JPS61248316A - Monostable type polar solenoid - Google Patents

Monostable type polar solenoid

Info

Publication number
JPS61248316A
JPS61248316A JP8816285A JP8816285A JPS61248316A JP S61248316 A JPS61248316 A JP S61248316A JP 8816285 A JP8816285 A JP 8816285A JP 8816285 A JP8816285 A JP 8816285A JP S61248316 A JPS61248316 A JP S61248316A
Authority
JP
Japan
Prior art keywords
coil
movable
yoke
core
iron core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8816285A
Other languages
Japanese (ja)
Inventor
洋一 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP8816285A priority Critical patent/JPS61248316A/en
Publication of JPS61248316A publication Critical patent/JPS61248316A/en
Pending legal-status Critical Current

Links

Landscapes

  • Valve Device For Special Equipments (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔技術分野〕 この発明は、単安定型リレー等に適用される単安定型有
極ソレノイドに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a monostable polarized solenoid applied to monostable relays and the like.

〔背景技術〕[Background technology]

第8図および第9図に従来例を適用した常閉接点構成の
単安定型リレーを示す。すなわち、50は単安定型有極
ソレノイドで、コイル51、コイル枠52、可動鉄心5
3、固定鉄心54、バイアスばね55、第1のヨーク5
6、第2のヨーク57、永久磁石58で構成されている
。59は接点部で、可動鉄心53の可動枠60に挿入さ
れた可動接触子61、可動接点62,63、固定接点6
4,65、固定接点板66.67、接点圧ばね68、ス
トツバ69で構成されている。第7図は無励磁状態で、
永久磁石58により可動鉄心53がバイアスばね55お
よび接点圧ばね68に抗して固定鉄心54に吸引され、
可動接点62.63が固定接点64゜65に接触してい
る。第8図は励磁状態で、永久磁石58により可動鉄心
53を通る磁束と反対向きにコイル51による磁束を供
給することにより可動鉄心53を固定鉄心54に吸引す
る吸引力を低減し、接点圧ばね68およびバイアスばね
55により可動鉄心53が図で上方に動作し、可動接点
62.63が固定接点64.65から離れる。
FIGS. 8 and 9 show a monostable relay with a normally closed contact configuration to which a conventional example is applied. That is, 50 is a monostable type polarized solenoid, which includes a coil 51, a coil frame 52, and a movable iron core 5.
3. Fixed iron core 54, bias spring 55, first yoke 5
6, a second yoke 57, and a permanent magnet 58. Reference numeral 59 denotes a contact portion, which includes a movable contact 61 inserted into a movable frame 60 of a movable iron core 53, movable contacts 62, 63, and a fixed contact 6.
4, 65, fixed contact plates 66, 67, contact pressure springs 68, and stoppers 69. Figure 7 shows the non-excited state.
The movable core 53 is attracted to the fixed core 54 by the permanent magnet 58 against the bias spring 55 and the contact pressure spring 68,
Movable contacts 62, 63 are in contact with fixed contacts 64, 65. FIG. 8 shows an excited state in which the permanent magnet 58 supplies magnetic flux from the coil 51 in the opposite direction to the magnetic flux passing through the movable iron core 53, thereby reducing the attractive force that attracts the movable iron core 53 to the fixed iron core 54, and the contact pressure spring 68 and bias spring 55 move the movable core 53 upwards in the figure, and the movable contacts 62.63 separate from the fixed contacts 64.65.

第10図はこのリレーの吸引力とばね荷重との ゛関係
を示し、Qlは無励磁吸引力、Q2はばね荷重、Q3は
励磁吸引力である。第8図の無励磁状態では吸引力Q1
がばね荷重Q2よりも大きいため同図の状態を維持し接
点は常閉状態にある。この状態において、電流をコイル
51に通電すると、吸引力Q1が小さくなり、ばね荷重
Q2より小さくなると可動鉄心53が動作し、接点が開
成した第9図のようになる。つぎに電流を断つと、吸引
力Q1が無励磁状態に°戻りばね荷重Q2より大きくな
るので可動鉄心53が復帰し、第8図の状態になる。
FIG. 10 shows the relationship between the attraction force and spring load of this relay, where Ql is the non-excitation attraction force, Q2 is the spring load, and Q3 is the excitation attraction force. In the non-excited state shown in Figure 8, the attractive force Q1
Since this is larger than the spring load Q2, the state shown in the figure is maintained and the contact is in a normally closed state. In this state, when a current is applied to the coil 51, the attractive force Q1 becomes smaller, and when it becomes smaller than the spring load Q2, the movable iron core 53 operates and the contact opens as shown in FIG. 9. Next, when the current is cut off, the attractive force Q1 returns to the non-excited state and becomes larger than the spring load Q2, so the movable iron core 53 returns to the state shown in FIG. 8.

しかしながら、このリレーは、つぎの欠点があった。す
なわち、 (1)  このリレーは、励磁時に接点圧ばね68だけ
では動作しないため、バイアスばね55を設けて可動鉄
心53を動作し易くする必要がある。そのため部品点数
が増えるだけでなく、バイアスばね55による荷重のば
らつきが加わるので動作ばらつきが大きくなる。
However, this relay had the following drawbacks. That is, (1) Since this relay does not operate only with the contact pressure spring 68 during excitation, it is necessary to provide the bias spring 55 to facilitate the operation of the movable iron core 53. Therefore, not only the number of parts increases, but also variations in the load due to the bias spring 55 are added, resulting in large variations in operation.

(2)コイル51に電流を通すと、永久磁石58の磁束
を打ち消すため吸引力Q1が低下し、コイル51の磁束
と永久磁石58の磁束が同等になった時可動鉄心53の
吸引力がOになるが、さらにコイルを流を増加すると、
今度はコイル磁束の方が大きくなり、吸引力はOからま
た増加する。このため、最大使用電圧を大きくとれず、
使用電圧範囲に裕度がない。
(2) When current is passed through the coil 51, the magnetic flux of the permanent magnet 58 is canceled out, so the attractive force Q1 decreases, and when the magnetic flux of the coil 51 and the magnetic flux of the permanent magnet 58 become equal, the attractive force of the movable iron core 53 becomes O However, if we further increase the current through the coil,
This time, the coil magnetic flux becomes larger, and the attractive force increases again from 0. For this reason, the maximum working voltage cannot be increased,
There is no margin in the working voltage range.

〔発明の目的〕[Purpose of the invention]

この発明の目的は、動作ばらつきを低減でき、最大使用
電圧を大きくとれる単安定型有極ソレノイドを提供する
ことである。
An object of the present invention is to provide a monostable polar solenoid that can reduce operational variations and increase the maximum operating voltage.

〔発明の開示〕[Disclosure of the invention]

この発明は、コイルと、このコイルの一端側に配置され
た固定鉄心と、前記コイルの他端側より嵌挿されて内端
部が前記固定鉄心に対向するとともに外端部側に軸方向
の外向きに面する係止面を形成した可動鉄心と、前記コ
イルの側部に配設され一端部が前記固定鉄心に連続する
とともに他端部が前記可動鉄心の側部に対向して前記コ
イルを励磁することにより前記可動鉄心を固定鉄心に吸
引させる第1のヨークと、一端部が前記可動鉄心の前記
係止面に対向する第2のヨークと、前記第1および第2
のヨークの間に介在されて前記第1および第2のヨーク
に異磁極を形成することにより前記可動鉄心の前記係止
面を前記第2のヨークの前記一端部に吸引させる永久磁
石とを備えたものである。
The present invention includes a coil, a fixed core disposed at one end of the coil, and a fixed core inserted into the coil from the other end so that the inner end faces the fixed core and the outer end has an axial direction. a movable core formed with a locking surface facing outward, and a movable core disposed on a side of the coil, one end of which is continuous with the fixed core, and the other end of which is opposite to the side of the movable core. a first yoke that attracts the movable iron core to the fixed iron core by energizing the movable iron core; a second yoke that has one end facing the locking surface of the movable iron core;
a permanent magnet that is interposed between the yokes and forms different magnetic poles on the first and second yokes to attract the locking surface of the movable core to the one end of the second yoke. It is something that

この発明によれば、コイルの励磁により第1のヨークを
磁路として可°動鉄心を固定鉄心に吸引し、無励磁では
永久磁石により第1のヨークと第2のヨークを有極化し
て可動鉄心を第2のヨーク側に吸引するため、単安定動
作が得られる。しかもバイアスばねが不要になり、部品
点数を低減できるとともに動作ばらつきを解消でき動作
信頼性が向上する。またコイルの最大使用電圧を大きく
とれ、可動鉄心の励磁時の保持力を大きくすることがで
き、耐衝撃性が向上する。
According to this invention, when the coil is energized, the movable iron core is attracted to the fixed iron core using the first yoke as a magnetic path, and when the coil is not energized, the first yoke and the second yoke are polarized by a permanent magnet and are movable. Since the iron core is attracted to the second yoke side, monostable operation is obtained. Furthermore, a bias spring is not required, which reduces the number of parts, eliminates operational variations, and improves operational reliability. In addition, the maximum working voltage of the coil can be increased, the holding force of the movable core during excitation can be increased, and impact resistance is improved.

実施例 この発明の一実施例を第1図ないし第4図に基づいて説
明する。すなわち、第1図および第4図において、1は
コイル2が巻装されたコイル枠、3は可動鉄心、4は固
定鉄心、5.6は永久磁石、7は第1のヨーク、8は第
2のヨークである。第1のヨーク7は略コ字形で、コイ
ル2の側部に配設され、その一端部7aには固定鉄心4
をかしめる取付孔9aを形成し、他端部7bには可動鉄
心3が通る切欠9bを形成している。固定鉄心4を取付
孔9aに固着し、コイル枠1の孔1dに一端から挿入す
る。また可動鉄心3がコイル枠1の孔1dの他端から挿
入されて内端部が固定鉄心4に対向する。この可動鉄心
3は外端部側に駆動棒3aを設け、駆動棒3aの付根部
分の端面を軸方向に面する係止面3bとしている。した
がってコイル2の通電によりコイル2を励磁すると第3
図のように可動鉄心3.固定鉄心4および第1のヨーク
7を経路とする励磁用磁路Aが形成される。Cは可動鉄
心3と固定鉄心4との隙間で励磁用磁路Aの空隙となる
。第2のヨーク8は略り字形でコイル2の側部の第1の
ヨーク7と反対側に配置され、その折曲側となる一端部
8aは駆動棒3aを貫通する貫通孔8bを形成し、貫通
孔8bに駆動棒3a  ・を貫通することにより係止面
3bに一端部8aを対向している。この場合、第1のヨ
ーク7の他端部7bはコイル枠1のフランジ1aに係止
し、前記第2のヨーク8の一端部8aはフラ、ンジ1a
の側板1bに形成された溝ICに係合して位置決めされ
る。永久磁石5,6はそれぞれ幅方向に着磁されて第1
のヨーク7と第2のヨーク8の側部間に配置され、第1
のヨーク7と第2のヨーク8を異磁極に有極化している
。したがって無励磁では第3図のように第2のヨーク8
.永久磁石5,6゜第1のヨーク7、可動鉄心3を経路
とする無励磁用磁路Bが形成される。Dは可動鉄心3の
係止面3bと第2のヨーク8の一端部8aとの隙間で無
励磁用磁路Bの空隙となる。
Embodiment An embodiment of the present invention will be described with reference to FIGS. 1 to 4. That is, in FIGS. 1 and 4, 1 is a coil frame around which a coil 2 is wound, 3 is a movable core, 4 is a fixed core, 5.6 is a permanent magnet, 7 is a first yoke, and 8 is a first yoke. This is the second yoke. The first yoke 7 is approximately U-shaped and is disposed on the side of the coil 2, with a fixed iron core 4 attached to one end 7a.
A mounting hole 9a for caulking is formed, and a notch 9b through which the movable iron core 3 passes is formed at the other end 7b. The fixed iron core 4 is fixed to the mounting hole 9a, and inserted into the hole 1d of the coil frame 1 from one end. Further, the movable core 3 is inserted from the other end of the hole 1d of the coil frame 1, and the inner end thereof faces the fixed core 4. This movable iron core 3 is provided with a drive rod 3a on the outer end side, and the end surface of the root portion of the drive rod 3a is a locking surface 3b facing in the axial direction. Therefore, when coil 2 is excited by energizing coil 2, the third
As shown in the figure, the movable core 3. An excitation magnetic path A is formed using the fixed iron core 4 and the first yoke 7 as a path. C is a gap between the movable iron core 3 and the fixed iron core 4, and becomes a gap of the excitation magnetic path A. The second yoke 8 has an abbreviated shape and is arranged on the opposite side of the first yoke 7 on the side of the coil 2, and one end 8a on the bent side forms a through hole 8b that passes through the drive rod 3a. , one end 8a faces the locking surface 3b by passing the drive rod 3a through the through hole 8b. In this case, the other end 7b of the first yoke 7 is engaged with the flange 1a of the coil frame 1, and the one end 8a of the second yoke 8 is engaged with the flange 1a of the coil frame 1.
It is positioned by engaging with the groove IC formed in the side plate 1b of. The permanent magnets 5 and 6 are each magnetized in the width direction and
is arranged between the sides of the yoke 7 and the second yoke 8, and the first
The yoke 7 and the second yoke 8 are polarized to have different magnetic poles. Therefore, when not energized, the second yoke 8 as shown in FIG.
.. A magnetic path B for non-excitation is formed with the permanent magnets 5, 6, the first yoke 7, and the movable iron core 3 as a path. D is a gap between the locking surface 3b of the movable iron core 3 and one end portion 8a of the second yoke 8, and becomes a gap of the non-excitation magnetic path B.

第3図は無励磁状態で、前記無励磁用磁路Bに永久磁石
5.6による磁束が通るため、可動鉄心3の係止面3b
は対向する第2のヨーク8の一端部8aに吸引され保持
される。この状態でコイル2に通電すると、前記励磁用
磁路Aをコイル2による磁束が通り、可動鉄心3を通る
永久磁石5゜6による磁束と反対向きにしかもそれより
大きいため、可動鉄心3は固定鉄心4に吸引され、第1
図および第2図のようになる。したがって励磁時には可
動鉄心3が図で上方に移動し、無励磁時には可動鉄心3
が下方に移動し復帰状態となり、単安定動作が実現でき
ることとなる。
FIG. 3 shows a non-excited state, and since the magnetic flux from the permanent magnet 5.6 passes through the non-excited magnetic path B, the locking surface 3b of the movable iron core 3
is attracted to and held by one end 8a of the opposing second yoke 8. When the coil 2 is energized in this state, the magnetic flux from the coil 2 passes through the excitation magnetic path A, and the magnetic flux from the permanent magnet 5.6 passing through the movable core 3 is opposite to and larger than that, so the movable core 3 is fixed. It is attracted to the iron core 4, and the first
The result will be as shown in Fig. 2 and Fig. 2. Therefore, when energized, the movable iron core 3 moves upward in the figure, and when not energized, the movable iron core 3
moves downward and enters the return state, making it possible to realize monostable operation.

第5図および第6図はこの単安定型有極ソレノイドを常
閉型リレーに適用したもので、可動鉄心3の一端に可動
枠10を設け、可動枠10に可動接触子11を嵌挿し、
接点圧ばね12で可動接触子11を付勢するとともに可
動接触子11の両端に可動接点13.14を設け、可動
接点13.14に対向して固定接点15.16をもった
固定接触子17.18を配置している。
5 and 6 show this monostable polar solenoid applied to a normally closed relay, in which a movable frame 10 is provided at one end of the movable iron core 3, a movable contact 11 is inserted into the movable frame 10,
The movable contact 11 is biased by a contact pressure spring 12, and movable contacts 13.14 are provided at both ends of the movable contact 11, and a fixed contact 17 has a fixed contact 15.16 facing the movable contact 13.14. .18 is placed.

第5図は無励磁状態、第6図は励磁状態であり、第7図
はそのばね荷重と吸引力の関係を示す。Q4は無励磁吸
引力、Q5は接点圧ばね12によるばね荷重、Q6は励
磁吸引力である。第5図の無励磁では吸引力Q4かばね
荷重Q、よりも大きいため第5図の状態を保持し接点1
3.15および14゜16が閉成された状態で安定とな
る。また第6図の励磁時には吸引力Q4が小さくなり、
ばね荷重Q5より小さくなると可動鉄心3が動作し接点
13゜15および14.16が開き第6図の状態となる
5 shows the non-excited state, FIG. 6 shows the energized state, and FIG. 7 shows the relationship between the spring load and the attractive force. Q4 is the non-excitation attraction force, Q5 is the spring load due to the contact pressure spring 12, and Q6 is the excitation attraction force. In the non-excitation mode shown in Fig. 5, the attraction force Q4 and the spring load Q are larger, so the state shown in Fig. 5 is maintained and the contact 1
It becomes stable when 3.15 and 14°16 are closed. Also, during the excitation shown in Fig. 6, the attractive force Q4 becomes smaller.
When the spring load becomes smaller than Q5, the movable core 3 operates and the contacts 13.degree. 15 and 14.16 open, resulting in the state shown in FIG.

そしてこの状態でコイル2の通電を断つと第5図の状態
へ復帰する単安定動作となる。
If the current to the coil 2 is cut off in this state, monostable operation returns to the state shown in FIG. 5, resulting in a monostable operation.

〔発明の効果〕〔Effect of the invention〕

この発明によれば、コイルの励磁により第1のヨークを
磁路として可動鉄心を固定鉄心に吸引し、無励磁では永
久磁石により第1のヨークと第2のヨークを有極化して
可動鉄心を第2のヨーク側に吸引するため、単安定動作
が得られる。しかもバイアスばねが不要になり、部品点
数を低減できるとともに動作ばらつきを解消でき動作信
頼性が向上する。またコイルの最大使用電圧を大きくと
れ、可動鉄心の励磁時の保持力を大きくすることができ
、耐衝撃性が向上するという効果がある。
According to this invention, when the coil is energized, the movable iron core is attracted to the fixed iron core using the first yoke as a magnetic path, and when the coil is not energized, the first yoke and the second yoke are polarized by a permanent magnet, and the movable iron core is Since it is attracted to the second yoke side, monostable operation is obtained. Furthermore, a bias spring is not required, which reduces the number of parts, eliminates operational variations, and improves operational reliability. Furthermore, the maximum working voltage of the coil can be increased, the holding force of the movable core during excitation can be increased, and impact resistance can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例の励磁状態の断面図、第2
図はそのn−n線断面図、第3図は励磁状態の断面図、
第4図はその分解斜視図、第5図はリレーに適用した閉
成状態の断面図、第6図はその開成状態の断面図、第7
図はそのばね荷重。 吸引力特性図、第8図は従来例を適用したリレーの閉成
状態の断面図、第9図はその開成状態の断面図、第10
図はそのばね荷重、吸引力特性図である。 2・・・コイル、3・・・可動鉄心、4・・・固定鉄心
、5゜6・・・永久磁石、7・・・第1のヨーク、8・
・・第2のヨーク jI2図78 第4図 第5図     第6図
Fig. 1 is a cross-sectional view of an excitation state of an embodiment of the present invention;
The figure is a cross-sectional view taken along line nn, and Figure 3 is a cross-sectional view of the excited state.
Fig. 4 is an exploded perspective view of the relay, Fig. 5 is a sectional view of the closed state applied to the relay, Fig. 6 is a sectional view of the open state, and Fig. 7 is a sectional view of the relay in its closed state.
The figure shows the spring load. Attraction force characteristic diagram, Fig. 8 is a sectional view of the relay in the closed state to which the conventional example is applied, Fig. 9 is a sectional view of the relay in the open state, and Fig. 10 is a sectional view of the relay in the closed state.
The figure shows the spring load and suction force characteristics. 2... Coil, 3... Movable iron core, 4... Fixed iron core, 5° 6... Permanent magnet, 7... First yoke, 8...
...Second yoke jI2 Fig. 78 Fig. 4 Fig. 5 Fig. 6

Claims (1)

【特許請求の範囲】[Claims] コイルと、このコイルの一端側に配置された固定鉄心と
、前記コイルの他端側より嵌挿されて内端部が前記固定
鉄心に対向するとともに外端部側に軸方向の外向きに面
する係止面を形成した可動鉄心と、前記コイルの側部に
配設され一端部が前記固定鉄心に連続するとともに他端
部が前記可動鉄心の側部に対向して前記コイルを励磁す
ることにより前記可動鉄心を固定鉄心に吸引させる第1
のヨークと、一端部が前記可動鉄心の前記係止面に対向
する第2のヨークと、前記第1および第2のヨークの間
に介在されて前記第1および第2のヨークに異磁極を形
成することにより前記可動鉄心の前記係止面を前記第2
のヨークの前記一端部に吸引させる永久磁石とを備えた
単安定型有極ソレノイド。
A coil, a fixed core disposed at one end of the coil, and a fixed core inserted from the other end of the coil so that an inner end faces the fixed core and an outer end faces outward in the axial direction. a movable core having a locking surface formed thereon; and a movable core disposed on a side of the coil, one end being continuous with the fixed core and the other end facing the side of the movable core to excite the coil. The first
a second yoke having one end facing the locking surface of the movable iron core; and a second yoke interposed between the first and second yokes to provide different magnetic poles to the first and second yokes. By forming the locking surface of the movable iron core on the second
A monostable polarized solenoid comprising a permanent magnet attracted to the one end of the yoke.
JP8816285A 1985-04-24 1985-04-24 Monostable type polar solenoid Pending JPS61248316A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8816285A JPS61248316A (en) 1985-04-24 1985-04-24 Monostable type polar solenoid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8816285A JPS61248316A (en) 1985-04-24 1985-04-24 Monostable type polar solenoid

Publications (1)

Publication Number Publication Date
JPS61248316A true JPS61248316A (en) 1986-11-05

Family

ID=13935228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8816285A Pending JPS61248316A (en) 1985-04-24 1985-04-24 Monostable type polar solenoid

Country Status (1)

Country Link
JP (1) JPS61248316A (en)

Similar Documents

Publication Publication Date Title
JP2613904B2 (en) Polarized electromagnet
JPS61248316A (en) Monostable type polar solenoid
JPS63133604A (en) Polarized electromagnet
JPS61248317A (en) Monostable type polar solenoid
JPS61248318A (en) Monostable type polar solenoid
JP2598611B2 (en) Single-stable type polarized electromagnet
JPH0260020A (en) Polar electromagnet device
JPH028353Y2 (en)
JP2504479B2 (en) Polarized electromagnet
JPH0342653Y2 (en)
JPH0117077Y2 (en)
US4673908A (en) Polarized relay
JPH0117797Y2 (en)
JPS6346997Y2 (en)
JPS6230768Y2 (en)
JPH0322837Y2 (en)
JPH0342652Y2 (en)
JPH0445214Y2 (en)
JPH0316264Y2 (en)
JPS61271726A (en) Relay
JPH0347301Y2 (en)
JPH0225206Y2 (en)
JPS61256537A (en) Polar electromagnet
JPH0636636A (en) Contact opening/closing device
JPS63133607A (en) Plunger for polarized electromagnet