JPS6124927Y2 - - Google Patents

Info

Publication number
JPS6124927Y2
JPS6124927Y2 JP17445679U JP17445679U JPS6124927Y2 JP S6124927 Y2 JPS6124927 Y2 JP S6124927Y2 JP 17445679 U JP17445679 U JP 17445679U JP 17445679 U JP17445679 U JP 17445679U JP S6124927 Y2 JPS6124927 Y2 JP S6124927Y2
Authority
JP
Japan
Prior art keywords
dissolved oxygen
container
liquid
oxygen concentration
stirrer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP17445679U
Other languages
Japanese (ja)
Other versions
JPS5692848U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP17445679U priority Critical patent/JPS6124927Y2/ja
Publication of JPS5692848U publication Critical patent/JPS5692848U/ja
Application granted granted Critical
Publication of JPS6124927Y2 publication Critical patent/JPS6124927Y2/ja
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】 本考案は液体に含まれる溶存酸素の飽和値に対
する比率を測定する装置に関し、特に携帯に便利
で、かつ精度よく、迅速に溶存酸素飽和率を測定
する装置を提供するにある。
[Detailed description of the invention] The present invention relates to a device for measuring the ratio of dissolved oxygen contained in a liquid to a saturation value, and in particular provides a device that is convenient to carry, accurately and quickly measures the dissolved oxygen saturation rate. It is in.

従来、溶存酸素飽和率を求めるには、液体中の
溶存酸素濃度(Amg/)を測定し、その液体試
料の温度と同一温度の純粋な液体における溶存酸
素濃度(Aomg/)を恒数表から求め、この飽
和値を規準として、Ds=A/Ao×100(%)を算
出し、Dsを溶存酸素飽和率としている。
Conventionally, to determine the dissolved oxygen saturation rate, the dissolved oxygen concentration (Amg/) in a liquid is measured, and the dissolved oxygen concentration (Aomg/) in a pure liquid at the same temperature as the liquid sample is calculated from a constant table. Using this saturation value as a standard, Ds=A/Ao×100 (%) is calculated, and Ds is taken as the dissolved oxygen saturation rate.

一般に溶存酸素飽和値は液体の温度と、液体に
含まれる夾雑物によつて変化することが知られて
いる。例えば、水を例にとれば、20℃の純水中で
は8.84mg/であるのに対して、10℃,30℃では
それぞれ10.92,7.53mg/に、又海水の塩分濃
度に近い、15000mg/の塩化物イオンが含まれ
る場合には、10,20,30℃の各温度において
9.23,7.54,6.41mg/に変化する。塩化物イオ
ン100mg/当りの溶存酸素飽和値の変化量は塩
化物イオンの濃度レベルと温度によつて異なり、
0.0074〜0.0153mg/の範囲で変動する。即ち、
温度と塩分濃度は、溶存酸素飽和値に著しく影響
を与えることがわかる。
It is generally known that the dissolved oxygen saturation value changes depending on the temperature of the liquid and the impurities contained in the liquid. For example, taking water as an example, in pure water at 20°C the salinity is 8.84mg/, while at 10°C and 30°C the salinity is 10.92 and 7.53mg/, respectively, and the salinity is 15000mg/, which is close to seawater. If chloride ions are included, at temperatures of 10, 20, and 30℃.
Changes to 9.23, 7.54, 6.41mg/. The amount of change in dissolved oxygen saturation value per 100 mg of chloride ion varies depending on the concentration level of chloride ion and temperature.
It varies in the range of 0.0074 to 0.0153 mg/. That is,
It can be seen that temperature and salinity significantly affect dissolved oxygen saturation values.

液体中の夾雑物は複雑に入り混じつていること
が多く、単一な成分と温度をパラメーターにして
飽和値を推定することは困難である。従つて、溶
存酸素測定現場における液体が空気との接触によ
つて到達する溶存酸素飽和値(Ao′mg/)を実
測し、Ds′=A/Ao′×100(%)を求めると、理
論値から推定した前記DsはDs′と一致せず、乗離
を生ずることが多い。
Contaminants in liquids are often mixed in a complex manner, and it is difficult to estimate the saturation value using a single component and temperature as parameters. Therefore, by actually measuring the dissolved oxygen saturation value (Ao'mg/) that the liquid reaches when it comes into contact with air at the site of dissolved oxygen measurement, and finding Ds' = A/Ao' x 100 (%), the theoretical The Ds estimated from the value does not match Ds', and deviations often occur.

溶存酸素濃度は揺動,温度変化,圧力変化,外
気との接触等によつて変化しやすいため、液体の
存在する環境、即ち試料採取現場において測定が
行なわれるが、溶存酸素測定時に、飽和値に影響
を与える温度,夾雑物等の諸因子を正確に測定す
ることは困難であり、たとえ温度,塩素イオン濃
度等が測定できてもそれらの測定値から溶存酸素
飽和値を恒数表から按分比例によつて読み取らな
ければならず、正確を期し難い。
Dissolved oxygen concentration tends to change due to fluctuations, temperature changes, pressure changes, contact with outside air, etc., so measurements are performed in an environment where liquid exists, that is, at the sample collection site. It is difficult to accurately measure various factors that affect temperature, impurities, etc., and even if temperature, chloride ion concentration, etc. can be measured, the dissolved oxygen saturation value can be calculated from these measured values proportionally from a table of constants. It must be read based on proportion, and it is difficult to ensure accuracy.

近年,河川,湖沼,海域等公共用水域の汚濁指
標の一つとして、下水,し尿,工場排水等の生物
処理プロセスの管理、放流水の水質監視に、ある
いは養魚池の水質管理、発酵槽の運転指標等とし
て産業面でも広く溶存酸素の測定が行なわれてい
る。
In recent years, it has been used as one of the pollution indicators of public water bodies such as rivers, lakes, and sea areas, for the management of biological treatment processes such as sewage, human waste, and industrial wastewater, for monitoring the water quality of effluent water, for the water quality management of fish ponds, and for fermentation tanks. Dissolved oxygen is widely measured in industry as an operational indicator.

水域の汚濁の程度を示す酸素垂み曲線、河川,
海域等における水の酸素消費と脱酸素状態の出現
予測、河川等の再曝気係数の導出、酸素移動係
数、溶存酸素の飽和値との乗離等を求める場合に
は溶存酸素飽和率が不可欠に用いられ、かつその
値は正確でなければならない。上述の理由から溶
存酸素測定現場において、同一試料について、同
時に溶存酸素飽和値を実測することが望まれる。
即ち、溶存酸素測定現場に自在に携帯でき、かつ
正確に溶存酸素飽和率を測定できる装置の出現が
切望されてきた。
Oxygen sag curves showing the degree of pollution of water bodies, rivers,
Dissolved oxygen saturation rate is indispensable when predicting the appearance of oxygen consumption and deoxygenation in water in sea areas, deriving the reaeration coefficient of rivers, etc., determining the oxygen transfer coefficient, and the relationship between the dissolved oxygen saturation value, etc. used and its value must be accurate. For the reasons mentioned above, it is desirable to measure the dissolved oxygen saturation value of the same sample at the same time at the site of dissolved oxygen measurement.
That is, there has been a strong desire for an apparatus that can be freely carried to the site of dissolved oxygen measurement and that can accurately measure the dissolved oxygen saturation rate.

又、溶存酸素の測定にはガルバニー方式、又は
ポーラクログラフ方式の隔膜電極が汎用されてい
るが、酸素分子を透過する隔膜の厚みと酸素透過
係数とが拡散電流値に影響を与えるため、あらか
じめ溶存酸素濃度既知の液体について電流値を求
め、既知濃度に指示値を合わせる、所謂比例定数
の設定操作、即ち、装置のキヤリブレーシヨン
(較正)を行う。この操作には一般に20℃の溶存
酸素飽和水が用いられており、通常実験室で予め
較正したまま、長期に溶存酸素の測定をし続け
る。しかし、現実には水中に共存する懸濁粒子や
汚濁物質が隔膜に付着し、実質的な膜厚や酸素透
過係数を変化せしめる。したがつて測定現場にお
いてしばしば溶存酸素濃度既知の基準水を用いて
溶存酸素計のキヤリブレーシヨンを行なわなけれ
ばならない。この面からも測定現場において容易
に溶存酸素飽和基準水を調整し得る携帯自在な装
置の考案が要望されてきた。
In addition, galvanic or polar chromatographic membrane electrodes are commonly used to measure dissolved oxygen, but since the thickness of the membrane through which oxygen molecules permeate and the oxygen permeability coefficient affect the diffusion current value, A current value is determined for a liquid whose dissolved oxygen concentration is known, and a so-called proportionality constant setting operation is performed in which the indicated value is adjusted to the known concentration, that is, the device is calibrated. This procedure generally uses water saturated with dissolved oxygen at 20°C, and is usually calibrated in advance in the laboratory to continue measuring dissolved oxygen over a long period of time. However, in reality, suspended particles and pollutants that coexist in water adhere to the diaphragm, changing the actual membrane thickness and oxygen permeability coefficient. Therefore, it is often necessary to calibrate the dissolved oxygen meter at the measurement site using reference water whose dissolved oxygen concentration is known. From this point of view, there has been a demand for a portable device that can easily adjust the dissolved oxygen saturated reference water at the measurement site.

通常、溶存酸素飽和液体を調整するには長い時
間がかかる。このため、電力使用量が大きく、小
型、携帯化が困難であるとともに、現場における
試料の飽和に長時間を要し、実際的でなかつた。
It usually takes a long time to prepare dissolved oxygen saturated liquids. For this reason, it consumes a large amount of electricity, is difficult to make small and portable, and requires a long time to saturate the sample in the field, making it impractical.

考案者らは、これらのニーズを背景に溶存酸素
飽和の完結に要する時間の短縮に関して鋭意検討
を加えた結果、微気泡を渦流状に送入することに
よつて、きわめて短時間に飽和値に達せしめうる
ことを見出し、溶存酸素測定現場に携帯し得る小
型軽量で試料に容易に酸素を飽和せしめて溶存酸
素飽和液体とし、この溶存酸素飽和値と溶存酸素
測定値とを信号処理してDs=A/Ao′×100
(%)を演算し、表示器に表示する装置を考案す
るに至つた。
With these needs in mind, the inventors conducted extensive research into reducing the time required to complete dissolved oxygen saturation, and as a result, they were able to reach the saturation value in an extremely short time by introducing microbubbles in a vortex-like manner. We discovered that it is possible to achieve this by easily saturating the sample with oxygen to form a dissolved oxygen saturated liquid using a small and lightweight device that can be carried at the site of dissolved oxygen measurement, and by signal processing the dissolved oxygen saturation value and the dissolved oxygen measurement value to obtain Ds. =A/Ao′×100
We have devised a device that calculates (%) and displays it on a display.

すなわち、本考案は脱着自在な栓により密閉さ
れ、かつ被測定液導入口、空気導入具、該空気導
入具に連通して該空気導入具からの空気を微細な
気泡として噴出させる器具及び前記気泡を渦流状
となす撹拌器を備えた容器と、被測定液排出口お
よび溶存酸素濃度検出器挿入口を有し、かつ撹拌
器を備える容器と、前記両容器を連通する切換え
コツク付き連通管と、前記溶存酸素濃度検出器挿
入口に装着した溶存酸素濃度検出器と、該検出器
による測定値を記憶し、演算する演算器と、該演
算器の演算値を表示する表示器とにより成る溶存
酸素飽和率測定装置である。
That is, the present invention includes a liquid introduction port that is sealed with a removable stopper, an air introduction device, a device that communicates with the air introduction device and blows out air from the air introduction device as fine bubbles, and the air bubbles. a container equipped with a stirrer that creates a whirlpool, a container having a liquid to be measured outlet and a dissolved oxygen concentration detector insertion port and equipped with a stirrer, and a communication pipe with a switching pot that communicates both the containers. , a dissolved oxygen concentration detector that is attached to the dissolved oxygen concentration detector insertion port, a computing unit that stores and calculates the measured value by the detector, and a display that displays the computed value of the computing unit. This is an oxygen saturation rate measuring device.

以下、図面を参照しつつ実施例に基づいて本考
案を詳述する。
Hereinafter, the present invention will be described in detail based on embodiments with reference to the drawings.

図において、1は容積200〜300ml程度の試料採
取を兼ねる酸素飽和液体調整容器で、試料導入口
22、溢入口5、排液口10、脱着自在な栓14
を有する。該容器内に電磁撹拌子16と微細孔を
有する球状気泡発生器17を有し、前者は電磁撹
拌機13により作動せしめられ、後者は管18を
介して空気ポンプ12に連結させる。三方コツク
4に連結される試料導入口22は試料採取ポンプ
3を通じて試料導入管33に連なる。34,35
は連結管、23,24,25は三方コツク4にお
ける連通口を示す。
In the figure, 1 is an oxygen-saturated liquid adjustment container with a volume of about 200 to 300 ml that also serves as sample collection, including a sample introduction port 22, an overflow port 5, a drain port 10, and a removable stopper 14.
has. The container contains an electromagnetic stirrer 16 and a spherical bubble generator 17 with fine holes, the former operated by the electromagnetic stirrer 13 and the latter connected to the air pump 12 via a tube 18. A sample introduction port 22 connected to the three-way pot 4 is connected to a sample introduction pipe 33 through a sample collection pump 3. 34, 35
is a connecting pipe, and 23, 24, and 25 are communication ports in the three-way socket 4.

2は容積100〜150ml程度の溶存酸素測定容器
で、溢流口19,試料排出口20,試料導入口2
1,溶存酸素濃度検出器挿入口42を有する。前
記容器2内に電磁撹拌子8を有し、該撹拌子8は
電磁撹拌機11に連動する。また、前記試料導入
口21は三方コツク7、連通管6を介して前記容
器1の排液口10とを連通させる。茲に、26,
27,28は三方コツクの連通口、36,37,
38は連結管を示す。
2 is a dissolved oxygen measuring container with a volume of about 100 to 150 ml, which has an overflow port 19, a sample outlet 20, and a sample inlet 2.
1. Has a dissolved oxygen concentration detector insertion port 42. An electromagnetic stirrer 8 is provided inside the container 2, and the stirrer 8 is interlocked with an electromagnetic stirrer 11. Further, the sample introduction port 21 communicates with the drain port 10 of the container 1 via the three-way pot 7 and the communication tube 6. 26,
27, 28 are three-way communication ports, 36, 37,
38 indicates a connecting pipe.

さらに、9は三方コツクで、その連通口29は
連結管39を介して前記容器2の排出口20と、
また連通口30は連結管40を介して前記溢流口
19と、さらに連通口31は連結管41を介して
T字型の排出管32と連結させる。また、前記容
器1の溢流口5は連結管15を介して前記排出管
32を連結させる。
Furthermore, 9 is a three-way pot, and its communication port 29 is connected to the outlet 20 of the container 2 via a connecting pipe 39,
The communication port 30 is connected to the overflow port 19 via a connecting pipe 40, and the communication port 31 is connected to a T-shaped discharge pipe 32 via a connecting pipe 41. Further, the overflow port 5 of the container 1 is connected to the discharge pipe 32 via a connecting pipe 15.

43は前記容器2の検出器挿入口42に装着さ
せた溶存酸素濃度検出器、44は酸素電極で陽極
と陰極とを含む。45は演算器で、前記検出器4
3による測定値を記憶し、演算する。46は表示
器で、前記演算器45の演算値を表示する。
43 is a dissolved oxygen concentration detector attached to the detector insertion port 42 of the container 2, and 44 is an oxygen electrode including an anode and a cathode. 45 is a computing unit, and the detector 4
3. Store and calculate the measured values. A display 46 displays the calculated value of the calculator 45.

茲に、前記容器1と容器2の容積は概ね2対1
がよい。容器2には電極44が挿入されるため、
容器の実効内容積はさらに半減する。連通管6は
サイフオンを形成せしめ、容器2は容器1よりも
低水準位に配置する。
Furthermore, the volumes of the containers 1 and 2 are approximately 2:1.
Good. Since the electrode 44 is inserted into the container 2,
The effective internal volume of the container is further reduced by half. The communication tube 6 forms a siphon, and the container 2 is placed at a lower level than the container 1.

また、試料採取ポンプ3はプランジヤー型、渦
巻型、タービン型、ギヤー型、電磁型、隔膜型な
どいずれの型式のものでもよく、携帯用としてプ
ランジヤー型がよい。ポンプを用いて試料を容器
に送入しても始めの50〜100mlを溢流、排出させ
れば溶存酸素濃度は試料のそれと同一になり、一
定値を示す。空気ポンプはコンプレツサー型、ブ
ロワー型、隔膜型などいずれを使用してもよく、
携帯用として好ましくは隔膜ポンプがよい。
Further, the sample collection pump 3 may be of any type such as a plunger type, a spiral type, a turbine type, a gear type, an electromagnetic type, or a diaphragm type, and the plunger type is preferable for portable use. Even if a sample is sent into a container using a pump, if the first 50 to 100 ml is allowed to overflow and drain, the dissolved oxygen concentration will be the same as that of the sample and will show a constant value. Air pumps may be of the compressor type, blower type, diaphragm type, etc.
For portable use, a diaphragm pump is preferred.

また、容器内の液体の撹拌は撹拌羽根を回転さ
せる方式、電磁撹拌方式等いずれの方法でもよ
く、好ましくは電磁撹拌方式が携帯用として優れ
ている。
Further, the liquid in the container may be stirred by any method such as a method of rotating a stirring blade or an electromagnetic stirring method. Preferably, the electromagnetic stirring method is excellent for portable use.

本考案の最も重要な点は被測定液に酸素を飽和
させる時間の短縮迅速化であり、例えば半熔融ガ
ラス製の球状気泡発生器による酸素飽和速度と、
液体を流動させ、あるいは気泡を渦流状に発生さ
せた場合の飽和速度とは、前者の場合飽和に20分
間を要するのに対して、発生気泡を相対的に渦流
状に流動させた場合には酸素飽和時間は5分間に
短縮され、かつ隔膜ポンプの使用によつて、これ
らの駆動用電力は小さくてすみ、携帯・小型化が
可能となる。
The most important point of this invention is to shorten and speed up the time to saturate the liquid to be measured with oxygen. For example, the oxygen saturation rate using a spherical bubble generator made of semi-molten glass,
The saturation speed when flowing a liquid or generating bubbles in a vortex is that in the former case it takes 20 minutes to saturate, whereas when the bubbles are made to flow relatively in a vortex. Oxygen saturation time is shortened to 5 minutes, and by using a diaphragm pump, the power required to drive these devices is small, allowing for portability and miniaturization.

気泡を渦流状に流動させる方法としては電磁撹
拌子を回転させて液体を撹拌するか、あるいは球
状気泡発生器を回転させて渦流状に気泡を発生さ
せるかであるが、好ましくは後者のバブラー回転
方式がよい。曝気に当つては空気中の汚染物質が
容器内の液体に移行し、溶解する恐れがあるの
で、送入空気は予め純水を満した容器に通じ、洗
浄しておくことが好ましい。容器1に試料の代わ
りに純水又は蒸留水を導入し、同様に作動せしめ
れば溶存酸素飽和基準水を調整し得、これによつ
て酸素電極の較正を測定現場においてなしうる。
To make bubbles flow in a whirlpool, there are two methods: rotating an electromagnetic stirrer to stir the liquid, or rotating a spherical bubble generator to generate bubbles in a whirlpool, the latter of which is preferred by rotating the bubbler. Good method. During aeration, there is a risk that contaminants in the air may transfer to and dissolve in the liquid in the container, so it is preferable that the incoming air be passed through a container filled with pure water and cleaned in advance. If pure water or distilled water is introduced into the container 1 instead of the sample and operated in the same manner, the dissolved oxygen saturation reference water can be adjusted, thereby making it possible to calibrate the oxygen electrode at the measurement site.

さて、前記ポンプ3のスイツチ(図示せず)を
「入(ON)」させてポンプ3を作動させると、一
連のリレーによつて三方コツク4は連通口23,
25が、また三方コツク7は連通口26,28
が、さらに三方コツク9は連通口30,31が連
通するように切換り、管33を通じて採取地点か
ら試料が容器1に流入する。容器1内の液面が上
昇すると試料の一部は溢流口5を通じて排出さ
れ、一部は連通管6を通じて容器2に移行し、容
器内の液面が上昇して溢流口19を通じて排出管
32に排出される。
Now, when the switch (not shown) of the pump 3 is turned ON to operate the pump 3, a series of relays connect the three-way pump 4 to the communication port 23,
25, and the three-way socket 7 has communication ports 26 and 28.
However, the three-way pot 9 is further switched so that the communication ports 30 and 31 are in communication with each other, and the sample flows into the container 1 from the sampling point through the pipe 33. When the liquid level in the container 1 rises, part of the sample is discharged through the overflow port 5, and part of the sample is transferred to the container 2 through the communication pipe 6, and as the liquid level in the container rises, it is discharged through the overflow port 19. It is discharged into pipe 32.

かかる状況に達したときに、前記電磁撹拌器1
1を連動して撹拌子8を作動せしめ、溶存酸素量
に対する酸素電極44の拡散電流の微分値が零に
なつたとき、その値を演算器45が記憶すると同
時にポンプ3のスイツチが「切(OFF)」になる
と一連のリレーが働きコツク7は連通口27,2
8が、コツク9は連通口29,31が連通して容
器2内の液が排出される。と同時にポンプ12の
スイツチ(図示せず)が「入」になり、空気ポン
プ12と撹拌子16が回転し、球状気泡発生器1
7から発生する微気泡は渦流状となつて容器1内
に拡がり、急速に液体中に酸素が溶解する。タイ
マー(図示せず)が設定時間に達したときポンプ
12のスイツチが「切」になり、空気ポンプ1
2,撹拌子16が停止され、容器1内の気泡は急
速に消滅するとともに、一連のリレーが働きコツ
ク4は連通口24,25が、コツク7は連通口2
6,28が、コツク9は連通口30,31が連通
し、容器1の溶存酸素飽和液は容器2に移行し、
酸素電極44に流れる拡散電流の微分値が零にな
つたとき、演算器45によつて溶存酸素飽和率を
演算し、その結果を表示器46に表示する。
When such a situation is reached, the electromagnetic stirrer 1
1 to operate the stirrer 8, and when the differential value of the diffusion current of the oxygen electrode 44 with respect to the amount of dissolved oxygen becomes zero, the calculator 45 memorizes that value and at the same time the switch of the pump 3 is turned off. OFF), a series of relays are activated and Kotoku 7 is connected to communication ports 27 and 2.
In the container 8, the communication ports 29 and 31 communicate with each other, and the liquid in the container 2 is discharged. At the same time, the switch (not shown) of the pump 12 is turned on, the air pump 12 and the stirrer 16 rotate, and the spherical bubble generator 1
The microbubbles generated from 7 spread into the container 1 in the form of a vortex, and oxygen rapidly dissolves in the liquid. When a timer (not shown) reaches the set time, pump 12 is switched off and air pump 1 is switched off.
2. The stirrer 16 is stopped, the air bubbles in the container 1 disappear rapidly, and a series of relays are activated to open the communication ports 24 and 25 in the pot 4 and the communication port 2 in the pot 7.
6 and 28, the communication ports 30 and 31 of the pot 9 communicate with each other, and the dissolved oxygen saturated liquid in the container 1 moves to the container 2,
When the differential value of the diffusion current flowing through the oxygen electrode 44 becomes zero, the arithmetic unit 45 calculates the dissolved oxygen saturation rate, and the result is displayed on the display 46.

上記のように、本考案は脱着自在な栓により密
閉され、かつ被測定液導入口、空気導入具、該空
気導入具に連通して該空気導入具からの空気を微
細な気泡として噴出させる器具及び前記気泡を渦
流状となす撹拌器を備えた容器と、被測定液排出
口および溶存酸素濃度検出器挿入口を有し、かつ
撹拌器を備える容器と、前記両容器を連結する切
換えコツク付き連通管と、前記溶存酸素濃度検出
器挿入口に装着した溶存酸素濃度検出器と、該検
出器による測定値を記憶し、演算する演算器と、
該演算器の演算値を表示する表示器とを有するも
のであるから小型軽量にして携帯に便利である。
As described above, the present invention is a device that is sealed with a removable stopper, and that is connected to a liquid to be measured inlet, an air introduction device, and the air introduction device, and that blows out air from the air introduction device as fine bubbles. and a container equipped with a stirrer that causes the bubbles to form a whirlpool, a container having a liquid to be measured outlet and a dissolved oxygen concentration detector insertion port, and also equipped with a stirrer, and a switching pot for connecting both the containers. a communication pipe, a dissolved oxygen concentration detector attached to the dissolved oxygen concentration detector insertion port, and a computing unit that stores and calculates the measured value by the detector;
Since it has a display that displays the calculated values of the arithmetic unit, it is small and lightweight, making it convenient to carry.

また、被測定液に空気を供給して溶存酸素飽和
液とするので溶存酸素飽和率もより正確となるも
のである。さらに、気泡発生器により短時間に溶
存酸素飽和液を生成し得るので測定も迅速に実施
可能となるものである。
Furthermore, since air is supplied to the liquid to be measured to make it a dissolved oxygen saturated liquid, the dissolved oxygen saturation rate also becomes more accurate. Furthermore, since a dissolved oxygen saturated liquid can be generated in a short time using a bubble generator, measurements can be carried out quickly.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本考案に係る溶存酸素飽和率測定装置の概
略側面図である。 1……容器、2……容器、6……連通管、8…
…撹拌器、14……栓、17……空気導入具、2
0……被測定液排出口、22……被測定液導入
口、42……溶存酸素濃度検出器挿入口、43…
…溶存酸素濃度検出器、45……演算器、46…
…表示器。
The figure is a schematic side view of the dissolved oxygen saturation rate measuring device according to the present invention. 1... Container, 2... Container, 6... Communication pipe, 8...
... Stirrer, 14 ... Stopper, 17 ... Air introduction device, 2
0...Measurement liquid outlet, 22...Measurement liquid inlet, 42...Dissolved oxygen concentration detector insertion port, 43...
...Dissolved oxygen concentration detector, 45...Arithmetic unit, 46...
…display.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 脱着自在な栓により密閉され、かつ被測定液導
入口、空気導入具、該空気導入具に連通して該空
気導入具からの空気を微細な気泡として噴出させ
る器具及び前記気泡を渦流状となす撹拌器を備え
た容器と、被測定液排出口および溶存酸素濃度検
出器挿入口を有し、かつ撹拌器を備える容器と、
前記両容器を連結する切換えコツク付き連通管
と、前記溶存酸素濃度検出器挿入口に装着した溶
存酸素濃度検出器と、該検出器による測定値を記
憶し、演算する演算器と、該演算器の演算値を表
示する表示器とより成る溶存酸素飽和率測定装
置。
A liquid to be measured inlet that is sealed by a removable stopper, an air introduction device, a device that communicates with the air introduction device and blows out air from the air introduction device as fine bubbles, and a device that makes the bubbles form a vortex. a container equipped with a stirrer; a container having a liquid to be measured outlet and a dissolved oxygen concentration detector insertion port and equipped with a stirrer;
A communication pipe with a switching point connecting the two containers, a dissolved oxygen concentration detector attached to the dissolved oxygen concentration detector insertion port, a computing unit for storing and computing the measured value by the detector, and the computing unit. Dissolved oxygen saturation rate measuring device consisting of a display that displays the calculated value of.
JP17445679U 1979-12-17 1979-12-17 Expired JPS6124927Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17445679U JPS6124927Y2 (en) 1979-12-17 1979-12-17

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17445679U JPS6124927Y2 (en) 1979-12-17 1979-12-17

Publications (2)

Publication Number Publication Date
JPS5692848U JPS5692848U (en) 1981-07-23
JPS6124927Y2 true JPS6124927Y2 (en) 1986-07-26

Family

ID=29685186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17445679U Expired JPS6124927Y2 (en) 1979-12-17 1979-12-17

Country Status (1)

Country Link
JP (1) JPS6124927Y2 (en)

Also Published As

Publication number Publication date
JPS5692848U (en) 1981-07-23

Similar Documents

Publication Publication Date Title
US5900136A (en) Method of measuring concentration of nonelectrolyte in electrolyte solution, method of preparing mixed solution containing electrolytes and nonelectrolytes and apparatus for preparing the solution
JPH06510210A (en) Blood loss monitoring method and device
DE3170743D1 (en) Method and apparatus for determining toxic biological consumable substances in aqueous solutions, for instance in sewage
CN206546353U (en) A kind of COD titration outfit
CN102288653A (en) Online biochemical oxygen demand (BOD) detector and detection method of same
JP3126273B2 (en) Method and apparatus for rapid biochemical oxygen demand (BOD) measurement
CN110749639A (en) Full-automatic calibration device and method for electrode-method residual chlorine instrument
JPS6124927Y2 (en)
JP2873170B2 (en) Method of mixing two types of starting solutions and apparatus for performing the same
Scardina et al. Prediction and measurement of bubble formation in water treatment
CN109709197B (en) BOD rapid tester and accurate compensation testing method
CN202083662U (en) Online tester for biochemical oxygen demand BOD
JPS6221599B2 (en)
CN110632267A (en) System and method for continuously measuring high-concentration sewage exceeding application range of online instrument
McKeown et al. Comparative studies of dissolved oxygen analysis methods
He et al. Oxygen-transfer measurement in clean water
CN112305036B (en) Method for determining a measurement point of the chemical intake capacity of a process medium and measurement point
CN209673712U (en) BOD Quick testing instrument
JP3863566B2 (en) Method and apparatus for calculating biological oxygen demand of wastewater
Cowell Automated Fluoride Ion Determination: Determination of Urine Fluoride Ion Levels
Reynolds Comparison studies of Winkler vs. oxygen sensor
CN107505219A (en) A kind of device and method of quick measure nitrification microbial inoculum performance
JPH07218414A (en) Method and apparatus for measuring concentrated of dissolved gas
RU2094799C1 (en) Device for determination of oxidized substances
JPH03235048A (en) Measuring apparatus for residual chlorine