JPS612483A - Encoding transmission device of picture information - Google Patents

Encoding transmission device of picture information

Info

Publication number
JPS612483A
JPS612483A JP12414184A JP12414184A JPS612483A JP S612483 A JPS612483 A JP S612483A JP 12414184 A JP12414184 A JP 12414184A JP 12414184 A JP12414184 A JP 12414184A JP S612483 A JPS612483 A JP S612483A
Authority
JP
Japan
Prior art keywords
value
pixel
restoration
predicted value
memory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12414184A
Other languages
Japanese (ja)
Other versions
JPH0311716B2 (en
Inventor
Fumitaka Ono
文孝 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP12414184A priority Critical patent/JPS612483A/en
Publication of JPS612483A publication Critical patent/JPS612483A/en
Publication of JPH0311716B2 publication Critical patent/JPH0311716B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)

Abstract

PURPOSE:To improve quantizing accuracy and to attain highly accurate transmission by quantizing the difference of an encoder on the basis of quantizing characteristics corresponding to a forecasted value. CONSTITUTION:A picture element signal memory 21, a forecasting unit 22, an encoder 23, and a restoration value former 24 are formed in a transmitter. Similarly to the conventional method, a forecasted value for a real value X of an objective picture element is calculated by the forecasting unit 22. The forecasted value and the real value X are inputted to the encoder 23 and encoded with the corresponding relation shown in A and B. The forecaseted value and the real value X are simultaneously inputted also to the restoration value former 24 and the restoration value is formed with the corresponding relation shown in the Fig. C. The restoration value is stored in the memory 21 to be used for the forecasting of the succeeding picture elements. Thus, the quantizing characteristics of the difference can be changed by the forecased value.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は画像情報の符号化伝送装置に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an encoding and transmitting device for image information.

〔従来技術〕[Prior art]

従来、この種の装置として知られているものにDiff
erential Pu1se Code Modul
ation (D P CM)方式がある。このDPC
M方式の基本構成例を第1図に示す。図において、工1
は送信側画素゛信号メモリ、12は既知の標本値をもと
に注目画素の予測値を出力する予測器であり、この予測
器12は、第2図で示す画素配置図において注目画素を
Xlその周辺画素をA、 B、 C,Dとする時、以下
の算出法で予測値父を求めるものである。
Diff is a conventionally known device of this type.
erential Pulse Code Module
ation (D P CM) method. This DPC
An example of the basic configuration of the M method is shown in FIG. In the figure,
12 is a transmitting side pixel signal memory, and 12 is a predictor that outputs a predicted value of the pixel of interest based on known sample values. When the surrounding pixels are A, B, C, and D, the predicted value is calculated using the following calculation method.

5?= −(A+D)   ・・・(1)但し、A、D
は上記画素A、Dの値を示す。
5? = −(A+D) ...(1) However, A, D
indicates the values of the pixels A and D above.

上式は予測値の算出において、一般的によく用いられる
式であるが、勿論、より簡単のために、裳−A としてもよい。13は入力信号X(真値)と予測器12
の出力裳(予測値)との差分をとる減算器、14は量子
化器兼符号器で、この量子化器兼符号器14の量子化特
性としては、第3図のような量子化特性がよく用いられ
ている。この例では、レベル数は16(0〜15)であ
る。予測差信号(X−2)を3ビット定長符号化する際
には、上述のように第3図に示す量子化特性をもたせる
のが一般的である。また符号語例も、同様に第3図に示
す。ご′の例では、オンライン伝送に適するように3ビ
ツトの定長符号語を考えているが、バッファメモリなど
を備える時には非足長符号化も可能である。
The above equation is a commonly used equation in calculating a predicted value, but of course it may be changed to 裳-A for simplicity. 13 is the input signal X (true value) and the predictor 12
14 is a quantizer/encoder, and the quantization characteristic of this quantizer/encoder 14 is as shown in Fig. 3. Often used. In this example, the number of levels is 16 (0-15). When the prediction difference signal (X-2) is subjected to 3-bit constant length encoding, it is common to provide the quantization characteristics shown in FIG. 3 as described above. Examples of code words are also shown in FIG. 3. In your example, a 3-bit fixed-length codeword is considered to be suitable for online transmission, but if a buffer memory or the like is provided, non-length encoding is also possible.

また第3図に示す代表値は、受信側で復号時に代表値と
して用いられているもので、この代表値と予測器12の
出力である予測値とを加算器15で加算することにより
受信側で復元される信号値を作成し、これがかメモリ1
1に書き込まれ、以下の画素の予測に用いられる。
Furthermore, the representative value shown in FIG. 3 is used as a representative value at the time of decoding on the receiving side. Create a signal value that will be restored with
It is written to 1 and used for predicting the following pixels.

次に従来方式の受信側を説明する。17は受信された符
号語から差分値<x−2>の代表値を出力する復号器、
19は受信側画素信号メモリ、16は送信側の予測器1
2と全く同様の動作を行なう予測器、18は予測値と差
分代表値との和をとり、復元信号を出力する加算器であ
り、この加算器18から出力された値は画素信号メモリ
19に入力され、以後の画素信号の復元に役立たせる。
Next, the receiving side of the conventional system will be explained. 17 is a decoder that outputs a representative value of the difference value <x-2> from the received code word;
19 is a receiving side pixel signal memory, 16 is a transmitting side predictor 1
The predictor 18 performs the same operation as 2, and the adder 18 sums the predicted value and the representative difference value and outputs a restored signal.The value output from the adder 18 is stored in the pixel signal memory 19. It is input and used for restoring pixel signals later.

なお、図中、5は伝送路である。In addition, in the figure, 5 is a transmission path.

このような従来方式では以下に述べる欠点がある。即ち
、従来方式では差分のみによって量子化を行なっている
ため、予測値の値によっては幾つかの符号語が無駄にな
る。例えば、画素A、 Dの値が共にOの時、入力値2
は上記Tl1式によって父=0となる。従って、減算器
13の出力である差分(X−5?)の値は画素Xの値が
何であろうと負になることはない。即ち、差分<X−S
<>の代表値が−1,−2,−6となる符号語010,
100.111は送信され得ないわけであり、第4図の
予測値0の欄を見てもわかるように、実質的にはXを5
通りの値に量子化していることになる。
This conventional method has the following drawbacks. That is, in the conventional method, since quantization is performed only by the difference, some code words are wasted depending on the value of the predicted value. For example, when the values of pixels A and D are both O, the input value is 2.
becomes father=0 according to the above Tl1 formula. Therefore, the value of the difference (X-5?) that is the output of the subtracter 13 will never be negative, no matter what the value of the pixel X is. That is, the difference <X-S
Code word 010 whose representative values of <> are -1, -2, -6,
100.111 cannot be transmitted, and as you can see from the predicted value 0 column in Figure 4, in reality,
This means that it is quantized to the actual value.

同様にして父=15となる場合は、(X−父)が正とな
る場合に対向する符号語001,011゜101.11
1は無駄となり、実質的にはXを4通りの値に量子化し
ていることになる。第4図は、このような従来方式によ
る予測値と真値の組合せに対する復元値を掲げたもので
ある。ここで、復元値が0以下になるものについてはO
に、また15以上になるもについては15としている。
Similarly, when father=15, the opposite code word 001,011°101.11 when (X-father) is positive
1 is wasted, and in effect, X is quantized into four values. FIG. 4 shows restored values for combinations of predicted values and true values using such a conventional method. Here, for those whose restoration value is less than 0, O
In addition, if the number is 15 or more, it is set as 15.

以上のように、従来方式では注目画素信号と予測値との
差分にのみ着目して量子化を行なっているので、予測値
の値によっては実質的な量子化精度が粗く、精度の高い
伝送が不可焼であるという欠点があった。
As described above, in the conventional method, quantization is performed by focusing only on the difference between the pixel signal of interest and the predicted value, so depending on the value of the predicted value, the actual quantization accuracy may be coarse, making highly accurate transmission impossible. It had the disadvantage of being unburnable.

〔発明の概要〕[Summary of the invention]

この発明は、従来のものの欠点を除去するためになされ
たもので、符号器における差分量子化を、予測値に応じ
た量子化特性でもって行なうようにすることにより、量
子化精度を向上し、より精度の高い伝送をすることがで
きる画像情報の符号化伝送装置を提供することを目的と
している。
This invention was made to eliminate the drawbacks of the conventional ones, and improves quantization accuracy by performing differential quantization in an encoder with quantization characteristics according to predicted values. It is an object of the present invention to provide an encoding and transmitting device for image information that can perform transmission with higher precision.

〔発明の実施例〕[Embodiments of the invention]

以下、この発明の実施例を図について説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第5図は本発明の一実施例による符号化伝送装置の構成
図であり、図において、21は送信側画素信号メモリ、
22は予測器であり、各々従来装置におけるものと同一
である。23は予測値(4ビツト)と注目画素の真値(
4ビツト)とを入力として3ビツトの定長符号語を出力
する符号器で、その内容例を第6図に示す。ここでは、
上述の3ビツトの定長符号語を考えているため、0〜7
までの符号語番号を考えており、その番号と符号語との
対応を第7図に示す。なお、このような番号と符号語と
の対応は各予測値により変化させることも可能である。
FIG. 5 is a configuration diagram of an encoding and transmitting apparatus according to an embodiment of the present invention, in which 21 is a transmitting side pixel signal memory;
22 is a predictor, each of which is the same as in the conventional device. 23 is the predicted value (4 bits) and the true value of the pixel of interest (
An example of the contents is shown in FIG. 6. here,
Since we are considering the 3-bit fixed-length codeword mentioned above, 0 to 7
Figure 7 shows the correspondence between the numbers and codewords. Note that the correspondence between such numbers and code words can also be changed depending on each predicted value.

また符号語としては、非定長符号語の導入も勿論可能で
ある。
Furthermore, as a code word, it is of course possible to introduce a non-fixed length code word.

24は復元値作成器であり、予測器22よりの予測値裳
と注目画素の真値Xとの組合せにより受信側での復元値
を作成するものであり、この例では、入力8ビツト、出
力4ビツトで、28×4の続出専用メモリにより容易に
構成が可能である。
Reference numeral 24 denotes a restored value creator, which creates a restored value on the receiving side by combining the predicted value from the predictor 22 and the true value X of the pixel of interest. It can be easily constructed using a 4-bit, 28x4 continuous memory.

また、この復元値作成器24のもう一つの構成方式とし
て、符号器23の出力である符号語(3ビツト)と予測
器22の出力である注目画素の予測値(4ビツト)とを
入力として構成することも可能であり、この場合は、入
カフビット、出力4ビツトのため、27×4の続出専用
メモリで構成される。第8図は予測値父と注目画素の真
値Xとの組合せに対する復元画素信号の対応表であり、
ここでは復元値作成器24を前者の構成方法で構成する
時の続出専用メモリの内容を示すものとなっている。そ
して上記画素信号メモリ21.予測器22、符号器23
.及び復元値作成器24は送信器に設けられている。
Another configuration method of the restored value generator 24 is to input the code word (3 bits) which is the output of the encoder 23 and the predicted value (4 bits) of the pixel of interest which is the output of the predictor 22. In this case, since there are input cuff bits and 4 output bits, it is configured with a 27×4 continuous memory. FIG. 8 is a correspondence table of restored pixel signals for combinations of predicted values and true values of the pixel of interest,
Here, the contents of the memory dedicated for successive use when the restoration value generator 24 is configured using the former configuration method are shown. and the pixel signal memory 21. Predictor 22, encoder 23
.. and a restoration value generator 24 are provided in the transmitter.

次に受信器側の説明を行なう。26は送信器に設けられ
た予測器22と同一構成の予測器、27はこの予測器2
6からの予測値と送信されてきた符号語とにより量子化
された復元値を出力する復号器であり、この復号器27
は入カフビット、出力4ビツト、即ち22×4の続出専
用メモリにより容易に構成される。またこれは、前述し
た復元値作成器24の2通りの構成方法のうち、後者の
方法をとる時を考えると全く同一のものとなる。
Next, the receiver side will be explained. 26 is a predictor having the same configuration as the predictor 22 provided in the transmitter, and 27 is this predictor 2.
This decoder outputs a restored value that is quantized using the predicted value from 6 and the transmitted code word, and this decoder 27
is easily constructed with input cuff bits and 4 output bits, that is, a 22×4 read-only memory. Furthermore, this is exactly the same when considering the latter method of the two methods of configuring the restoration value generator 24 described above.

第9図は、この復号器27を読出専用メモリで構成する
際のメモリの内容を示すもので、予測値と符号語番号(
O〜7)の組合せに対し復元値(O〜15)を示してい
る。また28は復号器27により出力される復元画素信
号を蓄積する画素信号メモリである。
FIG. 9 shows the contents of the memory when the decoder 27 is configured with a read-only memory, including predicted values and code word numbers (
Restoration values (O-15) are shown for combinations O-7). Further, 28 is a pixel signal memory that stores restored pixel signals output from the decoder 27.

次に動作について説明する。Next, the operation will be explained.

まず、従来同様に注目画素Xに対して、その周辺画素A
、Dを用いて予測値父が予測器22により算出される。
First, as in the conventional case, for the pixel of interest X, its surrounding pixels A
, D, the predicted value father is calculated by the predictor 22.

そしてこの予測値父と注目画素の真値Xとが符号器23
に入力され、第6図、第7図に示すような対応関係でも
って符号化が行なわれ、3ビツトの符号語が出力される
。またこれと同時に上記予測値2と注目画素の真値Xと
は復元値作成器24にも入力され、該復元値作成器24
において、第8図に示すような対応関係でもって復元値
が作成される。そして復元値は画素信号メモリ21に蓄
積され、以下の画素の予測に用いられる。
Then, this predicted value father and the true value X of the pixel of interest are sent to the encoder 23.
The data is input into the code word and encoded using the correspondence shown in FIGS. 6 and 7, and a 3-bit code word is output. At the same time, the predicted value 2 and the true value X of the pixel of interest are also input to the restoration value generator 24.
In this step, restoration values are created with the correspondence relationship shown in FIG. The restored value is then stored in the pixel signal memory 21 and used for the following pixel prediction.

また受信側では、画素信号メモリ28から予測器26に
参照画素が出力され、該予測器26において従来と同様
にして予測値が算出される。そしてこの予測値と伝送さ
れてきた符号語とが復号器27に入力され、該復号器2
7により第9図で示す対応関係でもって画素信号が復元
される。またこの復元画素信号は画素信号メモリ28に
蓄積される。
On the receiving side, the reference pixel is output from the pixel signal memory 28 to the predictor 26, and the predictor 26 calculates a predicted value in the same manner as in the prior art. Then, this predicted value and the transmitted code word are input to the decoder 27, and the decoder 2
7, the pixel signal is restored with the correspondence shown in FIG. Further, this restored pixel signal is stored in the pixel signal memory 28.

このような本実施例装置では、差分の量子化特性を予測
値により変化させたことになり、どのような予測値に対
しても従来のような無駄な符号語割当は生じない。従っ
て第8図で示した本実施例の復元信号と第4図で示した
従来のものとを比較してもわかるように、本実施例にお
ける受信側での精度の向上は極めて大きくなっている。
In the device of this embodiment, the quantization characteristic of the difference is changed depending on the predicted value, and wasteful code word assignment as in the prior art does not occur for any predicted value. Therefore, as can be seen by comparing the reconstructed signal of this embodiment shown in FIG. 8 with the conventional signal shown in FIG. 4, the improvement in accuracy on the receiving side in this embodiment is extremely large. .

また装置構成も第1図と第5図とを比べると容易にわか
るようにそれほど複雑化されていない。
Furthermore, the device configuration is not so complicated as can be easily seen by comparing FIG. 1 and FIG. 5.

なお、上記実施例では16レベル、定長3ビット符号化
の例をとりあげたが、レベル数は任意であり、符号語の
割当も必ずしも定長とは限らないことは既にふれたよう
に言うまでもない。
In the above embodiment, an example of 16-level, constant-length 3-bit encoding was used, but it goes without saying that the number of levels is arbitrary and the assignment of code words is not necessarily of constant length. .

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、画像情報の符号化伝
送装置において、その符号器における量子化特性を、予
測値に応じた特性とし、これにより量子化及び符号化を
行なうようにしたので、量子化の精度を向上することが
でき、どのような予測値に対しても従来のような無駄な
符号語割当が生じることはなく、精度の高い画像伝送が
可能となる効果がある。
As described above, according to the present invention, in the image information encoding and transmitting apparatus, the quantization characteristic in the encoder is made to be a characteristic according to the predicted value, and quantization and encoding are performed using this characteristic. , it is possible to improve the accuracy of quantization, and there is no needless code word assignment for any predicted value as in the conventional method, which has the effect of enabling highly accurate image transmission.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の画像情報の符号化伝送装置の構成図、第
2図は画素配置図、第3図は従来方式での差分値の代表
値及び対応する符号語を示す図、第4図は従来方式にお
ける予測値と真価との組合せに対する復元値を示す図、
第5図は本発明の一実施例による画像情報の符号化伝送
装置の構成図、第6図は該装置における予測値と真値と
の組合せに対する符号語番号を示す図、第7図はその符
号語番号と符号語との対応を示す図、第8図は該装置に
おける予測値と真価との組合せに対する復元信号値を示
す図、第9図は該装置における予測値と符号語番号とに
対する復元信号値を示す図である。 21・・・送信側画素信号メモリ、22・・・送信側予
測器、23・・・符号器、24・・・復元値作成器、2
6・・・受信側予測器、27・・・復元器、28・・・
受信側画素信号メモリ。
Fig. 1 is a configuration diagram of a conventional image information encoding and transmitting device, Fig. 2 is a pixel arrangement diagram, Fig. 3 is a diagram showing representative values of difference values and corresponding code words in the conventional method, and Fig. 4 is a diagram showing the restored value for the combination of predicted value and true value in the conventional method,
FIG. 5 is a block diagram of an image information encoding and transmitting device according to an embodiment of the present invention, FIG. 6 is a diagram showing code word numbers for combinations of predicted values and true values in the device, and FIG. FIG. 8 is a diagram showing the correspondence between code word numbers and code words. FIG. 8 is a diagram showing restored signal values for combinations of predicted values and true values in this device. FIG. 9 is a diagram showing correspondences between predicted values and code word numbers in this device. FIG. 3 is a diagram showing restored signal values. 21... Transmission side pixel signal memory, 22... Transmission side predictor, 23... Encoder, 24... Restoration value creator, 2
6... Receiving side predictor, 27... Restorer, 28...
Receiving side pixel signal memory.

Claims (1)

【特許請求の範囲】[Claims] (1)送信側画素信号メモリに蓄積された既知の画素値
を参照して注目画素の予測値を出力する送信側予測器、
この予測値と上記注目画素の真値とをもとに受信側で量
子化される復元値を得るとともにこれを上記送信側画素
信号メモリに与える復元値作成器、及び上記予測値と注
目画素の真値とをもとに上記予測値に応じた量子化特性
でもって量子化を行ない予め定められた符号語を出力す
る符号器を有する送信器と、受信側画素信号メモリに蓄
積された既知の画素値を参照して注目画素の予測値を出
力する受信側予測器、及びこの予測値と送信されてきた
符号語とをもとに量子化された復元値を得るとともにこ
れを上記受信側画素信号メモリに与える復号器を有する
受信器とを備えたことを特徴とする画像情報の符号化伝
送装置。
(1) A transmitting side predictor that outputs a predicted value of a pixel of interest by referring to known pixel values stored in a transmitting side pixel signal memory;
A restoration value generator that obtains a restoration value that is quantized on the receiving side based on the predicted value and the true value of the pixel of interest and supplies this to the pixel signal memory on the transmission side; A transmitter includes an encoder that performs quantization with a quantization characteristic according to the predicted value based on the true value and outputs a predetermined code word, and a known pixel signal stored in the receiving side pixel signal memory. A receiving side predictor outputs a predicted value of the pixel of interest by referring to the pixel value, and obtains a quantized restoration value based on this predicted value and the transmitted code word, and transmits this to the receiving side pixel. 1. An apparatus for encoding and transmitting image information, comprising: a receiver having a decoder for providing a signal to a memory.
JP12414184A 1984-06-14 1984-06-14 Encoding transmission device of picture information Granted JPS612483A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12414184A JPS612483A (en) 1984-06-14 1984-06-14 Encoding transmission device of picture information

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12414184A JPS612483A (en) 1984-06-14 1984-06-14 Encoding transmission device of picture information

Publications (2)

Publication Number Publication Date
JPS612483A true JPS612483A (en) 1986-01-08
JPH0311716B2 JPH0311716B2 (en) 1991-02-18

Family

ID=14877937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12414184A Granted JPS612483A (en) 1984-06-14 1984-06-14 Encoding transmission device of picture information

Country Status (1)

Country Link
JP (1) JPS612483A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5887987A (en) * 1981-10-27 1983-05-25 トムソン−セ−エスエフ Difference digital data encoding and decoding method and device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5887987A (en) * 1981-10-27 1983-05-25 トムソン−セ−エスエフ Difference digital data encoding and decoding method and device

Also Published As

Publication number Publication date
JPH0311716B2 (en) 1991-02-18

Similar Documents

Publication Publication Date Title
JPH09507347A (en) Quad-tree WALSH conversion video / image coding
KR960036706A (en) Video signal encoding device
EP0765082A3 (en) Subtitle signal encoding/decoding
JPS5955688A (en) Method of compressing data flow continuously transmitting between television transmitter and television receiver and system for executing same method
JPS612483A (en) Encoding transmission device of picture information
JPH01225225A (en) Differential pulse code modulation system with built-in restored value restrict apparatus
JPH01272326A (en) Method and system of delta modulation encoder/decoder
JPS6343483A (en) Predictive coding system for television signal
JP2606583B2 (en) Vector image coding device
KR0153997B1 (en) Apparatus for transmitting bitplane compressed by means of data codebook
JPH07123276A (en) Digital compression coding method for picture signal
JPH0955936A (en) Picture encoding method and decoding device
JPS5894274A (en) Picture signal encoding system
JP3218863B2 (en) LSP quantizer and LSP decoder
JP2633683B2 (en) Vector quantizer
JPS62125787A (en) Picture transmission system
KR100417602B1 (en) Quantization decoding apparatus
FI83714C (en) Procedure and apparatus for a predictive coding
JPH03112283A (en) Coding system for picture signal
JPH03112272A (en) Coding system for video signal
JP2690031B2 (en) Gain shape vector quantization method
JPH0335677A (en) Encoding transmitter for picture information
JPS6358509B2 (en)
JPH07154607A (en) Binary picture encoder
JPH02185166A (en) Picture data decoding and processing device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term