JPS61249676A - Mig welding method - Google Patents

Mig welding method

Info

Publication number
JPS61249676A
JPS61249676A JP9042385A JP9042385A JPS61249676A JP S61249676 A JPS61249676 A JP S61249676A JP 9042385 A JP9042385 A JP 9042385A JP 9042385 A JP9042385 A JP 9042385A JP S61249676 A JPS61249676 A JP S61249676A
Authority
JP
Japan
Prior art keywords
welding
powder
wire
welding wire
weld metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9042385A
Other languages
Japanese (ja)
Inventor
Ikuo Wakamoto
郁夫 若元
Toshiro Kobayashi
敏郎 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP9042385A priority Critical patent/JPS61249676A/en
Publication of JPS61249676A publication Critical patent/JPS61249676A/en
Pending legal-status Critical Current

Links

Landscapes

  • Arc Welding In General (AREA)

Abstract

PURPOSE:To decrease the content of oxygen in a weld metal and to improve low-temp. toughness by magnetizing a welding wire in a welding torch, generating electrostatic attraction force by energization and feeding a welding wire while attracting a flux around the welding wire. CONSTITUTION:An annular electromagnetic coil 21 is provided around the welding wire 1 in the welding torch and a powder adding nozzle 22 is provided below the coil 21 so that the powder of a deoxidizing agent or arc stabilizing agent or a flux 25 contg. said powder is supplied from a supplying port 24, thereto. The wire 1 is magnetized by the coil 21 and welding is executed by supplying continuously the wire to an arc generating part while the powder flux 25 is stuck to the outside circumference of the wire 1 by the electromagnetic force or electromagnetic attraction force around the same and therefore the content of the oxygen in the weld metal 9 is decreased and the low-temp. toughness is improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、MIG溶接法の改良に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to improvements in the MIG welding process.

〔従来の技術〕[Conventional technology]

従来、MIG溶接は例えば第2図に示す如く行う。 Conventionally, MIG welding is performed as shown in FIG. 2, for example.

即ち、溶接ワイヤ1を溶接ワイヤ送給ローラ(以下、送
給ローラという)2にょシ連続的に送給し、溶接ワイヤ
1の先端と母材3の間にアーク4を発生させ、溶接ワイ
ヤ1を溶融させることにより溶接を行う。なお、第2図
において、5はシールドガス6を送給するシールドガス
ノズルを、7はシールドガスノズル5内に設けられた電
極チップを、8は溶接金属9に形成された溶融池を夫々
示す。
That is, the welding wire 1 is continuously fed to the welding wire feeding roller (hereinafter referred to as feeding roller) 2, an arc 4 is generated between the tip of the welding wire 1 and the base metal 3, and the welding wire 1 Welding is performed by melting. In FIG. 2, reference numeral 5 indicates a shielding gas nozzle for supplying the shielding gas 6, 7 indicates an electrode tip provided in the shielding gas nozzle 5, and 8 indicates a molten pool formed in the weld metal 9.

ところで、こうした溶接において、シールドガス6とし
ては、溶融池8や溶接金属9の酸化を防止するため不活
性ガスが用いられている。
Incidentally, in such welding, an inert gas is used as the shielding gas 6 in order to prevent oxidation of the molten pool 8 and the weld metal 9.

ここで、不活性ガスとしては一般にヘリウム(He)等
より安価なアルゴン(Ar)ガスが用いられる。
Here, argon (Ar) gas, which is cheaper than helium (He) or the like, is generally used as the inert gas.

〔発明が解消しようとする問題点〕[Problems that the invention attempts to solve]

しかしながら、従来のMIG溶接法によれば、不活性ガ
スとして一般にArガスが用いられるが、Arの電位傾
度はHeよりも小さい。また、溶接ワイヤ1が電極を兼
ねるためArガスのみの雰囲気ではHeガス中のように
アークが安定しない。その結果、欠陥が発生し易い。そ
こで、アークの安定化のためArガス中に若干の酸素、
又は炭酸ガスなどの活性ガスを混合している。そのため
、活性ガス吸収により溶接金属5の靭性はArやHeガ
スシールド中で溶接したものより劣る。
However, according to the conventional MIG welding method, Ar gas is generally used as the inert gas, but the potential gradient of Ar is smaller than that of He. Furthermore, since the welding wire 1 also serves as an electrode, the arc is not as stable in an atmosphere of only Ar gas as in He gas. As a result, defects are likely to occur. Therefore, in order to stabilize the arc, some oxygen was added to the Ar gas.
Or, active gas such as carbon dioxide gas is mixed. Therefore, due to active gas absorption, the toughness of the weld metal 5 is inferior to that obtained by welding in an Ar or He gas shield.

即ち、極低温で使用するステンレス鋼や9%Ni鋼の溶
接部の低温靭性に対して溶接金属中の酸素量が著しく悪
影響を及ぼすことが知られている。このため、化学機械
などでは靭性等の点より溶接材料のグレードアップや低
能率なTIG溶接の採用で対処しており、材料コストや
工数の増大を招いている。そのため、溶接金属中の特に
酸素量を大巾に低減する溶接法の開発が必要となった。
That is, it is known that the amount of oxygen in the weld metal has a significant adverse effect on the low-temperature toughness of welded parts of stainless steel and 9% Ni steel used at extremely low temperatures. For this reason, chemical machinery and the like have responded by upgrading welding materials or adopting low-efficiency TIG welding from the standpoint of toughness, etc., resulting in increases in material costs and man-hours. Therefore, it became necessary to develop a welding method that significantly reduces the amount of oxygen in the weld metal.

本発明は上記事情に鑑みてなされたもので、溶接金属中
の酸素量を低減し、低温靭性を改善しえるMIG溶接法
を提供することを目的とする。
The present invention was made in view of the above circumstances, and an object of the present invention is to provide a MIG welding method that can reduce the amount of oxygen in weld metal and improve low-temperature toughness.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、溶接トーチ内の溶接ワイヤに外部より磁界を
与えてこれを磁化するとともに、該溶接ワイヤへの通電
によって静電引力を発生させ、更に別途上記溶接ワイヤ
の周囲に与えた脱酸剤やアーク安定剤の粉末もしくはそ
れらを含むフラックス溶接ワイヤに吸着させながら該ワ
イヤとともに送給し溶接することにより、溶接金属中の
酸素量を低減し、低温靭性の改善を図ったことを骨子と
する。
The present invention applies a magnetic field to the welding wire inside the welding torch from the outside to magnetize it, generates electrostatic attraction by applying electricity to the welding wire, and further provides a deoxidizing agent separately applied around the welding wire. The main idea is to reduce the amount of oxygen in the weld metal and improve its low-temperature toughness by adsorbing it to the welding wire and feeding it along with the welding wire to reduce the amount of oxygen in the weld metal and improve its low-temperature toughness. .

〔作用〕[Effect]

本発明によれば、脱酸剤又はアーク安定剤の粉末、もし
くはそれらを含むフラックスを溶接ワイヤの外周の電磁
力や静電引力により付着させつつアーク発生部へ連続的
に供給して溶接することにより、溶接金属中の酸素量を
低減でき、低温靭性を改善できる。
According to the present invention, welding is performed by continuously supplying powder of a deoxidizing agent or arc stabilizer, or a flux containing them to the arc generating part while adhering it to the outer periphery of the welding wire by electromagnetic force or electrostatic attraction. As a result, the amount of oxygen in the weld metal can be reduced and low-temperature toughness can be improved.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図を参照して説明する。 An embodiment of the present invention will be described below with reference to FIG.

なお、従来と同部材のものは同符号を付して説明を省略
する。
Incidentally, the same members as those in the prior art are given the same reference numerals and the description thereof will be omitted.

図中の21は、溶接ワイヤ1の回りに環状に設けられた
電磁コイルである。また、シールドガスノズル5内でか
つ電磁コイル21の下方には、セラミックス等の不導体
製の粉末添加ノズル22が設けられている。この粉末添
加ノズル22内は空洞になりており、上下方向に溶接ワ
イヤ1等を通す開孔部23が設けられるとともに、側部
に後記粉末等を導入するための供給口24が設けられて
いる。この供給口24は、前記シールドガスノズルの側
部から外に突出している。前記粉末添加ノズル22の供
給口24からは7エロチタン(Fe−Ti) 、フェロ
マンガン(Fa−Mn)、フェロシリコン(Fe−8t
) 、Ti 、 A1.等の脱酸剤又はランクy(La
)、セリウム(Ce )等のアーク安定剤の粉末もしく
はそれらを含むスラックス(以下、粉末・フラックスと
いう)25が添加され、粉末添加ノズル22の開口部2
3から溶接ワイヤ1とともに溶接金属5の溶接部に導入
される。
21 in the figure is an electromagnetic coil provided annularly around the welding wire 1. Further, within the shield gas nozzle 5 and below the electromagnetic coil 21, a powder addition nozzle 22 made of a nonconductor such as ceramics is provided. The inside of this powder addition nozzle 22 is hollow, and is provided with an opening 23 for passing the welding wire 1, etc. in the vertical direction, and a supply port 24 for introducing powder, etc., which will be described later, is provided on the side. . This supply port 24 projects outward from the side of the shield gas nozzle. From the supply port 24 of the powder addition nozzle 22, 7erotitanium (Fe-Ti), ferromanganese (Fa-Mn), ferrosilicon (Fe-8t) are supplied.
), Ti, A1. or rank y (La
), arc stabilizer powder such as cerium (Ce), or a slack containing them (hereinafter referred to as powder/flux) 25 is added to the opening 2 of the powder addition nozzle 22.
3 is introduced together with the welding wire 1 into the welding part of the weld metal 5.

本実施例においては、電磁コイル21により溶接ワイヤ
1を磁化し、粉末添加ノズル22に前記粉末・フラック
ス25を溶接ワイヤ1の外周の電磁力や静電引力により
付着させ、アーク発生部へ連続的に供給して溶接を行う
In this embodiment, the welding wire 1 is magnetized by the electromagnetic coil 21, and the powder/flux 25 is attached to the powder addition nozzle 22 by electromagnetic force or electrostatic attraction around the outer periphery of the welding wire 1, and is continuously applied to the arc generating part. to perform welding.

しかして、本発明によれば、上記粉末・フラックス25
を溶接ワイヤ1の外周の電磁力や静電引力により付着さ
せつつアーク発生部へ連続的に供給して溶接を行うため
、溶接金属中の酸素量を低減でき、低温靭性を改善でき
る。
According to the present invention, the powder/flux 25
Since welding is performed by continuously supplying the welding metal to the arc generating part while adhering it by electromagnetic force or electrostatic attraction on the outer periphery of the welding wire 1, the amount of oxygen in the weld metal can be reduced and the low-temperature toughness can be improved.

事実、超低温用ステンレス鋼の溶接で、Ar+2%02
シールドガスを用いてMIG溶接を行い、本発明のよう
に7エロチタン(Fe−Ti)粉末を添加したもの、又
はArシールドガスを用いアーク安定剤としてREM粉
末を添加したものと無添加のものについて、溶接金属中
の酸素量及び溶接金属のシャルピー衝撃試験値(−25
3℃)を比較した。その結果を第3図、第4図に夫々示
す。ここで、第3図は溶接金属中の酸素量を比較したも
のである。同図より、フェロチタン粉末を添加すること
によF)、Arシールドガス+2%02中でも溶接金属
中の酸素量を低減できることが確認できる。また、轟然
ながらアーク安定剤としてREM粉末を添加しなからA
rシールドガス中で溶接したものは酸素量が少なく、低
温靭性は良好であることが確認できる。一方、第4図は
溶接金属中の酸素量と溶接金属のシャルピー衝撃試験値
との関係を示す図である。同図により、本発明法の場合
が従来法と比ベシャルピー衝撃試験値が大きく、低温靭
性が改善されていることが確認できる。
In fact, when welding ultra-low temperature stainless steel, Ar+2%02
Regarding MIG welding using shielding gas and adding 7-erotitanium (Fe-Ti) powder as in the present invention, or using Ar shielding gas and adding REM powder as an arc stabilizer, and those without additives. , the amount of oxygen in the weld metal and the Charpy impact test value of the weld metal (-25
3°C). The results are shown in FIGS. 3 and 4, respectively. Here, FIG. 3 compares the amount of oxygen in weld metal. From the same figure, it can be confirmed that by adding ferrotitanium powder, the amount of oxygen in the weld metal can be reduced even in F) and Ar shielding gas +2%02. Also, although it is surprising that REM powder is not added as an arc stabilizer, A
It can be confirmed that those welded in r-shielding gas have a low oxygen content and good low-temperature toughness. On the other hand, FIG. 4 is a diagram showing the relationship between the amount of oxygen in the weld metal and the Charpy impact test value of the weld metal. From the figure, it can be confirmed that the method of the present invention has a larger Becharpy impact test value than the conventional method, and that the low-temperature toughness is improved.

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く本発明によれば、溶接金属中の酸素量
を低減し、低温靭性を改善しうるMIG溶接法を提供で
きる。
As detailed above, according to the present invention, it is possible to provide a MIG welding method that can reduce the amount of oxygen in weld metal and improve low-temperature toughness.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例に係るMIG溶接法の説明図
、第2図は従来のMIG溶接法の説明図、第3図は従来
法及び本発明法による溶接金属中の酸素量と溶接金属の
シャルピー衝撃値との関係を示す特性図、第4図は従来
法及び本発明法による溶接金属中の酸素量を説明するた
めの図である。 1・・・溶接ワイヤ、2・・・溶接ワイヤ送給ローラ、
3・・・母材、4・・・アーク、5・・・シールドガス
ノズル、6・・・シールドガス、7・・・電極チップ、
8・・・溶融池、9・・・溶接金属、21・・・電磁コ
イル、22・・・粉末添加ノズル、23・・・開孔部、
24・・・供給口、25・・・粉末・フラックス。 出願人復代理人 弁理士 鈴 江 武 彦第1図 第4図
Fig. 1 is an explanatory diagram of the MIG welding method according to an embodiment of the present invention, Fig. 2 is an explanatory diagram of the conventional MIG welding method, and Fig. 3 is an illustration of the amount of oxygen in weld metal according to the conventional method and the method of the present invention. FIG. 4 is a characteristic diagram showing the relationship with the Charpy impact value of the weld metal, and is a diagram for explaining the oxygen content in the weld metal according to the conventional method and the method of the present invention. 1... Welding wire, 2... Welding wire feeding roller,
3... Base material, 4... Arc, 5... Shield gas nozzle, 6... Shield gas, 7... Electrode tip,
8... Molten pool, 9... Weld metal, 21... Electromagnetic coil, 22... Powder addition nozzle, 23... Opening part,
24... Supply port, 25... Powder/flux. Applicant Sub-Agent Patent Attorney Takehiko Suzue Figure 1 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 溶接トーチ内の溶接ワイヤに外部より磁界を与えてこれ
を磁化するとともに、該溶接ワイヤへの通電によって静
電引力を発生させ、更に別途上記溶接ワイヤの周囲に与
えた脱酸剤やアーク安定剤の粉末もしくはそれらを含む
フラックスを溶接ワイヤに吸着させながら該ワイヤとと
もに送給し溶接することを特徴とするMIG溶接法。
A magnetic field is applied to the welding wire inside the welding torch from the outside to magnetize it, and electrostatic attraction is generated by energizing the welding wire, and a deoxidizer and arc stabilizer are separately applied around the welding wire. The MIG welding method is characterized in that powder of or a flux containing the powder is adsorbed to the welding wire and fed together with the wire for welding.
JP9042385A 1985-04-26 1985-04-26 Mig welding method Pending JPS61249676A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9042385A JPS61249676A (en) 1985-04-26 1985-04-26 Mig welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9042385A JPS61249676A (en) 1985-04-26 1985-04-26 Mig welding method

Publications (1)

Publication Number Publication Date
JPS61249676A true JPS61249676A (en) 1986-11-06

Family

ID=13998194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9042385A Pending JPS61249676A (en) 1985-04-26 1985-04-26 Mig welding method

Country Status (1)

Country Link
JP (1) JPS61249676A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2509717C2 (en) * 2012-05-04 2014-03-20 Федеральное государственное бюджетное общеобразовательное учреждение высшего профессионального образования "Национальный исследовательский Томский политехнический университет" Method of mechanised welding by consumable electrodes in atmosphere of protective gases

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2509717C2 (en) * 2012-05-04 2014-03-20 Федеральное государственное бюджетное общеобразовательное учреждение высшего профессионального образования "Национальный исследовательский Томский политехнический университет" Method of mechanised welding by consumable electrodes in atmosphere of protective gases

Similar Documents

Publication Publication Date Title
KR960010509B1 (en) Gas metal arc welding and shielding gas therefor
US4871898A (en) Constant arc voltage gas metal arc welding process
KR20100016184A (en) Aluminum deoxidizing welding wire
CN108367393B (en) Low manganese tubular welding wire and method of forming a weld deposit
US6969818B2 (en) Tandem welding shielding gases
KR20130103495A (en) Complex weld method and welding torch for complex welds
US20150027997A1 (en) Welding torch, welding apparatus and method of welding using hollow electrode and filler material
US20160045972A1 (en) Method for manufacturing welded article, welding method, and welding device
ES235756A1 (en) Method and electrode for electric arc welding
JP2011255393A (en) Welding method and welding equipment
US20050040143A1 (en) Gas metal arc welding of coated steels and shielding gas therefor
US2475183A (en) Apparatus for stabilizing the electric welding arc
JPS61249676A (en) Mig welding method
US3023302A (en) Electric arc welding
US3023301A (en) Silica-free welding flux
US4161645A (en) Arc welding apparatus and method
KR20010040001A (en) Process and unit for the mig welding of aluminum and its alloys
US3143630A (en) Electric arc welding
JP6442789B2 (en) Welding method
JPS61108475A (en) Inert gas shield welding method
JP2006075847A (en) Hybrid welding method by laser beam and arc
US3102944A (en) Arc welding process
JPS5913577A (en) T-joint welding method
JPS5938073B2 (en) Non-consumable electrode type welding torch
JPH035079A (en) Gas metal arc welding method