JPS6124907B2 - - Google Patents

Info

Publication number
JPS6124907B2
JPS6124907B2 JP52060949A JP6094977A JPS6124907B2 JP S6124907 B2 JPS6124907 B2 JP S6124907B2 JP 52060949 A JP52060949 A JP 52060949A JP 6094977 A JP6094977 A JP 6094977A JP S6124907 B2 JPS6124907 B2 JP S6124907B2
Authority
JP
Japan
Prior art keywords
coil
magnetic pole
current
magnet bodies
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52060949A
Other languages
Japanese (ja)
Other versions
JPS53147219A (en
Inventor
Shigeru Ueda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP6094977A priority Critical patent/JPS53147219A/en
Publication of JPS53147219A publication Critical patent/JPS53147219A/en
Publication of JPS6124907B2 publication Critical patent/JPS6124907B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は整流子、ブラシを除去し、可動コイル
に流す駆動電流を可動コイルの位置を検出して切
換えるブラシレス直流リニアモータに関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a brushless DC linear motor in which a commutator and brushes are removed and the drive current flowing through a moving coil is switched by detecting the position of the moving coil.

直線的駆動力を発生させるリニアモータは、回
転モータに比べると種類も用途も少ない。特に力
の発生が広い範囲にわたつて線形であるリニアモ
ータを実現するためには、回転形モータに比べ機
構構造上の制約が大きい。従来のこの種の装置は
第1図に示すように、回転形直流モータを展開し
たと同様に永久磁石1,1、コイル6、継鉄
2,3、ブラシ5,5,5,………等から
構成され、コイルにブラシから給電し、コイル6
を相対移動する方法が採られていた。そのためブ
ラシ部分の摩耗、ブラシ交換などの保守作業を伴
う欠点があつた。さらにこれをサーボ用モータと
して使用する場合には、駆動電流切換位置におけ
る駆動力の変動(リツプル)が生じ、これを改善
するにはブラシと接するコイル端子数を増す方法
が考えられるが、これはコイルの並列接続とな
り、コイル効率からみれば不利な形態であつた。
Linear motors that generate linear driving force have fewer types and uses than rotary motors. In particular, in order to realize a linear motor in which force generation is linear over a wide range, there are greater restrictions on the mechanical structure than in rotary motors. As shown in FIG. 1, the conventional device of this type has permanent magnets 1 1 , 1 2 , coils 6 , yokes 2 , 3 , and brushes 5 1 , 5 2 , 5 , similar to a rotary DC motor developed. 3 , etc., the brush supplies power to the coil, and the coil 6
The method used was to move the This resulted in drawbacks such as wear of the brush portion and maintenance work such as brush replacement. Furthermore, when using this as a servo motor, fluctuations (ripples) in the driving force occur at the drive current switching position, and one way to improve this is to increase the number of coil terminals in contact with the brush, but this is not possible. The coils were connected in parallel, which was disadvantageous in terms of coil efficiency.

本発明は上記の欠点を除去し、安定で信頼性の
高いサーボ用の直流リニアモータを提供すること
にあり、以下図面について本発明を詳細に説明す
る。
The present invention aims to eliminate the above-mentioned drawbacks and provide a stable and reliable DC linear motor for servo use.The present invention will be described in detail below with reference to the drawings.

先ず第2図において、1,1,1,……
…は界磁用の永久磁石、2および3は継鉄、4
,4,4,………および5,5,5
,………は磁極空隙、6および6は可動コ
イル、7および8は前記継鉄2,3と共に磁気回
路を構成する継鉄、9は永久磁石の固定台で非磁
性体である。また10,10,10………
は永久磁石の作る磁路を示す。
First, in Figure 2, 1 1 , 1 2 , 1 3 ,...
... is a permanent magnet for the field, 2 and 3 are yoke, 4
1 , 4 2 , 4 3 , ...... and 5 1 , 5 2 , 5
3 , ...... are magnetic pole gaps, 6 1 and 6 2 are moving coils, 7 and 8 are yokes that constitute a magnetic circuit together with the yokes 2 and 3, and 9 is a fixed stand of a permanent magnet, which is a non-magnetic material. . Also 10 1 , 10 2 , 10 3 ......
indicates the magnetic path created by a permanent magnet.

上述のリニアモータは1個の界磁用永久磁石と
継鉄とから形成される1つまたは2つの磁気空隙
を単位とし、互いに磁化方向が異なる2組の磁気
回路ユニツトに可動コイルを挿入して構成する。
この種のリニアモータはモータの長さによつて磁
気回路ユニツトが複数組配列されるので、ここで
は図中の永久磁石1,1,1の作る磁気回
路を例にして述べる。永久磁石1は空隙5
ら空隙4の向きに磁化され、永久磁石1,1
はそれぞれ空隙4から空隙5の向き、およ
び空隙5から空隙4の向きに磁化されてお
り、永久磁石1と1、1と1とでは磁化
の向きが互に逆向きになる。可動コイル6およ
び6はそれぞれ平板矩形状に巻かれた空心コイ
ルである。このような可動コイルからなる構成は
従来のスロツト鉄心にコイルを収容する構成に比
べて可動部分を軽量化できモータの応答性向上に
役立つ他、動作時においてコイルに直接空気流が
当たるため放熱性に優れモータ定格を向上させる
ことができる。可動コイル6および6は第3
図に示すように、磁極ピツチPに対して相互に1/
2ビツチずらし、磁極空隙中に挿入する。矩形4
辺のうち、2辺が磁極間に挿入される様配置され
る。この場合、第4図に示すように、相互に1/2
ピツチずらした2個のコイルを同一の空隙に挿入
しても全く効果は同じである。また上記の永久磁
石は界磁コイルで置換され得る。尚、第3図にお
いて、35,35は後述のコイル位置検出器
の検出素子、Wはコイルの巻幅を、Pcはコイル
ピツチを示している。コイルピツチPcと磁極ピ
ツチPはほぼ等しい長さである。
The above-mentioned linear motor uses one or two magnetic gaps formed by one field permanent magnet and a yoke as a unit, and a moving coil is inserted into two sets of magnetic circuit units with different magnetization directions. Configure.
Since this type of linear motor has a plurality of magnetic circuit units arranged depending on the length of the motor, the magnetic circuit formed by the permanent magnets 11 , 12 , and 13 in the figure will be described as an example. The permanent magnet 1 1 is magnetized in the direction from the air gap 5 1 to the air gap 4 1 , and the permanent magnets 1 2 , 1
3 are magnetized in the direction from the air gap 4 2 to the air gap 5 2 and from the air gap 5 3 to the air gap 4 3 , respectively, and the magnetization directions of the permanent magnets 1 1 and 1 2 and 1 2 and 1 3 are mutually opposite. It goes in the opposite direction. The moving coils 6 1 and 6 2 are each air-core coils wound into a flat rectangular shape. Compared to the conventional configuration in which the coil is housed in a slotted iron core, this configuration of moving coils reduces the weight of the moving parts and helps improve the responsiveness of the motor, and also improves heat dissipation because the coil is exposed to direct air flow during operation. It is possible to improve the motor rating. The moving coils 6 1 and 6 2 are the third
As shown in the figure, relative to the magnetic pole pitch P,
Shift it by 2 bits and insert it into the magnetic pole gap. rectangle 4
Two of the sides are arranged so as to be inserted between the magnetic poles. In this case, as shown in Figure 4, they are 1/2 each other.
Even if two coils with different pitches are inserted into the same gap, the effect is exactly the same. Also, the permanent magnets described above may be replaced by field coils. In FIG. 3, 35 1 and 35 2 are detection elements of a coil position detector to be described later, W is the winding width of the coil, and P c is the coil pitch. The coil pitch P c and the magnetic pole pitch P are approximately equal in length.

更に本発明の動作を説明すると、いま第5図に
示す如く、コイル6に紙面垂直方向に電流を流
せば、磁極空隙4,4を通る磁束10,1
と鎖交し、フレミングの左手の法則に従つた
力12が可動コイルに発生する。力の向きは可動
コイルに流れる電流の向きに依存しており、空隙
中の磁束の向きに応じて電流を切換る必要があ
る。一方力の大きさは一般に、 F=Bli〔ニユートン〕 で表わされる。ここで、 B:空隙磁束密度〔wb/m2〕 l:空隙中の磁束と鎖交するコイル波長〔m〕 i:可動コイルに流れる電流〔A〕 である。長い範囲にわたつてこの力Fが一定であ
るためにはBおよびlの有効分が場所によつて変
化してはならない。可動コイルの移動範囲を広げ
るためには第2,4図で示す永久磁石を長手方向
に並べていくだけでよく、磁気回路構造としては
極めて簡単な構造である。一方可動コイルが第5
図に示す位置から、力12の作用を受けて同図の
右へ移動し、第6図に示す位置へ平行移動する
と、空隙4は4と、空隙4は4と磁束の
向きが逆になるので、コイル電流の極性がそれま
でのままであれば、可動コイル6が空隙4およ
び4に入ると力の向きはそれ迄と逆の方向に動
く。そこで可動コイルをさらに右側へ進めるため
には可動コイルに流す電流の向きを変える必要が
生ずる。この方法には従来からブラシと整流子の
組み合せにより、可動コイルの位置に応じてコイ
ル端子にかかる電圧の極性を反転させる方法が採
られているが、既に述べたように摺動摩耗、接点
障害などの原因となり、必ずしも最良の方法とは
いえない。それに代わる方法としては、可動コイ
ルの磁極に対する相対位置を何らかの形で検出
し、その検出信号でトランジスタスイツチを動作
させ、可動コイルに流れる電流の極性を滴宜切換
えていく方法が考えられる。これを実現するため
コイル電流の極性を変えると同時に、出力の線形
性を保つために1/2へだてて配置されているもう
1個のコイル6または6に切換える方法を第
7図のブロツク図で説明する。図において30は
位置偏差算出回路、31は電流切換位置変更回
路、32はコイル電流極性切換信号発生回路、3
3は駆動回路、34はリニアモータ、35はコイ
ル位置検出器、36はサーボ用位置検出器、37
は比較回路であり、更に、40は位置決めの目標
値、41はコイルの移動分を差引いた位置偏差、
44はコイル選択と電流極性切換信号、45はコ
イル電流、46,47はコイル位置情報、48は
電流極性切換信号、49はコイル位置信号、42
は目標位置と電流切換位置の比較をして一致か否
かを示す信号、43は位置偏差0で目標位置と電
流切換位置が一致した場合の切換位置変更信号を
それぞれ示す。第7図の系の一般のサーボ系と比
較しての特徴はコイル電流の極性切換のみなら
ず、出力の線形性を保つために、同時に1/2ピツ
チへだてたコイルに切換えることと、目標位置近
傍ではコイルおよび電流極性の切換を停止させ
る。切換位置変更機能を有することである。図に
おいて35と36の位置検出器は1つの検出器で
兼用することが可能で、その場合の信号線は図中
50の破線で示す。第7図において、リニアモー
タ34の移動量は目標値40の大きさにより決ま
る。即ち、移動量はサーボ用位置検出器36によ
り検出され、位置偏差算出回路30において計算
された目標値と移動量との差を表わす位置偏差信
号41が零となるまでリニアモータ34は移動す
る。
To further explain the operation of the present invention, as shown in FIG. 5, when a current is passed through the coil 61 in a direction perpendicular to the plane of the paper, magnetic fluxes 10 1 and 1 pass through the magnetic pole gaps 4 1 and 4 2 .
A force 12 interlinked with 0 2 and according to Fleming's left hand rule is generated in the moving coil. The direction of the force depends on the direction of the current flowing through the moving coil, and it is necessary to switch the current according to the direction of the magnetic flux in the air gap. On the other hand, the magnitude of force is generally expressed as F= Bli [Newton]. Here, B: Air gap magnetic flux density [wb/m 2 ] l: Coil wavelength interlinking with the magnetic flux in the air gap [m] i: Current flowing through the movable coil [A]. In order for this force F to be constant over a long range, the effective components of B and l must not vary from place to place. In order to widen the moving range of the moving coil, it is sufficient to simply arrange the permanent magnets shown in FIGS. 2 and 4 in the longitudinal direction, and the magnetic circuit structure is extremely simple. On the other hand, the moving coil
When moving from the position shown in the figure to the right in the figure under the action of force 12 and moving in parallel to the position shown in Figure 6, the direction of the magnetic flux changes from the gap 4 2 to 4 1 and from the gap 4 3 to 4 2 . is reversed, so if the polarity of the coil current remains the same, when the movable coil 6 enters the gaps 4 2 and 4 3 , the direction of the force moves in the opposite direction. Therefore, in order to advance the movable coil further to the right, it is necessary to change the direction of the current flowing through the movable coil. Conventionally, this method uses a combination of brushes and commutators to reverse the polarity of the voltage applied to the coil terminals depending on the position of the moving coil, but as already mentioned, sliding wear and contact failure occur. This may not necessarily be the best method. An alternative method is to detect the relative position of the moving coil with respect to the magnetic pole in some way, operate a transistor switch using the detection signal, and gradually switch the polarity of the current flowing through the moving coil. To achieve this, the method of changing the polarity of the coil current and at the same time switching to another coil 6 1 or 6 2 , which is placed 1/2 apart in order to maintain output linearity, is shown in the block in Figure 7. This will be explained with a diagram. In the figure, 30 is a position deviation calculation circuit, 31 is a current switching position change circuit, 32 is a coil current polarity switching signal generation circuit, 3
3 is a drive circuit, 34 is a linear motor, 35 is a coil position detector, 36 is a servo position detector, 37
is a comparison circuit, 40 is a positioning target value, 41 is a position deviation obtained by subtracting the movement of the coil,
44 is a coil selection and current polarity switching signal, 45 is a coil current, 46 and 47 are coil position information, 48 is a current polarity switching signal, 49 is a coil position signal, 42
43 indicates a signal that compares the target position and the current switching position and indicates whether they match, and 43 indicates a switching position change signal when the target position and the current switching position match with a positional deviation of 0. The characteristics of the system shown in Figure 7 compared to general servo systems are not only switching the polarity of the coil current, but also simultaneously switching the coil to 1/2 pitch in order to maintain output linearity, and Switching of coil and current polarity is stopped in the vicinity. It has a switching position change function. In the figure, the position detectors 35 and 36 can be used as one detector, and in that case, the signal line is shown by a broken line 50 in the figure. In FIG. 7, the amount of movement of the linear motor 34 is determined by the magnitude of the target value 40. In FIG. That is, the amount of movement is detected by the servo position detector 36, and the linear motor 34 moves until the position deviation signal 41 representing the difference between the target value calculated by the position deviation calculation circuit 30 and the amount of movement becomes zero.

一方、移動にともなうコイルの電流切換はコイ
ル位置検出器35より求めたコイル電流の極性切
換信号48によつて行なわれるが、サーボ停止位
置(位置偏差=0)と電流切換位置が一致した場
合には位置決め特性の安定化を図るため信号48
によつて規定される切換位置を変更する処理を行
なつている。極性切換信号発生回路32では信号
41,48,43をもとに電流極性および切換る
べきコイルの選択信号を出力し駆動回路33を動
作させる。なお、切換位置の変更にはサーボ制御
用の位置信号が用いられ、予めセツトしておいた
電流切換位置とサーボ停止位置とを比較し、一致
すれば切換位置変更信号43を出力する。
On the other hand, the current switching of the coil as it moves is performed by the coil current polarity switching signal 48 obtained from the coil position detector 35, but when the servo stop position (position deviation = 0) and the current switching position match, is the signal 48 to stabilize the positioning characteristics.
Processing is being performed to change the switching position defined by . The polarity switching signal generating circuit 32 outputs a current polarity and a selection signal for the coil to be switched based on the signals 41, 48, and 43 to operate the drive circuit 33. Note that a position signal for servo control is used to change the switching position, and a preset current switching position and a servo stop position are compared, and if they match, a switching position change signal 43 is output.

次にコイルおよび磁極寸法と、電流切換位置と
の関係を第8図に従つて説明する。コイルと磁極
の寸法はコイル電流の極性を変えてもモータ出力
がコイル位置によつて変動しないようにしてお
り、かつ電流切換はサーボ停止位置とコイル電流
の切換位置が重なると停止制御が困難になる問題
を解決するものである。先ず説明を簡単にするた
めにコイルの巻幅と、永久磁石間の距離gとを等
しくしておき、コイルピツチは永久磁石長lと永
久磁石間距離gとの和に等しいものとする(この
ようなコイルピツチとlとgとの関係は本発明の
構成上唯一の寸法関係ではない)。ここに、コイ
ル6と1/2磁極ピツチ隔てて配置されたコイル
との出力範囲が重なり合うことが、本発明で
重要な条件である。コイルの定出力範囲は近似的
に第8図Bの30o,30o+1,………(コイル6
)および第8図Cの31o,31o+1,………
(コイル6)の範囲である。すなわち磁極の長
さlに対し、磁石間距離gを差引いた長さを定出
力範囲としてある。ここで定出力範囲30oと3
oの区間でオーバーラツプする区間、第8図D
の40o、同様に40o+1,40o+2,………はこの
区間内でコイル電流の極性を切換えるべきゾーン
を示すもので、コイル電流の極性切換位置に幅を
持たせているのはサーボ停止位置と電流極性切換
位置とが一致することをさけるためである。例え
ば電流切換ゾーン40o-1,40o,40o+1,……
…の左端つまり、定出力範囲に入る第8図Eの5
o,50o+1,………で示す位置で電流切換を行
なうとすれば、この電流切換位置50o,50o+
,………は1つのコイルに着目すれば順にコイ
ル電流のオン、オフ切換位置となり、この切換位
置とサーボ停止位置とが一致した場合、電流切換
位置検出器のヒステリシス等のために電流切換の
不感帯が生じ、位置決め制御の安定性が劣化し、
位置決め精度に悪影響を及ぼす。そこで本発明に
おいては2つのコイルの定出力範囲を重複させ、
40o,40o+1,………で示す切換ゾーンの左端
位置50oで切換を行つている時、位置決め停止
位置が全く一致した場合には、コイル切換位置を
第8図Fの51oの位置に変更して、サーボ制御
による停止位置の不連続点を除去するものであ
る。この電流切換位置の変更にはサーボ制御用の
精密位置検出器の信号が用いられ、予め電流切換
位置をプリセツトカウンタの如きメモリーに覚え
させておき、位置決め停止位置との論理比較を行
ない、一致した時のみ電流切換位置を一時的に変
更すればよい。この電流切換位置の変更すべき変
位量は、位置制御系の過渡振動特性を参考にして
目標位置からの最大変位振幅以上に設定すればよ
く、上記実施例においては磁石間距離=コイル巻
線幅に等しくとつてある。
Next, the relationship between the coil and magnetic pole dimensions and the current switching position will be explained with reference to FIG. The dimensions of the coil and magnetic pole are such that the motor output does not vary depending on the coil position even if the polarity of the coil current is changed, and current switching is difficult to control if the servo stop position and the coil current switching position overlap. It solves the following problem. First, to simplify the explanation, the winding width of the coil and the distance g between the permanent magnets are made equal, and the coil pitch is equal to the sum of the permanent magnet length l and the distance g between the permanent magnets. The relationship between the coil pitch and l and g is not the only dimensional relationship in the structure of the present invention). Here, an important condition in the present invention is that the output ranges of the coil 61 and the coil 62 , which are arranged 1/2 magnetic pole pitch apart, overlap. The constant output range of the coil is approximately 30o , 30o +1 , ...... (coil 6
1 ) and 31 o , 31 o+1 , ...... in Figure 8C.
(coil 6 2 ). That is, the constant output range is defined as the length l of the magnetic poles minus the distance g between the magnets. Here constant power range 30 o and 3
Section that overlaps with section 1 o , Figure 8D
40o , similarly 40o +1 , 40o +2 , etc., indicate the zone in which the polarity of the coil current should be switched within this section, and the polarity switching position of the coil current has a width. This is to avoid the servo stop position and the current polarity switching position from coinciding. For example, current switching zones 40o -1 , 40o , 40o +1 ,...
The left end of ..., that is, 5 in E of Figure 8, which falls within the constant output range.
If current switching is to be performed at the positions shown as 0 o , 50 o +1 , ......, the current switching positions 50 o , 50 o +
1. If we focus on one coil, the coil current is switched on and off in order, and when this switching position and the servo stop position match, the current is switched due to the hysteresis of the current switching position detector, etc. A dead zone occurs, and the stability of positioning control deteriorates.
This adversely affects positioning accuracy. Therefore, in the present invention, the constant output ranges of the two coils are overlapped,
When switching is performed at the left end position 50 o of the switching zone shown as 40 o , 40 o+1 , ......, if the positioning stop positions match exactly, the coil switching position is changed to 51 o in Figure 8F. This is to remove discontinuous points in the stop position caused by servo control. To change this current switching position, a signal from a precision position detector for servo control is used.The current switching position is memorized in advance in a memory such as a preset counter, and a logical comparison with the positioning stop position is performed to find a match. It is only necessary to temporarily change the current switching position when this occurs. The amount of displacement to be changed in this current switching position may be set to be greater than or equal to the maximum displacement amplitude from the target position with reference to the transient vibration characteristics of the position control system. In the above example, the distance between magnets = coil winding width It is set equal to .

次に可動コイルの直線案内構造および可動コイ
ルのリード線について第9図により説明する。可
動コイル6および6は平面状に整形してキヤ
リツジ11に1/2ピツチずらして固定し、一体化
する。キヤリツジ11は上下2ケ所にリニアボー
ルベアリング16,17を挿入し、2本のガイド
レール14,15によつてガイドレールの軸方向
に自由に滑動することができる。またコイル6
,6のリード線はキヤリツジ11の側面もし
くは下面(第9図では下面からの例を示す)から
4本の可撓材18,19,20,21によつて固
定ターミナル22に導かれる。可撓材はキヤリツ
ジの可動範囲に比べ充分長くとることによつて、
キヤリツジの負荷にならないように配慮される。
Next, the linear guide structure of the moving coil and the lead wire of the moving coil will be explained with reference to FIG. The movable coils 6 1 and 6 2 are shaped into a planar shape and fixed to the carriage 11 with a 1/2 pitch offset to be integrated. The carriage 11 has linear ball bearings 16 and 17 inserted in two places, upper and lower, and can freely slide in the axial direction of the guide rails by the two guide rails 14 and 15. Also coil 6
The lead wires 1 , 6, and 2 are guided from the side or lower surface of the carriage 11 (FIG. 9 shows an example from the lower surface) to the fixed terminal 22 by four flexible members 18, 19, 20, and 21. By making the flexible material sufficiently long compared to the range of movement of the carriage,
Care is taken to ensure that it does not place a burden on the carriage.

ガイド構造はこの他にも、ボールベアリングを
用いた第10図の構造も使用され得る。ガイドレ
ール14,15の斜面にボールベアリング16
,16,16,16をそれぞれ配置し、
レールの軸方向の1軸運動のみを可能にするもの
で、ベアリングの個数はレールの軸方向に4個ず
つ2箇所、計8個使用する。整形されたコイル6
,6はキヤリツジ11に挿入固定される。
In addition to this guide structure, the structure shown in FIG. 10 using ball bearings may also be used. Ball bearings 16 are installed on the slopes of guide rails 14 and 15.
1 , 16 2 , 16 3 , 16 4 respectively,
It enables only one-axis movement in the axial direction of the rail, and a total of 8 bearings are used, 4 bearings in 2 locations each in the axial direction of the rail. shaped coil 6
1 and 62 are inserted and fixed into the carriage 11.

以上説明したように、本発明のブラシレス直流
リニアモータは、2組の可動コイルを使い分ける
ことにより、モータ長さ全長にわたつて一様な出
力が得られ、かつ電流に対する線形性も極めてよ
い。また、可動する部分に鉄心がないため軽量と
なり、応答性にすぐれている他、放熱性もよい。
さらにサーボモータとして不可欠な位置決め目標
位置に不連続点が生ずることがなく、そして可動
部へ給電するための摺動部や整流機構等が不要で
あり、運転・保守が容易であり、寿命・信頼性に
すぐれている。
As explained above, the brushless DC linear motor of the present invention can obtain a uniform output over the entire length of the motor by selectively using two sets of moving coils, and has extremely good linearity with respect to current. Additionally, since there is no iron core in the moving parts, it is lightweight, has excellent responsiveness, and has good heat dissipation.
In addition, there are no discontinuities in the positioning target position, which is essential for a servo motor, and there is no need for sliding parts or rectifying mechanisms to supply power to the moving parts, making operation and maintenance easy, and improving longevity and reliability. Excellent sex.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の直流リニアモータの構造図、第
2図は本発明のリニアモータの一実施例の斜視
図、第3図は同部分斜視図、第4図は本発明の他
の実施例の斜視図、第5図、第6図は本発明動作
説明図、第7図は本発明のリニアモータを駆動制
御する制御ブロツク図、第8図は同動作説明図、
第9図、第10図は夫々本発明の適用例の構造図
である。 1,1,1,1o-1,1o,1o+1,1o+2
……永久磁石、2,3……継鉄、4,4,4
,5,5,5……空隙、6,6……
可動コイル、7,8……継鉄、9……永久磁石保
持板、10,10,10……磁路、11…
…キヤリツジ、14,15……ガイドレール、1
,16,16,16,17……ボール
ベアリング、18,19,20,21……可撓
材、22……固定ターミナル、30……位置偏差
算出回路、31……電流切換位置変更回路、32
……コイル電流極性切換信号発生回路、33……
駆動回路、34……リニアモータ、35……コイ
ル位置検出器、36……サーボ用位置検出器、3
7……比較回路。
Fig. 1 is a structural diagram of a conventional DC linear motor, Fig. 2 is a perspective view of an embodiment of the linear motor of the present invention, Fig. 3 is a perspective view of the same part, and Fig. 4 is another embodiment of the present invention. 5 and 6 are diagrams for explaining the operation of the present invention, FIG. 7 is a control block diagram for driving and controlling the linear motor of the present invention, and FIG. 8 is a diagram for explaining the same operation.
FIGS. 9 and 10 are structural diagrams of application examples of the present invention, respectively. 1 1 ,1 2 ,1 3 ,1 o-1 ,1 o ,1 o+1 ,1 o+2
... Permanent magnet, 2, 3 ... Yoke, 4 1 , 4 2 , 4
3 , 5 1 , 5 2 , 5 3 ... void, 6 1 , 6 2 ...
Moving coil, 7, 8... Yoke, 9... Permanent magnet holding plate, 10 1 , 10 2 , 10 3 ... Magnetic path, 11...
...Carriage, 14,15...Guide rail, 1
6 1 , 16 2 , 16 3 , 16 4 , 17 ... Ball bearing, 18, 19, 20, 21 ... Flexible material, 22 ... Fixed terminal, 30 ... Position deviation calculation circuit, 31 ... Current switching Position change circuit, 32
...Coil current polarity switching signal generation circuit, 33...
Drive circuit, 34... Linear motor, 35... Coil position detector, 36... Servo position detector, 3
7... Comparison circuit.

Claims (1)

【特許請求の範囲】[Claims] 1 複数個の等長磁石体と、該磁石体の各磁極面
に対向する位置に設けた継鉄との間の磁気空隙に
可動コイルを挿入したブラシレス直流リニアモー
タにおいて、前記複数個の磁石体を磁化方向を交
互にし該磁化方向に直角な方向に一定距離を保ち
磁極面をそろえて並列配置し、前記複数個の磁石
体の磁極面に対向する両側のうち少くとも一方の
側に前記各磁極面との間に一定の磁気空隙を有す
るよう前記継鉄とそれぞれ一体的に配置し、前記
可動コイルは空心で偏平な1対を相隣り合う前記
磁石体の磁気空隙中にまたがつてそれぞれ前記相
隣り合う磁石体の磁極ピツチの1/2だけずらせて
一体化配置し、前記可動コイルのコイルピツチを
前記磁石体の磁極ピツチにほぼ等しく形成したこ
とを特徴とするブラシレス直流リニアモータ。
1. In a brushless DC linear motor in which a moving coil is inserted into a magnetic gap between a plurality of equal-length magnet bodies and a yoke provided at a position facing each magnetic pole surface of the magnet bodies, the plurality of magnet bodies are arranged in parallel with alternating magnetization directions and at a certain distance in a direction perpendicular to the magnetization direction, with their magnetic pole surfaces aligned, and each of the magnets is placed on at least one side of the plurality of magnets facing the magnetic pole surfaces of the plurality of magnet bodies. Each of the movable coils is arranged integrally with the yoke so as to have a certain magnetic gap with the magnetic pole surface, and each of the movable coils has a pair of air-centered, flattened coils straddling the magnetic gaps of the adjacent magnet bodies. A brushless DC linear motor characterized in that the adjacent magnet bodies are integrally arranged so as to be shifted by 1/2 of the magnetic pole pitch, and the coil pitch of the movable coil is formed to be approximately equal to the magnetic pole pitch of the magnet bodies.
JP6094977A 1977-05-27 1977-05-27 Brushless direct current linear motor Granted JPS53147219A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6094977A JPS53147219A (en) 1977-05-27 1977-05-27 Brushless direct current linear motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6094977A JPS53147219A (en) 1977-05-27 1977-05-27 Brushless direct current linear motor

Publications (2)

Publication Number Publication Date
JPS53147219A JPS53147219A (en) 1978-12-21
JPS6124907B2 true JPS6124907B2 (en) 1986-06-13

Family

ID=13157143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6094977A Granted JPS53147219A (en) 1977-05-27 1977-05-27 Brushless direct current linear motor

Country Status (1)

Country Link
JP (1) JPS53147219A (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5752367A (en) * 1980-09-12 1982-03-27 Takahashi Yoshiteru Linear motor
JPS5863074A (en) * 1981-10-09 1983-04-14 Takahashi Yoshiteru Dc-type semiconductor linear motor
JPS59213273A (en) * 1983-04-27 1984-12-03 Kuroi Electric Ind Co Semiconductor linear motor
JPS59179481U (en) * 1983-05-19 1984-11-30 トヨタ車体株式会社 Moving coil type linear motor
GB8316401D0 (en) * 1983-06-16 1983-07-20 Bonas Machine Co Weaving loom
JPS6020766A (en) * 1984-05-22 1985-02-02 Takahashi Yoshiteru Linear motor
JPS6115556A (en) * 1984-06-28 1986-01-23 Mitsubishi Electric Corp Movable element of polyphase linear motor
JPS6149648A (en) * 1984-08-16 1986-03-11 Mitsubishi Electric Corp Linear motor
JPS6321485U (en) * 1986-07-23 1988-02-12
US5796186A (en) * 1995-03-31 1998-08-18 Minolta Co., Ltd. Linear motor
US5801462A (en) * 1995-03-31 1998-09-01 Minolta Co., Ltd. Linear motor and image reading apparatus
JPH08275490A (en) * 1995-03-31 1996-10-18 Minolta Co Ltd Electric motor with encoder
JP3453991B2 (en) * 1995-03-31 2003-10-06 ミノルタ株式会社 Linear motor
JPH08275500A (en) * 1995-03-31 1996-10-18 Minolta Co Ltd Linear motor
JPH08275498A (en) * 1995-03-31 1996-10-18 Minolta Co Ltd Linear motor
CN211296528U (en) * 2017-07-24 2020-08-18 株式会社村田制作所 Actuator

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4828605A (en) * 1971-08-19 1973-04-16
JPS4870807A (en) * 1971-12-28 1973-09-26
JPS5170406A (en) * 1974-12-16 1976-06-18 Oki Electric Ind Co Ltd RINIAMOOTA

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4828605A (en) * 1971-08-19 1973-04-16
JPS4870807A (en) * 1971-12-28 1973-09-26
JPS5170406A (en) * 1974-12-16 1976-06-18 Oki Electric Ind Co Ltd RINIAMOOTA

Also Published As

Publication number Publication date
JPS53147219A (en) 1978-12-21

Similar Documents

Publication Publication Date Title
JPS6124907B2 (en)
EP0161677A2 (en) Moving coil type linear motor
JP5443718B2 (en) Linear motor system and control device
US20110043053A1 (en) Linear and curvilinear motor system
US6734583B2 (en) Slider unit with built-in moving-coil linear motor
JPH0734646B2 (en) Linear motor
US4733143A (en) Linear motor
JPH0265656A (en) Coreless linear motor
JPH0654516A (en) Incorporating method for linear magnetic encoder into linear dc motor
US6703725B2 (en) Joint driving apparatus
JPS6115665B2 (en)
JPH0239181B2 (en)
KR100331232B1 (en) Linear motion apparatus having brushless linear motor
US20030141768A1 (en) Linear motor
JP2012005233A (en) Controller of linear motor
JPS62207168A (en) Semiconductor dc linear motor
US4761573A (en) Linear motor
JP2642240B2 (en) Linear motor
JPS619161A (en) Coreless linear dc motor
JP2002096233A (en) Linear slider
JPS6334469Y2 (en)
JP2782830B2 (en) Linear servo motor
JPH0139117Y2 (en)
JPH087827Y2 (en) Linear DC brushless motor
JPH087828Y2 (en) Linear DC brushless motor