JPS61249503A - Hydrophilic polytetrafluoroethylene filter membrane and its production - Google Patents

Hydrophilic polytetrafluoroethylene filter membrane and its production

Info

Publication number
JPS61249503A
JPS61249503A JP60090662A JP9066285A JPS61249503A JP S61249503 A JPS61249503 A JP S61249503A JP 60090662 A JP60090662 A JP 60090662A JP 9066285 A JP9066285 A JP 9066285A JP S61249503 A JPS61249503 A JP S61249503A
Authority
JP
Japan
Prior art keywords
filtration membrane
producing
hydrophilic
hydrophilic polytetrafluoroethylene
ptfe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60090662A
Other languages
Japanese (ja)
Other versions
JPH0521010B2 (en
Inventor
Koichi Okita
晃一 沖田
Shinichi Toyooka
新一 豊岡
Shigeru Asako
茂 浅古
Katsuya Yamada
克弥 山田
Kazuichi Tomita
富田 和一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP60090662A priority Critical patent/JPS61249503A/en
Publication of JPS61249503A publication Critical patent/JPS61249503A/en
Publication of JPH0521010B2 publication Critical patent/JPH0521010B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • B01D71/36Polytetrafluoroethene

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To obtain the titled hydrophilic PTFE membrane having resistance to both heat and chemicals by cross-linking a fluorine surfactant on the PTFE membrane until the surfactant is made insoluble in aq. soln. CONSTITUTION:An anionic fluorine surfactant is coated on the surface of a PTFE filter membrane having narrow pore diameter distribution. At this time, the PTFE filter membrane is placed under 100-150mmHg reduced pressure and immersed in a dilute soln. of the fluorine surfactant to reduce the immersion time. After hydrophilicity is provided to the porous surface of the fluorine surfactant by the complete immersion, high-energy radiation rays are irradiated to make the fluorine surfactant insoluble in water. The reaction is preferably carried out under conditions where oxygen is substantially absent.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、耐熱性と耐薬品性とに秀れた親水性ポリテト
ラフルオロエチレン濾過膜およびその製造方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a hydrophilic polytetrafluoroethylene filtration membrane having excellent heat resistance and chemical resistance, and a method for manufacturing the same.

〔従来の技術と問題点〕[Conventional technology and problems]

ポリテトラフルオロエチレン(以下PTFEという)は
耐熱性、耐薬品性において非常に秀れているにも係わら
ず、撥水性であるがなめに水や強酸・強アルカリ水溶液
系への応用には困難がともなっている。PTFEからな
る濾過膜に親水性を与えるにはたとえば特公昭86−2
071あるいは米国特許8.666.698  の様に
アクリル酸、4−ビニルピリジン、N−ビニルピロリド
ン等を電離性放射線や重合触媒による重合反応によって
グラフト化する方法が知られている。しかるにこれらの
方法による親水化も理では尚耐熱性・耐薬品性が不足し
、また表面層にはグラフト重合が進行するが、内部には
グラフトが進行し難く、結局は均質な親水性を与えるこ
とが出来ない。一方角部にまでグラフト重合を進めるな
め、たとえば米国特許&890,087 および3,8
82,387 では多孔性四弗化エチレン樹脂を界面活
性剤で含浸逃理し、ナトリウム−ナフタレン等で鋭部素
化エツチングし、次いで重合性上ツマ−をグラフト重合
させて親水性を与えることも知られている。これらの方
法においてもPTFE濾過膜の孔径がなとえばフェルト
等の様に大きい時には均一に実施できるが、反対に孔径
が小さくなる程エツチング逃理が不均一となり親水性も
不均一となって来る。
Although polytetrafluoroethylene (hereinafter referred to as PTFE) has excellent heat resistance and chemical resistance, it is water repellent, but it is difficult to apply it to water or strong acid/strong alkali aqueous solutions. It is also accompanied by For example, in order to impart hydrophilicity to a filter membrane made of PTFE,
071 or US Pat. No. 8,666,698, a method is known in which acrylic acid, 4-vinylpyridine, N-vinylpyrrolidone, etc. are grafted by a polymerization reaction using ionizing radiation or a polymerization catalyst. However, in theory, hydrophilization by these methods still lacks heat resistance and chemical resistance, and although graft polymerization progresses on the surface layer, it is difficult for grafting to progress inside, and in the end, homogeneous hydrophilicity is achieved. I can't do that. For example, US Patent No. 890,087 and 3,8
82,387, porous tetrafluoroethylene resin is impregnated with a surfactant, sharply etched with sodium-naphthalene, etc., and then a polymerizable upper layer is graft-polymerized to impart hydrophilicity. Are known. These methods can be applied uniformly when the pore size of the PTFE filtration membrane is large, such as felt, but on the other hand, as the pore size becomes smaller, the etching relief becomes uneven and the hydrophilicity becomes uneven. .

親水性材料からなる高分子膜は濾過膜の外にも透析膜、
限外濾過膜、逆浸透膜などとして水の存在する系におけ
る物質分離に用いられている。この用途のなめには溶質
の排除率と湿潤状態における機械的強度の秀れす膜が必
要である。最も代表的なのはセルロースエステル膜が透
過特性、機械特性において秀れたものとされているが実
用上はさらに両性質の改善が必要である。特に酸性やア
ルカリ性が強すぎるとセルロースエステル膜が加水分解
してしまうという欠点、また孔径が小さくなると使用可
能耐熱温度が低下してくるという等の欠点が顕著である
Polymer membranes made of hydrophilic materials can be used as dialysis membranes in addition to filtration membranes.
It is used as an ultrafiltration membrane, reverse osmosis membrane, etc. to separate substances in systems where water is present. This application requires a membrane with excellent solute rejection and mechanical strength in wet conditions. The most typical membrane is cellulose ester membrane, which is said to have excellent permeability and mechanical properties, but both properties need to be further improved for practical use. In particular, if the acidity or alkalinity is too strong, the cellulose ester membrane will be hydrolyzed, and if the pore size becomes small, the usable temperature limit will decrease.

一方、炭化水素系の界面活性剤を非水溶性高分子材料か
らなる膜に混合し、゛プラズマを照射してその表面を架
橋するという技術が特公昭56−8645゜57−81
924 に開示されているが、ここでの膜は半透過性で
あること、具体的には逆浸透や限外濾過への応用であり
、本発明で目的とする程の強酸、強アルカリへの適用を
対象とはしていない。
On the other hand, a technology was developed in which a hydrocarbon surfactant was mixed into a film made of a water-insoluble polymer material and the surface was cross-linked by irradiating it with plasma.
924, but the membrane here is semi-permeable, specifically for application to reverse osmosis and ultrafiltration, and is not resistant to strong acids and strong alkalis as aimed at in the present invention. Not intended for application.

電解槽の隔膜には耐薬品性の秀れたPTFE材料が用い
られ、特にアルカリ金属ハロゲン化物の電解では、塩素
、水酸化ナトリウム等が発生するので、フッ素化界面活
性剤による湿潤方法が特開昭56−130486に開示
されている。しかるにフッ素化界面活性剤をPTFE隔
膜と接触させ、乾燥させて不活性化させ、使用時に水溶
液と接触させるだけで再活性化させることを特徴として
いるため、フッ素化界面活性剤とPTFE隔膜とは単な
る化学的な親和性だけで接触しているにすぎず、またフ
ッ素化界面活性剤は水不溶化逃理を受けていないので容
易に脱離していくという欠点がある。
A PTFE material with excellent chemical resistance is used for the diaphragm of the electrolytic cell. In particular, in the electrolysis of alkali metal halides, chlorine, sodium hydroxide, etc. are generated, so a wetting method using a fluorinated surfactant has been developed. It is disclosed in Sho 56-130486. However, the fluorinated surfactant is brought into contact with the PTFE diaphragm, dried to inactivate it, and then reactivated by simply contacting it with an aqueous solution at the time of use. They are in contact simply due to chemical affinity, and the fluorinated surfactant has the disadvantage that it is easily desorbed because it does not undergo the water insolubilization escape process.

〔問題点を解決するkめの手段〕[Kth way to solve the problem]

本発明は、この様な従来技術の欠点につき鋭意検討を重
ねに結果、耐熱性と耐薬品性とに秀れなフッ素化界面活
性剤とPTFE濾過膜を組みあわせ、かつフッ素化界面
活性剤が水溶液に不溶となるまで架橋させることにより
耐熱性と耐薬品性を兼ねそなえたP T F E濾過膜
を提供せんとするものである。それ故、本発明の目的は
医薬品や食品分野の高価格な液体中の固型物を分離精製
に有用な親水性PTFE濾過膜を開発することにある。
As a result of intensive studies to address the shortcomings of the conventional technology, the present invention combines a fluorinated surfactant with excellent heat resistance and chemical resistance with a PTFE filtration membrane, and combines the fluorinated surfactant with a PTFE filtration membrane. The purpose is to provide a PTFE filtration membrane that has both heat resistance and chemical resistance by crosslinking it until it becomes insoluble in an aqueous solution. Therefore, an object of the present invention is to develop a hydrophilic PTFE filtration membrane useful for separating and purifying solid substances in expensive liquids in the pharmaceutical and food fields.

〔作用〕[Effect]

本発明で用いるPTFE濾過膜は特公昭6〇−3842
等で製作される孔径分布の狭いものであることが必要と
なる。
The PTFE filtration membrane used in the present invention is
It is necessary that the pore diameter distribution is narrow.

まに本発明で用いるフッ素系界面活性剤にはアニオン型
かまkはノニオン型が好ましく、カチオン型は湿潤性や
浸透性において幾分問題がある場合がある。
However, the fluorine-based surfactant used in the present invention is preferably an anionic type or a nonionic type, whereas a cationic type may have some problems in wettability and permeability.

高温雰囲気での使用に関してはアニオン型が特に好まし
く、250℃あるいは350℃でも耐久性を維持するも
のがある。
Anionic types are particularly preferred for use in high-temperature atmospheres, and some maintain durability even at 250°C or 350°C.

具体的には、CF s (CF m )mCOOMe 
 (ここでmは3〜19、Meはアルカリ金属)のカル
ボン酸塩は約250℃までの耐熱性を示捲し、CFs(
CFs)mSOa Meのスルホン酸塩は約850℃ま
での耐久性を持つ。まkmの値によって湿潤性や浸透性
の値が幾分変動する。
Specifically, CF s (CF m )mCOOMe
(where m is 3 to 19 and Me is an alkali metal) carboxylates exhibit heat resistance up to about 250°C, and CFs (
CFs) mSOa Me sulfonate is durable up to about 850°C. The values of wettability and permeability vary somewhat depending on the value of km.

一方、湿潤性や浸透性、溶解性や水溶化架橋においては
、ノニオン型、特にエチレンオキサイド付加物からなる
構造のノニオン型が好ましい。
On the other hand, in terms of wettability, permeability, solubility, and water-solubilization crosslinking, a nonionic type, particularly a nonionic type having a structure consisting of an ethylene oxide adduct, is preferable.

ノニオン型の具体例としては、CFa(CFs)m(C
Hg CHs 0)nH(ここでのmは5〜9、nは6
〜19の範囲)があり、高い湿潤性と浸透性を示捲し、
多種類の溶媒にも溶解するという特徴を有する。
A specific example of nonionic type is CFa(CFs)m(C
Hg CHs 0) nH (here m is 5 to 9, n is 6
~19), exhibiting high wettability and permeability,
It has the characteristic of being soluble in many types of solvents.

市販されているアニオン型としては、フルオラードFC
−95,FC−98,FC−129、サーフロンS−1
11、S−113,ユニダインDS−101,DS−1
1等があり、まにノニオン型としては、フルオラードF
C−170C,FC−430,FC−4311サーフロ
ンS−141,S−145、ユニダインDS−401、
DS−402等があり、これらの中から比較的容易に選
択できる。
Fluorade FC is a commercially available anion type.
-95, FC-98, FC-129, Surflon S-1
11, S-113, Unidyne DS-101, DS-1
There is 1st grade, and the most nonionic type is Fluorade F.
C-170C, FC-430, FC-4311 Surflon S-141, S-145, Unidyne DS-401,
There are DS-402, etc., and it is relatively easy to select one from these.

CFs(CFs)m−で表現されるパーフルオ四アルキ
ル基はPTFE濾過膜の多孔性表面とvan derw
aals力によってかなり強固な結合をしており、水ま
なは塩水溶液中に保存しておくと長期間にわたって親水
性を持続する。しかし、フッ素系界面活性剤を水溶液に
不溶になるまで架橋されていない時には、長期間の水中
保存により大部分のフッ素系界面活性剤が水または水溶
液の中に拡散していってしまい、そのため一度PTFE
27ff過膜を乾燥させてしまうと湿潤性、浸透性が大
巾に低下しPTFE濾過膜そのものの撥水性を示すよう
になる。
The perfluorotetraalkyl group represented by CFs (CFs) m- is highly compatible with the porous surface of the PTFE filtration membrane.
The bond is quite strong due to the aals force, and if the water container is stored in an aqueous salt solution, it will maintain its hydrophilicity for a long period of time. However, if the fluorosurfactant is not cross-linked to the point where it becomes insoluble in an aqueous solution, most of the fluorosurfactant will diffuse into the water or aqueous solution due to long-term storage in water. PTFE
When the 27ff filtration membrane is dried, its wettability and permeability are greatly reduced, and the PTFE filtration membrane itself exhibits water repellency.

本発明における様に水溶液に不溶となるまでフッ素系界
面活性剤を架橋しておくと、長期間の水中保存によって
も拡散していくことがなく、初期と同一の親水性を持続
させることができる。
If the fluorosurfactant is crosslinked until it becomes insoluble in an aqueous solution as in the present invention, it will not diffuse even when stored in water for a long period of time, and the same hydrophilicity as the initial one can be maintained. .

上記の特徴は濾過という操作を行なう時に顕著な差とな
ってくる。即ちフッ素系界面活性剤が架橋されていない
PTFE濾過膜で硫酸や7ツ酸を加圧まなは減圧下に濾
過すると、濾過される液体が濾過容器の中になくなった
時に空気などの気体が濾過膜を通過してしまい、これが
親水性を大巾に低下させてしまう。それ故、濾過すべき
液体が濾過容器に残留する状態で次のF遇すべき液体を
追加することが必要となり、全体の操作を面倒なものに
していた。
The above characteristics make a noticeable difference when performing an operation called filtration. In other words, when sulfuric acid or sulfuric acid is filtered under pressure or reduced pressure through a PTFE filtration membrane that is not cross-linked with fluorosurfactant, when the liquid to be filtered is no longer in the filtration container, gases such as air are filtered out. It passes through the membrane, which greatly reduces hydrophilicity. Therefore, it is necessary to add the next liquid to be filtered while the liquid to be filtered remains in the filter container, making the entire operation complicated.

この傾向は、過酸化水素水(H++Og)の様に溶液か
らガスを発生し易すい液体の濾過を行なう時には一層顕
著となり、少量の濾過を行った時点で発生ガスが濾過膜
の多孔性空間を占有し、撥水性となってしまう。
This tendency becomes even more pronounced when filtering a liquid that easily generates gas from the solution, such as hydrogen peroxide (H++Og), and when a small amount of filtration is performed, the generated gas fills the porous spaces of the filter membrane. occupies the water and becomes water repellent.

これに対し、本発明の濾過膜は濾過液が全量−過容器を
流れに後にも親水性を持続し、まk Hg0gなどのガ
スを発生し易すい液体の濾過においても発生ガスによる
多孔性空間の占有といったことがなく、そのkめ発生ガ
スとH808とが同時に全量F遇することが出来る。
In contrast, the filtration membrane of the present invention maintains hydrophilicity even after the entire filtrate flows through the filtration container, and even when filtering a liquid that easily generates gas, such as 0 g of Hg, the filtration membrane does not create porous spaces due to the generated gas. The second generated gas and H808 can be used in their entirety at the same time.

次に製造方法について詳述する。Next, the manufacturing method will be explained in detail.

特公昭60−384! 等の方法によって製作されたP
TFE濾過膜を用いるのが好ましいが孔径分布が幾分広
いPTFE濾過膜であっても同じく適用できる。これら
のPTFE濾過膜の多孔性表面はまずフッ素系界面活性
剤によって塗布される。
Tokuko Showa 60-384! P manufactured by methods such as
Although it is preferable to use a TFE filtration membrane, a PTFE filtration membrane with a somewhat wider pore size distribution can also be used. The porous surface of these PTFE filtration membranes is first coated with a fluorosurfactant.

そのためにはフッ素系界面活性剤が水あるいはアルコー
ル等の可溶性液体によって希釈される。
For this purpose, the fluorosurfactant is diluted with a soluble liquid such as water or alcohol.

希釈用液体はその外にもア七トン、ジメチルホルムアミ
ド、メチルセロソルブ、四塩化炭素、トルエン等もあり
、更に2種類を同時に共用してもかまわない。希釈後の
濃度は5重量%以上の濃度ならば浸漬後に直ちに次工程
に入りうるが、5重量%未満である時には漬浸時間を1
0時間以上と長くすることが必要となる。
In addition to the above, diluting liquids include acetone, dimethylformamide, methyl cellosolve, carbon tetrachloride, and toluene, and two types may be used simultaneously. If the concentration after dilution is 5% by weight or more, the next step can be started immediately after dipping, but if it is less than 5% by weight, the immersion time is 1%.
It is necessary to make the time longer than 0 hours.

浸漬時間を短縮する方法として、PTFE濾過膜をまず
減圧下におき、次いで希釈溶液を注入することができる
。このためには100〜150閣HJ’の減圧を使用す
るのが最も望ましいが、760amH/以下の任意の圧
力で実施できる。減圧を利用すると希釈濃度を更に下げ
ることができ、kとえば3重量%の濃度であっても2時
間の浸漬時間で完全な浸漬が行なえる。まなα5重量%
の低濃度であっても減圧下での注入と浸漬時間を12時
間とすることで完全な浸漬を行なうことができる。ここ
でいう完全浸漬とはPTFE濾過膜を浸漬後に乾燥させ
、次いで再び水と接触させに時に全面にね九つて完全に
透明まなは半透明となって親水性を示す状態を表わす。
As a method to reduce the soaking time, the PTFE filtration membrane can be first placed under vacuum and then the diluted solution can be injected. It is most desirable to use a reduced pressure of 100 to 150 amH/H for this purpose, but it can be carried out at any pressure up to 760 amH/H. By using reduced pressure, the dilution concentration can be further lowered, and even if the concentration is 3% by weight, complete immersion can be achieved within 2 hours of immersion time. Mana α5% by weight
Even at low concentrations, complete immersion can be achieved by injecting under reduced pressure and setting the immersion time to 12 hours. Complete immersion here refers to a state in which the PTFE filtration membrane is dried after being immersed, and then brought into contact with water again so that the entire surface becomes completely transparent or translucent and exhibits hydrophilic properties.

それ故、不完全な浸漬の時には部分的に透明または半透
明となるが、他の部分には浸透しない白い斑点が残存す
ることを意味する。浸漬時間を長くすることによって完
全浸漬となるのは、希釈溶液中のフッ素系界面活性剤が
PTFE濾過膜の多孔性表面を全部を被覆するのに拡散
していくための時間が必要であるためと推定される。
Therefore, incomplete immersion means that some parts become transparent or translucent, but white spots that do not penetrate remain in other parts. The reason why complete immersion is achieved by increasing the immersion time is that time is required for the fluorine-based surfactant in the diluted solution to diffuse to completely cover the porous surface of the PTFE filtration membrane. It is estimated to be.

完全浸漬が終ったことを確認したのち、フッ素系界面活
性剤を水不溶化させるための高エネルギー輻射線の照射
が行なわれる。好適な形での輻射線としてはγ線(特に
Co60)、電子線、及び高エネルギープラズマが挙げ
られる。γ線や電子線の照射では酸素が存在することに
より劣化、特に機械的強度の低下が著しくなるので、酸
素が実質的に存在しない状態で行なうことが望ましい。
After confirming that complete immersion has been completed, high-energy radiation is irradiated to make the fluorosurfactant insoluble in water. Suitable forms of radiation include gamma radiation (particularly Co60), electron beams, and high energy plasmas. In the case of irradiation with gamma rays or electron beams, the presence of oxygen causes deterioration, particularly a significant decrease in mechanical strength, so it is desirable to carry out the irradiation in a state where oxygen is substantially absent.

このなめの一つの方法としてフッ素系界面活性剤を水で
希釈しな溶液でPTFE濾過膜を完全浸漬し、過剰分を
除去しなのちプラスチックスフィルムで袋状に梱包し、
P T F E濾過膜が湿潤したままで照射すると、P
 T F E濾過膜中の酸素の存在を減少できる。更に
完全にするには袋状物の内部を窒素で置換したのち照射
することもできる。
One method for this licking is to completely immerse the PTFE filtration membrane in a diluted solution of fluorosurfactant with water, remove the excess, and then pack it in a bag with plastic film.
P T F E When the filtration membrane is irradiated while still wet, P
The presence of oxygen in the TFE filtration membrane can be reduced. For further completeness, the interior of the bag-like material may be replaced with nitrogen before irradiation.

照射線量は0.5 Mrad 以上で力為つ3 Mra
d  の範囲が好ましく 0.5 Mrad 未満では
架橋等の反応量が不足し、水不溶化物の生成量が少なく
なる。
The irradiation dose is 0.5 Mrad or more and is 3 Mrad.
The range of d is preferable; if it is less than 0.5 Mrad, the amount of reactions such as crosslinking will be insufficient, and the amount of water-insolubilized products produced will be small.

一方8 Mrad  を越えると機械的強度の低下が顕
著になってくる。
On the other hand, when it exceeds 8 Mrad, the mechanical strength decreases significantly.

一方、プラズマによる水不溶化処理も実施できる。γ線
や電子線のエネルギーは15 eVの高エネルギーであ
るが、非平衡プラズマでの電子は1〜2 eVであるも
のの少量の高エネルギー電子が含まれ、10〜12 e
Vの範囲にまで及んでいる。
On the other hand, water insolubilization treatment using plasma can also be performed. The energy of gamma rays and electron beams is high energy of 15 eV, but the electrons in non-equilibrium plasma are 1 to 2 eV, but a small amount of high-energy electrons are included, and the energy is 10 to 12 eV.
It extends to the range of V.

この高エネルギー電子はフッ素系界面活性剤の水不溶化
に対し、充分のエネルギーを持っていることを確認しに
0この高エネルギープラズマを用いる場合にはPTFE
?濾過膜にフッ素系界面活性剤を完全浸漬し、次いで、
希釈液体を完全に除去して乾燥しな状態にて照射する。
In order to confirm that these high-energy electrons have sufficient energy to make the fluorosurfactant water insolubilized, it is necessary to use PTFE when using this high-energy plasma.
? The filtration membrane is completely immersed in the fluorosurfactant, and then
Completely remove the diluting liquid and irradiate in a dry state.

PTFE濾過膜は支持体に固定されるが、周辺のみを固
定する支持体の時には表面と裏面が同時に照射地理でき
て便利であるが、平板状支持体の時には片面を処理した
のち反対側の面を更に照射地理することが望ましい。非
平衡プラズマによる照射を行なうには、系内を1aIH
/以下、好ましくはθ、6■HJ’以下の減圧とし、か
つ、水素を含有するキャリヤーガス、たとえば、水素、
メタン、水などを用いることが好ましく、一般の非平衡
プラズマでよく用いられるヘリウム、アルゴン、窒素等
のガスは好ましくない。水素を含有するキャリヤーガス
ではフッ素系界面活性剤の水不溶化が効率的に進むから
である。
The PTFE filtration membrane is fixed to a support, but when using a support that fixes only the periphery, it is convenient because the front and back sides can be irradiated at the same time, but when using a flat support, one side is treated and then the opposite side is treated. It is desirable to further irradiate the area. To perform irradiation with non-equilibrium plasma, the system must be irradiated with 1aIH.
/ or less, preferably θ, 6■HJ' or less, and a carrier gas containing hydrogen, for example, hydrogen,
It is preferable to use methane, water, etc., and gases such as helium, argon, nitrogen, etc., which are often used in general non-equilibrium plasma, are not preferable. This is because a carrier gas containing hydrogen efficiently makes the fluorosurfactant insoluble in water.

以下には実施例によって本発明を更に説明する。The invention will be further explained below by way of examples.

実施例1 フロロボアFP−028(住友電工製PTFE濾過膜)
をフルオラードFC98(a M社製 パーフルオロア
ルキルスルホン酸カリウム)の5重量%ア七トン溶液に
20分間浸漬した。風乾し九のちペルジャー型のプラズ
マ装置にセットし系内をαl−H/に減圧した。水素ガ
スを1cc(STP)/分の流量で供給して0.5 m
nHPの圧力に調整し、1156MHz  のラジオ波
出力を50Wでプラズマを発生させた。10分間の放電
ののち、フロロポアをとり出し、水および硫酸(95%
)、塩酸(37%)、硝酸C’lO%)にそれぞれ浸漬
したところ全面にわなって浸透した。
Example 1 Fluorobor FP-028 (PTFE filtration membrane manufactured by Sumitomo Electric)
was immersed for 20 minutes in a 5% by weight solution of Fluorade FC98 (potassium perfluoroalkylsulfonate, manufactured by A.M.). After 9 days of air drying, it was set in a Pelger type plasma device and the pressure inside the system was reduced to αl-H/. 0.5 m by supplying hydrogen gas at a flow rate of 1 cc (STP)/min
The pressure was adjusted to nHP, and plasma was generated with a radio wave output of 1156 MHz and 50 W. After 10 minutes of discharge, the Fluoropore was taken out and soaked in water and sulfuric acid (95%
), hydrochloric acid (37%), and nitric acid (C'lO%), the entire surface was penetrated.

47m5直径の円型に打抜き、濾過装置にとりつけて上
記の強酸の濾過を行なつに0強酸を100cc  毎に
分割し、第1回目の100 cc  が濾過されるに必
要な時間と第5回目の100cct濾過するに必要な時
間を比較しなところ、両者が一致することが判かった。
Punch out a circular shape with a diameter of 47m5, attach it to a filtration device, and perform the filtration of the above strong acid by dividing the 0 strong acid into 100cc portions. When comparing the time required to filter 100cct, it was found that the two coincided.

比較例1 実施例1において、プラズマ装置に供給するキャリヤー
ガスを窒素とじなこと以外は全て同一の条件で製膜しな
。この膜は、塩酸、硝酸には一部分しか浸透しなかつk
が、水(硫酸には全面にわなって浸透しな。
Comparative Example 1 A film was formed under the same conditions as in Example 1 except that the carrier gas supplied to the plasma apparatus was changed to nitrogen. This membrane is only partially permeable to hydrochloric acid and nitric acid, and
However, water (sulfuric acid) does not penetrate the entire surface.

硫酸500 cc  を100 cc 毎に5回繰り返
して濾過しkところ、濾過時間は繰り返す毎に長くなり
最後の5回目の濾過を終えな膜では硫酸の浸透性が大巾
に低下していた。
When 500 cc of sulfuric acid was repeatedly filtered five times for each 100 cc, the filtration time became longer with each repetition, and by the time the fifth and final filtration was completed, the permeability of sulfuric acid had significantly decreased through the membrane.

実施例2 サーフロンS−111(旭硝子製 パーフルオロアルキ
ルカルボン酸塩)を水70%、イソプロピルアルコール
30%の混合溶媒に5重量%の溶液とし、24時間フロ
ロポアFP−022を浸漬した。
Example 2 Fluoropore FP-022 was immersed in a 5% by weight solution of Surflon S-111 (perfluoroalkyl carboxylate, manufactured by Asahi Glass) in a mixed solvent of 70% water and 30% isopropyl alcohol for 24 hours.

付着、している過剰の溶液を除去しなのち、窒素ガスで
パージしながらPE袋で密封しに0電子線加速機を用い
て2 Mrad  の線量を照射し、次いで洗浄乾燥し
な。この膜は硫酸、硝酸、塩酸等の濃厚液に対して浸透
性を有し、濾過実験においても実施例1と同じ結果が得
られ九〇 実施例3 ユニダインDS−401(ダイキン工業製バーフルオロ
アルキルエチレンオキシド付加物)をイソプロピルアル
コールに2重量%の濃度で溶解しな。
After removing the excess solution that has adhered to it, it is sealed in a PE bag while purging with nitrogen gas, and irradiated with a dose of 2 Mrad using a zero electron beam accelerator, and then washed and dried. This membrane has permeability to concentrated liquids such as sulfuric acid, nitric acid, and hydrochloric acid, and the same results as in Example 1 were obtained in the filtration experiment. (ethylene oxide adduct) in isopropyl alcohol at a concentration of 2% by weight.

フロロポアFP−010t−100amH/に減圧しな
セパラブルフラスコに入れ、次いでDS−401の溶液
を注入した。注入が完了後直ちに溶液からフロロポアF
P−010をとり出し90℃の温度でアルコールを乾燥
しな。低温プラズマ装置に両側の表面が同時に処理でき
るように懸垂して固定し、40”Cの水と平衡の水蒸気
が窒素ガスと同時に供給できるように配管しな。低温プ
ラズマ装置の系内を0.8■HJ’に調整し、50Wで
15分間プラズマを励起した。この処理を行ったフロロ
ポアは実施例1と同様の強酸に対する濾過特性を示しに
0実施例4 サーフロン−145(旭硝子製 パーフルオロアルキル
エチレンオキシド付加物)の2重量%水溶液を用い、1
50■H/の減圧下で70ロボアFP−010に含浸し
た。過剰の溶液を除去したのち実施例2と同じ電子線照
射を行っなところ、実施例1と同様の強酸浸透性と濾過
特性が得られな。
Fluoropore FP-010t-100 amH was placed in a separable flask under reduced pressure, and then a solution of DS-401 was injected. Fluoropore F is removed from the solution immediately after the injection is completed.
Take out P-010 and dry the alcohol at a temperature of 90°C. Suspend and fix to the low-temperature plasma device so that both surfaces can be treated at the same time, and connect the piping so that water vapor at equilibrium with 40"C water can be supplied at the same time as nitrogen gas. The plasma was adjusted to 8 HJ' and excited at 50 W for 15 minutes. Fluoropore subjected to this treatment showed the same filtration properties against strong acids as in Example 1. Using a 2% by weight aqueous solution of ethylene oxide adduct),
It was impregnated into 70 Roboa FP-010 under reduced pressure of 50 μH/. After removing the excess solution, the same electron beam irradiation as in Example 2 was performed, but the same strong acid permeability and filtration properties as in Example 1 were not obtained.

Claims (10)

【特許請求の範囲】[Claims] (1)ポリテトラフルオロエチレン濾過膜の多孔性表面
にフッ素化界面活性剤が積層され、該フッ素化界面活性
剤が水溶液に不溶になるまで架橋されていることを特徴
とする親水性ポリテトラフルオロエチレン濾過膜
(1) Hydrophilic polytetrafluoroethylene, characterized in that a fluorinated surfactant is laminated on the porous surface of a polytetrafluoroethylene filtration membrane, and the fluorinated surfactant is crosslinked until it becomes insoluble in an aqueous solution. ethylene filtration membrane
(2)フッ素化界面活性剤がアニオン型またはノニオン
型であることを特徴とする特許請求の範囲第1項記載の
親水性ポリテトラフルオロエチレン濾過膜
(2) The hydrophilic polytetrafluoroethylene filtration membrane according to claim 1, wherein the fluorinated surfactant is anionic or nonionic.
(3)ポリテトラフルオロエチレン濾過膜の多孔性表面
にフッ素化界面活性剤溶液を塗布し、高エネルギー輻射
線を照射した親水性ポリテトラフルオロエチレン濾過膜
の製造方法
(3) Method for producing a hydrophilic polytetrafluoroethylene filtration membrane by applying a fluorinated surfactant solution to the porous surface of the polytetrafluoroethylene filtration membrane and irradiating it with high-energy radiation.
(4)フッ素化界面活性剤がアニオン型またはノニオン
型であることを特徴とする特許請求の範囲第3項記載の
親水性ポリテトラフルオロエチレン濾過膜の製造方法
(4) A method for producing a hydrophilic polytetrafluoroethylene filtration membrane according to claim 3, wherein the fluorinated surfactant is anionic or nonionic.
(5)フッ素化界面活性剤が減圧下にポリテトラフルオ
ロエチレン濾過膜に塗布されることを特徴とする特許請
求の範囲第3項記載の親水性ポリテトラフルオロエチレ
ン濾過膜の製造方法
(5) A method for producing a hydrophilic polytetrafluoroethylene filtration membrane according to claim 3, characterized in that the fluorinated surfactant is applied to the polytetrafluoroethylene filtration membrane under reduced pressure.
(6)高エネルギー輻射線がCo^6^0のγ線である
ことを特徴とする特許請求の範囲第3項記載の親水性ポ
リテトラフルオロエチレン濾過膜の製造方法
(6) A method for producing a hydrophilic polytetrafluoroethylene filtration membrane according to claim 3, wherein the high-energy radiation is Co^6^0 gamma rays.
(7)高エネルギー輻射線が電子線であることを特徴と
する特許請求の範囲第3項記載の親水性ポリテトラフル
オロエチレン濾過膜の製造方法
(7) A method for producing a hydrophilic polytetrafluoroethylene filtration membrane according to claim 3, wherein the high-energy radiation is an electron beam.
(8)高エネルギー輻射線が非平衡プラズマであること
を特徴とする特許請求の範囲第3項記載の親水性ポリテ
トラフルオロエチレンろ過膜の製造方法
(8) A method for producing a hydrophilic polytetrafluoroethylene filtration membrane according to claim 3, characterized in that the high-energy radiation is non-equilibrium plasma.
(9)フッ素化界面活性剤がCF_3(CF_2)_m
COOMe、CF_3(CF_2)_mSO_3Meま
たはCF_3(CF_2)_m(CH_2−CH_2−
O)_nH(上記式中、mは3〜19、nは6〜19、
MeはLi、Na、Kである)であることを特徴とする
特許請求の範囲第4項記載の親水性ポリテトラフルオロ
エチレン濾過膜の製造方法
(9) Fluorinated surfactant is CF_3 (CF_2)_m
COOMe, CF_3(CF_2)_mSO_3Me or CF_3(CF_2)_m(CH_2-CH_2-
O)_nH (in the above formula, m is 3 to 19, n is 6 to 19,
The method for producing a hydrophilic polytetrafluoroethylene filtration membrane according to claim 4, wherein Me is Li, Na, or K.
(10)非平衡プラズマによる高エネルギー輻射線架橋
において、キャリヤーガスが水素、水、メタン等の水素
含有ガスを用いることを特徴とする特許請求の範囲第6
項又は第7項又は第8項記載の親水性ポリテトラフルオ
ロエチレン濾過膜の製造方法
(10) Claim 6, characterized in that in high-energy radiation crosslinking using non-equilibrium plasma, a hydrogen-containing gas such as hydrogen, water, or methane is used as the carrier gas.
Method for producing a hydrophilic polytetrafluoroethylene filtration membrane according to item 7 or 8
JP60090662A 1985-04-25 1985-04-25 Hydrophilic polytetrafluoroethylene filter membrane and its production Granted JPS61249503A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60090662A JPS61249503A (en) 1985-04-25 1985-04-25 Hydrophilic polytetrafluoroethylene filter membrane and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60090662A JPS61249503A (en) 1985-04-25 1985-04-25 Hydrophilic polytetrafluoroethylene filter membrane and its production

Publications (2)

Publication Number Publication Date
JPS61249503A true JPS61249503A (en) 1986-11-06
JPH0521010B2 JPH0521010B2 (en) 1993-03-23

Family

ID=14004743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60090662A Granted JPS61249503A (en) 1985-04-25 1985-04-25 Hydrophilic polytetrafluoroethylene filter membrane and its production

Country Status (1)

Country Link
JP (1) JPS61249503A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2305369A1 (en) * 2009-09-30 2011-04-06 Fujifilm Corporation Crystalline polymer microporous membrane, method for producing the same, and filtration filter
JP2011110473A (en) * 2009-11-25 2011-06-09 Fujifilm Corp Microporous membrane of crystalline polymer, method of producing the same, and filter for use in filtration
JP2011110470A (en) * 2009-11-25 2011-06-09 Fujifilm Corp Microporous membrane of crystalline polymer, method of producing the same, and filter for use in filtration
JP2013502323A (en) * 2009-08-24 2013-01-24 オアシス ウォーター,インコーポレーテッド Forward osmosis membrane
JP2016074828A (en) * 2014-10-07 2016-05-12 三菱マテリアル株式会社 Hydrophilic oil repellent solution, surface coating material, coating film, resin composition, oil and water separation filter medium and porous body
US9630151B2 (en) 2015-03-31 2017-04-25 Pall Corporation Hydrophilically modified fluorinated membrane (V)
CN112473402A (en) * 2020-12-18 2021-03-12 盐城海普润科技股份有限公司 Hydrophilic polytetrafluoroethylene micro-ultrafiltration membrane and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56157437A (en) * 1980-05-07 1981-12-04 Sumitomo Electric Ind Ltd Preparation of hydrophilic porous structure
JPS6014834A (en) * 1983-07-07 1985-01-25 松下電器産業株式会社 Cutter for cooking machine
JPH0521009A (en) * 1991-06-18 1993-01-29 Sony Corp Manufacture of color cathode-ray tube

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56157437A (en) * 1980-05-07 1981-12-04 Sumitomo Electric Ind Ltd Preparation of hydrophilic porous structure
JPS6014834A (en) * 1983-07-07 1985-01-25 松下電器産業株式会社 Cutter for cooking machine
JPH0521009A (en) * 1991-06-18 1993-01-29 Sony Corp Manufacture of color cathode-ray tube

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013502323A (en) * 2009-08-24 2013-01-24 オアシス ウォーター,インコーポレーテッド Forward osmosis membrane
JP2016147260A (en) * 2009-08-24 2016-08-18 オアシス ウォーター,インコーポレーテッド Forward osmosis membranes
EP2305369A1 (en) * 2009-09-30 2011-04-06 Fujifilm Corporation Crystalline polymer microporous membrane, method for producing the same, and filtration filter
JP2011072920A (en) * 2009-09-30 2011-04-14 Fujifilm Corp Crystalline polymer micro-porous membrane, method for producing the same, and filter for filtration
JP2011110473A (en) * 2009-11-25 2011-06-09 Fujifilm Corp Microporous membrane of crystalline polymer, method of producing the same, and filter for use in filtration
JP2011110470A (en) * 2009-11-25 2011-06-09 Fujifilm Corp Microporous membrane of crystalline polymer, method of producing the same, and filter for use in filtration
JP2016074828A (en) * 2014-10-07 2016-05-12 三菱マテリアル株式会社 Hydrophilic oil repellent solution, surface coating material, coating film, resin composition, oil and water separation filter medium and porous body
US9630151B2 (en) 2015-03-31 2017-04-25 Pall Corporation Hydrophilically modified fluorinated membrane (V)
CN112473402A (en) * 2020-12-18 2021-03-12 盐城海普润科技股份有限公司 Hydrophilic polytetrafluoroethylene micro-ultrafiltration membrane and preparation method thereof

Also Published As

Publication number Publication date
JPH0521010B2 (en) 1993-03-23

Similar Documents

Publication Publication Date Title
US5871823A (en) Hydrophilic coating of surfaces of polymeric substrates
JP2749094B2 (en) Method for producing multifunctional filtration membrane having iminodiacetic acid group
EP0398601B1 (en) Hydrophobic membranes
US7867417B2 (en) Membrane post treatment
JP2000512904A (en) Surface modified porous membrane and method
JPH034627B2 (en)
JP2008516075A (en) Preparation method of hydrophilic polyethersulfone membrane
CN108211814B (en) Hydrophilic modification method for polytetrafluoroethylene porous membrane
WO1991010498A1 (en) Strongly acidic microporous membranes for cationic exchange
JP3993096B2 (en) Modified polymer having improved properties and method for producing the same
JPH0724314A (en) Chelate type ion adsorbing film and production thereof
JPS61249503A (en) Hydrophilic polytetrafluoroethylene filter membrane and its production
JPS61249502A (en) Hydrophilic polytetrafluoroethylene filter membrane and its production
JPH0478328B2 (en)
JPH07304888A (en) Method for making porous material made of fluororesin hydrophilic
CN107441965B (en) Preparation method of porous membrane
JPH0259029A (en) Porous membrane having hydrophilic surface and preparation thereof
JPH0198640A (en) Production of hydrophilic porous tetrafluoroethylene resin film
JPH01313544A (en) Modification of porous fluororesin tube
JP3463099B2 (en) Polymer surface treatment method
JP2003251162A (en) Separation membrane and production method therefor
AU2005312347A1 (en) Membrane post treatment
JP6631171B2 (en) Porous fluororesin with surface grafted
JP2004035582A (en) Method for producing surface-treated polymeric microporous membrane
JPH03139534A (en) Surface modification of polymeric structure