillation was continued until the EDIA concentration in the bottom liquid was 50% by weight. The water content of the bottom liquid was 2 ppm, but it was colored pale yellow. This bottom liquid was passed through two adsorption towers in which Kyowa Chemical's synthetic hydrotalcite calcined at 500°C was packed into a column with an inner diameter of 2 cm and a height of 15 cm.
It was passed at a flow rate of ml/min. The resulting liquid was clear and colorless. The heptane distilled from the top of the column was recovered as the main distillate after cutting off the low-boiling front distillate. Moisture is 8ppm, EDIA
was 2ppm. (Catalyst production by reusing recovered heptane and recovered EDIA) Solid pulverized with ethylene charged in the same manner as above
Pour 10g into a nitrogen-purged container, add 38ml of recovered heptane obtained in the recovery process, add 22ml of a 1:1 (weight ratio) solution of EDIA and heptane from the column bottom liquid, and add titanium tetrachloride. 8 ml was added and denatured at 60°C for 2 hours. Remove the supernatant and
Washed five times with 100 ml of recovered heptane. (Polymerization) A SUS-32 autoclave with an internal volume of 5 was sufficiently purged with nitrogen, the catalyst slurry prepared above was sampled to a solid content of 0.1 gr, and 1 ml of diethylaluminium monochloride and 50 ml of heptane were purged with nitrogen. After mixing in a container, the mixture was charged into an autoclave. After replacing the inside of the autoclave with propylene, add liquid propylene while stirring.
1.5Kg was charged, then hydrogen was charged at a gas phase partial pressure of 1Kg/ cm2 to adjust the molecular weight, and the temperature was raised to 60℃.
A time polymerization reaction was carried out. After the reaction was completed and unreacted propylene was purged, the resulting white powder was
It was dried under reduced pressure at ℃ for 5 hours. The weight of the obtained polypropylene was 805gr, the bulk density (hereinafter abbreviated as BD) was 0.42gr/ml, and the weight percentage of the obtained polymer that was insoluble in hot heptane (hereinafter referred to as Total II)
96.7%, intrinsic viscosity (hereinafter referred to as "η", measured in tetralin at 135°C) 1.79, and polymerization activity expressed as the weight of polymer (polypropylene) obtained per 1 gram of catalyst per hour: 2683 g polypropylene/hour. It was gr catalyst. In addition, as a result of molecular weight distribution measurement by gel perchromatography, the molecular weight distribution index (D-Mw/
Mn, Mw weight average molecular weight, Mn number average molecular weight) were 7. Regarding the particle size distribution of the polymer, the proportion of powder that did not pass through a 10 mesh sieve (hereinafter referred to as 10 mesh on) was 10.7%, and the proportion of powder that passed through a 200 mesh sieve (200 mesh pass) was 0.4%. A stabilizer was added to the obtained polypropylene powder, mixed in a mixer, pelletized in an extruder, and further extruded in a film forming machine at a temperature of 250°C and a rotation speed of 60 rpm to create a film using the T-die method. The degree of haze was 2.9%. Comparative Example 1 A catalyst was produced and polymerized in the same manner as in Example 1, except that when producing a catalyst using recovered EDIA and recovered heptane, the recovered EDIA was used as a bottom liquid that was not passed through an adsorption column. The results are shown in Table 1. Comparative Example 2 Example 1 except that the adsorbent was changed to activated alumina
A catalyst was prepared in the same manner as above, and polymerization was carried out. The results are shown in Table 1. Comparative Example 3 A catalyst was produced and polymerized in the same manner as in Example 1, except that silica gel was used as the adsorbent. The results are shown in Table 1. Comparative Example 4 A catalyst was produced and polymerization was carried out in the same manner as in Example 1, except that the adsorbent was changed to Molecular Sieve 13X. The results are shown in Table 1.

【表】 比較例 5 触媒製造は実施例1と同様に行ない、廃液2750
mlを得た。次に水1.5、苛性ソーダ70grを入れ
た分液ロートに廃液を入れ撹拌し、アルミ化合
物、チタン化合物が完全に分解された後水層を抜
き出し、さらにロートに水1を加え撹拌した
後、水層を抜き出し、さらにロートに水1を加
え撹拌した後、水層を抜き出した。両方の水層を
合わせてCODを測定したところ135ppmであつ
た。油層にはゲル状浮遊物があつたのでロ紙でろ
別して油層を回収し精留した。塔頂から、低沸分
をカツトしてヘプタンを回収し、塔底からEDIA
−ヘプタン1:1(重量比)溶液を回収した。こ
の回収ヘプタンと回収EDIA溶液を使用して実施
例1と同様に触媒を製造し重合を行なつた。 ポリプロピレン663grを得た。B.D.は0.40gr/
ml、全I.I.96.0%、「η」1.79、活性は2210grポリ
プロピレン/時gr触媒であつた。 回収エーテルは黄色く着色しており、IRスペ
クトルで1715cm付近に強い吸収が見られ、これは
カルボニル基の存在を示している。 本比較例は、回収工程で水蒸気蒸溜を行なうこ
とにより、触媒毒となる不純物のうち蒸気圧を持
たぬものを分離でき、排水のCOD値を著しく下
げ、ゲル状物質の除去も別の操作として行なう必
要もなく、本発明の回収工程が極めて効果的であ
ることを示している。
[Table] Comparative Example 5 Catalyst production was carried out in the same manner as in Example 1, and waste liquid 2750
Got ml. Next, pour the waste liquid into a separatory funnel containing 1.5 g of water and 70 gr of caustic soda and stir. After the aluminum compounds and titanium compounds are completely decomposed, extract the aqueous layer. Add 1.5 g of water to the funnel and stir, then add the aqueous layer. was taken out, and after adding 1 part of water to the funnel and stirring, the aqueous layer was taken out. When the COD of both water layers was measured, it was 135 ppm. Since gel-like suspended matter was present in the oil layer, it was filtered through paper, and the oil layer was collected and rectified. Heptane is recovered from the top of the tower by cutting off low-boiling components, and EDIA is recovered from the bottom of the tower.
- A 1:1 (weight ratio) solution of heptane was collected. Using the recovered heptane and recovered EDIA solution, a catalyst was produced and polymerized in the same manner as in Example 1. Polypropylene 663gr was obtained. BD is 0.40gr/
ml, total II 96.0%, "η" 1.79, activity was 2210 gr polypropylene/hr gr catalyst. The recovered ether is colored yellow, and strong absorption is seen around 1715 cm in the IR spectrum, indicating the presence of carbonyl groups. In this comparative example, by performing steam distillation in the recovery process, it is possible to separate impurities that have no vapor pressure among the impurities that become catalyst poisons, significantly lowering the COD value of wastewater, and removing gel-like substances as a separate operation. This shows that the recovery process of the present invention is extremely effective.

Claims (1)

【特許請求の範囲】 1 チーグラー・ナツタ型触媒製造工程に於いて
生じる炭化水素系廃溶剤及び該工程に於いて錯化
剤として用いた含酸素有機化合物を含む廃液から
該溶剤と該錯化剤をそれぞれ回収する工程が A 該廃液をアルカリ性水溶液で処理し、 B 次に油層を水蒸気蒸溜により分離し、 C 更に該油分を精溜して炭化水素系溶剤と錯化
剤とを分離し、 D 精溜した該錯化剤を再使用するに先立ち、20
−800℃の温度に於いてハイドロタルサイトを
焼成したものを吸着剤として用いて吸着処理す
ることを特徴とする回収処理方法。
[Scope of Claims] 1. A hydrocarbon waste solvent generated in the Ziegler-Natsuta catalyst manufacturing process and a waste liquid containing an oxygen-containing organic compound used as a complexing agent in the process. The steps of recovering each are A. The waste liquid is treated with an alkaline aqueous solution. B. The oil layer is then separated by steam distillation. C. The oil is further purified to separate the hydrocarbon solvent and the complexing agent. D. Before reusing the purified complexing agent, 20
A recovery treatment method characterized by performing adsorption treatment using hydrotalcite calcined at a temperature of -800°C as an adsorbent.
JP8290177A 1977-07-13 1977-07-13 Recovering method for solvent and complexing agent used for preparing ziegler-natta catalyst Granted JPS5418467A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8290177A JPS5418467A (en) 1977-07-13 1977-07-13 Recovering method for solvent and complexing agent used for preparing ziegler-natta catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8290177A JPS5418467A (en) 1977-07-13 1977-07-13 Recovering method for solvent and complexing agent used for preparing ziegler-natta catalyst

Publications (2)

Publication Number Publication Date
JPS5418467A JPS5418467A (en) 1979-02-10
JPS6125007B2 true JPS6125007B2 (en) 1986-06-13

Family

ID=13787148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8290177A Granted JPS5418467A (en) 1977-07-13 1977-07-13 Recovering method for solvent and complexing agent used for preparing ziegler-natta catalyst

Country Status (1)

Country Link
JP (1) JPS5418467A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58222043A (en) * 1982-06-21 1983-12-23 Toyo Soda Mfg Co Ltd Preparation of decabromodiphenyl ether
US6358372B1 (en) * 2000-07-11 2002-03-19 Union Carbide Chemicals & Plastics Technology Corporation Method of reducing formation of precipitates in solvent recovery system

Also Published As

Publication number Publication date
JPS5418467A (en) 1979-02-10

Similar Documents

Publication Publication Date Title
US4298718A (en) Catalysts for the polymerization of olefins
US4148754A (en) Process for the preparation of a catalyst and catalyst used in olefin polymerization
JPH0310645B2 (en)
KR910009111B1 (en) Components and catalysts for the polymerization of olefins
CN103965380B (en) A kind of production method and its device that can reduce polypropylene ash content
KR101694388B1 (en) Method for the isolation of olefin oligomerization products and the decomposition of oligomerization catalyst residues
KR20180118677A (en) How to Improve Ziegler-Natta Catalytic Activity
JPH0216735B2 (en)
JPS6125007B2 (en)
JP2019196278A (en) Method for recovering titanium compound, method for producing titanium oxide, and method for producing alkali titanate
JP2018080086A (en) Method for recovering titanium compound, method for producing titanium oxide, and method for producing alkali titanate
JPS5830887B2 (en) Method for purifying highly crystalline polyolefin
US3119797A (en) Process for refining polyolefins
JPS5831085B2 (en) Catalyst composition for olefin polymerization
US4167619A (en) Purification of propylene polymerization product
US3658723A (en) Preparation of catalytically active halides of titanium by reacting titanium tetrahalides with magnesium amalgam
WO2013036211A1 (en) High activity olefin polymerization catalyst comprising boron-containing silica support and the preparation thereof
EP0079389A1 (en) Process for producing propylene polymer or copolymer
JPH0617405B2 (en) Method for purifying solvent for olefin polymerization
JPS6215562B2 (en)
JPS58103508A (en) Polymerization of olefin
US3222409A (en) Recovering ether diluent in liquid polydiolefin manufacture
JPH0344563B2 (en)
JPH021161B2 (en)
JPH0548244B2 (en)