JPS6124820A - Rolling bearing - Google Patents
Rolling bearingInfo
- Publication number
- JPS6124820A JPS6124820A JP14214584A JP14214584A JPS6124820A JP S6124820 A JPS6124820 A JP S6124820A JP 14214584 A JP14214584 A JP 14214584A JP 14214584 A JP14214584 A JP 14214584A JP S6124820 A JPS6124820 A JP S6124820A
- Authority
- JP
- Japan
- Prior art keywords
- rolling
- roughness
- friction
- oil film
- delta
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/30—Parts of ball or roller bearings
- F16C33/66—Special parts or details in view of lubrication
- F16C33/6637—Special parts or details in view of lubrication with liquid lubricant
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/30—Parts of ball or roller bearings
- F16C33/58—Raceways; Race rings
- F16C33/583—Details of specific parts of races
- F16C33/585—Details of specific parts of races of raceways, e.g. ribs to guide the rollers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C2240/00—Specified values or numerical ranges of parameters; Relations between them
- F16C2240/40—Linear dimensions, e.g. length, radius, thickness, gap
- F16C2240/54—Surface roughness
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Rolling Contact Bearings (AREA)
Abstract
Description
【発明の詳細な説明】
この発明はころがり軸受、特に摩擦トルクが小さく温度
上昇の少い円すいころ軸受、自動調心ころ軸受等に関す
るものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to rolling bearings, particularly tapered roller bearings, self-aligning roller bearings, etc., which have low frictional torque and little temperature rise.
ころがり軸受において長寿命、低摩擦トルク、低騒音、
低温度上昇等は、常に開発目標とするところであり、上
記目標の中で、低摩擦トルク、低温度上昇については、
従来、ころがり軸受の内輪や外輪の軌道面の粗さを良く
し、また転動体の転動面の粗さも向上させれば、相対す
る二面の金属接触の機会が少くなり、乾燥摩擦が減り、
上記の目的は達せられるものと考えられていた。従って
いかに前記の粗さをよくするかに加工上の努力は傾注さ
れて来た。Long life, low friction torque, low noise in rolling bearings,
Low temperature rise, etc. are always a development goal, and among the above goals, low friction torque and low temperature rise are
Conventionally, improving the roughness of the raceway surfaces of the inner and outer rings of rolling bearings, as well as improving the roughness of the rolling surfaces of rolling elements, reduces the chance of metal contact between the two opposing surfaces and reduces dry friction. ,
It was believed that the above objectives could be achieved. Therefore, efforts in processing have been focused on how to improve the roughness.
ところが、発明者は種々の実験解析を試みているうちに
、粗さを向上させれば摩擦トルクは減少し、温度上昇も
少くなると云う従来の常識が、必ずしも正しくはないの
ではないかと考えはじめたどの発明は、摩擦トルクが小
さく、温度上昇の少い円すいころ軸受、自動調心ころ軸
受、玉軸受等のころがり軸受を得ることを目的とするも
ので、ころがり軸受の内輪または外輪の軌道面の粗さ、
もしくは転動体の転動面における粗さの王者の中の少く
とも一考の粗さりを0.3〜0.511mrmSとし、
介在する油膜の厚さhと前記粗さCとの比h/aを1以
下としたころがり軸受である。However, while attempting various experimental analyses, the inventor began to think that the conventional wisdom that improving roughness would reduce friction torque and temperature rise was not necessarily correct. The purpose of this invention is to obtain rolling bearings such as tapered roller bearings, self-aligning roller bearings, and ball bearings that have low friction torque and low temperature rise. roughness,
Or, the roughness of at least one of the kings of roughness on the rolling surface of the rolling element is set to 0.3 to 0.511 mrmS,
This is a rolling bearing in which the ratio h/a of the thickness h of the intervening oil film to the roughness C is 1 or less.
以下、実測値によるグラフ、既存のグラフ等を参照しな
がら本発明について説明する。The present invention will be described below with reference to graphs based on actually measured values, existing graphs, and the like.
ころがり軸受の摩擦の発生機構としては、(1) こ
ろがり摩擦(ころがり抵抗も含む)(2)ころがり接触
面内の微小渭り摩擦(31?llり接触部の渭り摩擦
(4)潤渭剤の攪拌抵抗
のような事項が考えられるが、上記事項の中で、 (3
3,(41の事項については、回転があまり速くなく、
食荷荷重も大きくない通常の条件のもとでは、摩擦への
影響は、(1)、(2)項に比較し少いと考えられ、発
明者は、(11項の給粋寺ころがり摩擦、(2)項のこ
ろがり接触面内の微少渭り摩擦に注目した円すいころ軸
受の摩擦モーメント(トルク)Tは、軌道部のころがり
摩擦をMR、2ば部の摩擦をMSとすると、
T=MR+Ms
となり、ころがり軸受回転中のつば部の摩擦MSにライ
ては、Korreanや1);]1maz等が測定して
おり、第1図に示されたように、回転数の上昇と共に急
激にJ−さくなることが知られている。Mechanisms of friction generation in rolling bearings include (1) rolling friction (including rolling resistance), (2) micro-friction within the rolling contact surface (friction of the contact area), and (4) lubricant. Among the above items, (3)
3. (Regarding item 41, the rotation is not very fast,
Under normal conditions where the food load is not large, the influence on friction is considered to be smaller than in terms (1) and (2), and the inventors believe that (Kyusuiji rolling friction in term 11) The friction moment (torque) T of a tapered roller bearing focusing on the slight rolling friction within the rolling contact surface in item (2) is given by MR, the rolling friction of the raceway, and MS, the friction of the second part, as follows: T=MR+Ms Therefore, the friction MS of the collar during rolling bearing rotation has been measured by Korean, 1);]1maz, etc., and as shown in Figure 1, J- It is known that it becomes weaker.
一方発明者の研究によれば、動摩擦トルクは第2図にそ
の一例(測定軸受32307C)が示されているように
、低速時を除けば、回転数の増加と共に増大する傾向に
あることが判明しこの第2図を検討し、前記の第1図を
も考慮すれば、動摩擦トルクはころがり摩擦MR[よる
影響が極めて大きいとの結論に達した。On the other hand, according to the inventor's research, it was found that the dynamic friction torque tends to increase as the rotation speed increases, except at low speeds, as shown in Fig. 2 (measurement bearing 32307C). However, by examining this Figure 2 and also considering the above-mentioned Figure 1, we have come to the conclusion that the dynamic friction torque is extremely influenced by the rolling friction MR.
そこで、ころがり摩擦r−RをいかKして小さくするか
に研究開発を集中することにし、まず単純なころがり接
触をする二つの円筒体をとりあげた。この研究には種々
の粗さの接触面をもつ円筒体を準備し、二円筒試験機に
より、同じ相さ忙形成された一組の円筒体を毎分500
回転させたときの摩擦トルクを測定した。この測定結果
をグラフ化したもの即ちころがり接触する面の粗さと幸
擦トルクとの関係図が第3図である。Therefore, we decided to focus our research and development on how to reduce the rolling friction r-R, and first focused on two cylindrical bodies that made simple rolling contact. In this study, cylindrical bodies with contact surfaces of various roughness were prepared, and a pair of cylindrical bodies formed with the same phase was heated at a rate of 500 per minute using a two-cylinder testing machine.
The friction torque when rotating was measured. FIG. 3 is a graph of the measurement results, that is, a relationship diagram between the roughness of the rolling contact surface and the frictional torque.
この第3図によれば、ころがり摩擦は粗さの数値が大き
くなるにつれて、小さくなる傾向にあることが明瞭であ
る。According to FIG. 3, it is clear that rolling friction tends to decrease as the roughness value increases.
第4図は二円筒測定機による円筒体のころがり摩擦の測
定結果を整理しグラフ化したもので、潤渭油として90
タービン油(粘度55cst)、60スピンドル油(粘
度15 c’st )を選び、種々の相さの摩擦の大き
さを測定し、油膜厚さと粗さの比をとって、これところ
がり摩擦との関係を示している。この第4図より油膜厚
さと粗さの比が小さくなるところがり摩擦が小さくなる
ことがわかる。Figure 4 is a graph showing the measurement results of the rolling friction of a cylindrical body using two cylindrical measuring machines.
Select turbine oil (viscosity 55 cst) and 60 spindle oil (viscosity 15 c'st), measure the magnitude of friction of various phases, take the ratio of oil film thickness to roughness, and calculate the difference between this and rolling friction. It shows a relationship. It can be seen from FIG. 4 that as the ratio of oil film thickness to roughness decreases, rolling friction decreases.
ところで1.1i(L (弾性流体渦?l理論)によれ
ば、ころがり摩擦(粘性抵抗)は、l’: f’(L
(13一部入口に存在する粘性流体(油)により生ずる
もので、荷重、速度条件が同じであれば、接触部入口に
おける油の粘度及び沌体膜圧力(圧力が増すと一般に粘
度が上昇・4−る)で決まるものである。いま間ffi
条件が同じであれば、油膜厚さhは一定である。このと
き接触面の相さσが小さけれは(およそh/σン3)金
属−触が起らないので、全荷重を油膜が支え第5図aの
よう1.c流体圧力が発生する。By the way, according to 1.1i(L (elastic fluid vortex?l theory), rolling friction (viscous resistance) is expressed as l': f'(L
(13) This is caused by the viscous fluid (oil) present at the inlet of the part, and if the load and speed conditions are the same, the viscosity of the oil and the chaotic membrane pressure at the inlet of the contact part (as the pressure increases, the viscosity generally increases). It is determined by 4-ru).
If the conditions are the same, the oil film thickness h is constant. At this time, if the phase difference σ of the contact surfaces is small (approximately h/σ - 3), metal-to-metal contact will not occur, so the entire load will be supported by the oil film as shown in Figure 5a. c Fluid pressure is generated.
第5図の線図は、ころがり接触する円筒体間に粘度15
cstのスピンドル油を介在させ、円筒体の接触面の粗
さff=0.1−10.4.0,9 sm rmsとし
たとき、最大接触圧Pmax = 40Kgf/fnr
n’となるような圧力のもとにおいて、円筒体の回転数
n = 720゜820 、11080rpを与えたと
きのgHL接触接触日入口側力Pと油膜厚さhを計算し
、図示したものである。The diagram in Figure 5 shows the viscosity of 15 between the cylinders in rolling contact.
When the roughness of the contact surface of the cylindrical body is ff = 0.1-10.4.0.9 sm rms with the presence of spindle oil of cst, the maximum contact pressure Pmax = 40Kgf/fnr
The gHL contact contact day inlet side force P and oil film thickness h are calculated and illustrated when the rotational speed of the cylindrical body is given as n = 720°820 and 11080 rpm under a pressure such that n'. be.
第5図す、cはそれぞれ第5図aより粗さの大きい場合
で、金属接触を起こすようKなり、荷重の一部を粗さの
山同志が接触する部分で支えるようになる。これらの接
触点は実際忙は分散しているが、平均化すると図のよう
になり、流体圧力は全圧力から斜線の部分の圧力を除い
た部分となる。この流体圧力なPfとし、−ルツ接触の
半幅をbとし、接触中心からの距離をXとし、油膜の厚
さを11としたとき、ころがり摩擦F rはで表わされ
る。Figures 5A and 5C are cases in which the roughness is larger than that in Figure 5A, and metal contact occurs, and a portion of the load is supported by the portion where the roughness peaks contact each other. These contact points are actually dispersed, but when averaged, it becomes as shown in the figure, and the fluid pressure is the total pressure minus the pressure in the shaded area. When this fluid pressure is Pf, the half width of the Ruth contact is b, the distance from the center of contact is X, and the thickness of the oil film is 11, the rolling friction Fr is expressed as:
前記のように粗さが増すと、流体圧力Pfは小さくなり
、流体圧力Pfが小さくなれば、上式より転がり摩′″
F’% Fr が小さくなることが予想できる上記のよ
うに実測や計算により常識とは逆に、ころがり接触する
面の粗さをあらくすわば、摩擦トルクが低下する傾向に
あることがわかったので、と、うがつ軸受の場合にも果
して同じような現象を呈するかどうか実験を試みた。As mentioned above, when the roughness increases, the fluid pressure Pf decreases, and if the fluid pressure Pf decreases, the rolling friction
It can be expected that F'% Fr will decrease.As mentioned above, it has been found through actual measurements and calculations that, contrary to common sense, if the roughness of the rolling contact surface is made rougher, the friction torque tends to decrease. So, we conducted an experiment to see if a similar phenomenon would occur in the case of a hollow bearing.
第6図は実験結果の一例を示すもので、内径124mm
、外径189mm、組立幅40 mmの円すいころ軸受
の内外輪の軌道面やころの転動面の粗さを、それぞれ0
.15μm r+nsおよび0.5μmrmSとなるよ
うに加工し、各軸受につきスラスト荷重を400kgf
負荷させた状態で回転数を変えて、摩擦トルクをjll
定し、グラフ化したものである。Figure 6 shows an example of the experimental results.
, the roughness of the raceway surfaces of the inner and outer rings and the rolling surface of the rollers of a tapered roller bearing with an outer diameter of 189 mm and an assembled width of 40 mm was set to 0.
.. Processed to have 15μm r+ns and 0.5μmrmS, and thrust load of 400kgf for each bearing.
Change the rotation speed under load to increase the friction torque.
This is a graphical representation of the results.
また第7図は、内径50 mm 、外径110m+n、
幅40 mmの自動調心ころ軸受の軌道面やころの転動
面の粗さ0.14μm rmsおよび0.33μm r
msのものを準備し、各軸受にラジアル荷重1200k
gfをかけ、回転数を変えて摩擦トルクを測定し、その
結果を図示したものである。第6図および第7図のグラ
フよりわかるように、Hすいころ軸受、自動調心ころ軸
受のいずれも、単純な形の円筒体の接触回転の場合と同
様、粗さの数値の大きい力が摩擦トルクの値は小さくな
っている。In addition, Fig. 7 shows an inner diameter of 50 mm, an outer diameter of 110 m+n,
Roughness of raceway surface and roller rolling surface of 40 mm wide spherical roller bearing: 0.14 μm rms and 0.33 μm r
Prepare ms and apply radial load of 1200k to each bearing.
gf was applied, the friction torque was measured by changing the rotation speed, and the results are illustrated. As can be seen from the graphs in Figures 6 and 7, in both H tapered roller bearings and spherical roller bearings, as in the case of contact rotation of a simple cylindrical body, the force with a large roughness value is The value of friction torque is small.
値を選ぶと別の問題が生じる心配がある。There is a concern that choosing a value may lead to other problems.
実際に使用される軸受の油膜厚さを計算してみると、油
膜厚さは油の粘度に依存するが、粘度の高い油を使うと
発熱が大きくなり、低粘度にすると摩耗、−かじりが起
ると云うことで、大体同じような・1■渭条件が多く油
膜厚さh = 0.2〜0.4μmのものが多い。第4
図、第5図によると転がり摩擦が低ドし始めるのはh/
σが2位であるが、積極的に摩擦を減らすにはb/eが
l以下と考えられる。Calculating the oil film thickness of bearings that are actually used shows that the oil film thickness depends on the viscosity of the oil, but using oil with a high viscosity will generate more heat, while using a low viscosity oil will cause wear and galling. In many cases, the oil film thickness h = 0.2 to 0.4 μm, and the oil film thickness h = 0.2 to 0.4 μm. Fourth
According to Fig. 5, the rolling friction begins to decrease at h/
Although σ ranks second, b/e is considered to be l or less in order to actively reduce friction.
(この1以下の数値には油膜の存在を前提とするので零
は含まれない)これに相当する粗さとしては、前記油膜
厚さhの中央値を基準にしてσが0.3μm rms以
上を選定する。(This value of 1 or less assumes the presence of an oil film, so it does not include zero.) The roughness equivalent to this is σ of 0.3 μm rms or more based on the median value of the oil film thickness h. Select.
ころがり軸受の内、外輪の軌道面、ころの転動面は研削
、または超仕上加工が施さ幻るが、粗さをあらくして行
くと、表面粗さに関するパラメータの中で、山の平均間
隔、山の平均先端半径、山の平均傾き等も変っていく。The raceway surfaces of the inner and outer rings and the rolling surfaces of the rollers in rolling bearings appear to be ground or superfinished, but as the roughness is increased, the average spacing of the peaks is one of the parameters related to surface roughness. , the average tip radius of the mountain, the average slope of the mountain, etc. also change.
これらのパラメータの潤甫に及ぼす影響も研究されてい
るが、山の平均傾きが余り大きくなるのは好ましくない
。通常は1〜2°のものが多いが、傭受回転時の振動を
も考慮すれば限度は3〜4°と考えられる。0.6μm
rmsの粗さの研削面で、山の平均傾きを測定すると
56−を超えており、潤渭面としては、不適当である。The influence of these parameters on Junpo has also been studied, but it is undesirable for the average slope of the mountain to become too large. Usually, the angle is 1 to 2 degrees, but the limit is considered to be 3 to 4 degrees if vibrations during rotation of the bearing are also considered. 0.6μm
When the average slope of the ridges is measured on a ground surface with a roughness of rms, it exceeds 56-, which is inappropriate as a wet surface.
体の転動面の粗さは、0.3〜0.5μm [ln3が
適切と考えられる。The roughness of the rolling surface of the body is considered to be 0.3 to 0.5 μm [ln3].
上記の実施例では、円すいころ軸受、球面ころ軸受につ
いて説明したが、この発明は他のころがり軸受即ち円筒
ころ軸受や玉軸受特にスラスト負荷が少く、スピンの起
らないところに使用されるラジアル玉軸受にも適用でき
ることは勿論であるこの発明は上記のように、ころかり
軸受の軌道輪の軌道面、ころの転動面の粗さを限定し、
油膜厚さとの関係もREした結果、従来の軸受に比較し
て、摩擦トルクは減少し、その結果温度上昇を低く保て
るので、倒えば工作機神に使用した場合、熱変形が少く
、従って工作機械を高精度に維持で鞍加工物を精度よく
、加工することができるIn the above embodiments, tapered roller bearings and spherical roller bearings have been described, but the present invention is applicable to other rolling bearings, such as cylindrical roller bearings and ball bearings.In particular, radial balls used in places where the thrust load is small and spin does not occur. Of course, this invention can also be applied to bearings.As mentioned above, this invention limits the roughness of the raceway surface of the raceway of the roller bearing and the rolling surface of the rollers,
As a result of reviewing the relationship with oil film thickness, the friction torque is reduced compared to conventional bearings, and as a result, the temperature rise can be kept low, so when used on a machine tool, there is less thermal deformation, and therefore the machine tool is more stable. By maintaining the high precision of the machine, saddle workpieces can be processed with high precision.
第tUは円すいころ軸受の動摩擦トルクと回転速度の関
係図、第2図は円すいころ軸受32307Cの動摩擦ト
ルクと回転速度の関係図、第3図は円筒体のころがり1
g1i ’%と、円筒体の粗さとの関係図、第4図は円
筒体のころがり摩擦と、油膜と粗さの比との関係図、第
5図は種々の粗さをもった2円筒体間忙おける潤澹油の
圧力分布と油膜形状計算値を示す線図、第6図は円すい
ころ軸受の種々の回転数における粗さと摩擦トルクの関
係を示す線図、第7図は自動M1心ころ軸受の種々の回
転数における粗さと摩擦トルクの関係を示す線図である
。
符号の説明
MRはころがり摩擦、Msはっは部の摩擦、Tは摩擦モ
ーメント、σは卸さ、Frはころがり摩擦、hは油膜厚
さ、Pfは流体圧力、bはヘルツ接触の半幅、Xは接触
中心点からの距離
θ θ20.4 θ2 θど
オAIQ;” yutr=r匍5
芽 3 回
Q由櫂すし優(判り
算41¥l
冬51刀決
芥5図わ
竿りIΔ CtU is a diagram of the relationship between dynamic friction torque and rotational speed of a tapered roller bearing, Figure 2 is a diagram of the relationship between dynamic friction torque and rotational speed of tapered roller bearing 32307C, and Figure 3 is a diagram of the relationship between rolling cylindrical body 1.
A diagram showing the relationship between g1i'% and the roughness of the cylinder. Figure 4 is a diagram showing the relationship between the rolling friction of the cylinder and the ratio of oil film to roughness. Figure 5 is a diagram showing the relationship between the rolling friction of the cylinder and the ratio of oil film to roughness. Figure 5 shows two cylinders with various roughness. Figure 6 is a diagram showing the relationship between roughness and friction torque at various rotational speeds for tapered roller bearings. Figure 7 is a diagram showing the pressure distribution of moist oil and calculated values for oil film shape during busy periods. Figure 7 is a diagram showing the relationship between roughness and friction torque at various rotation speeds of tapered roller bearings. FIG. 3 is a diagram showing the relationship between roughness and friction torque at various rotational speeds of a roller bearing. Explanation of symbols: MR is rolling friction, Ms is friction at the part shown, T is friction moment, σ is resistance, Fr is rolling friction, h is oil film thickness, Pf is fluid pressure, b is half width of Hertzian contact, X is Distance from the center of contact θ θ20.4 θ2 θDO AIQ;” yutr=r匍5 bud 3 times Q Yukai Sushi Yu (decisive calculation 41 ¥l Fuyu 51 Sword Kessaku 5 Tsuwa pole IΔ C
Claims (1)
のころを有するころがり軸受において、内輪または外輪
の軌道面における粗さまたは転動体の転動面における粗
さの中、少くとも一つの部材の粗さσを0.3〜0.5
μmrmsとし、油膜の厚さhと前記の粗さσとの比h
/σを1以下としたころがり軸受。In a rolling bearing having an inner ring, an outer ring, and a plurality of rollers interposed between the inner ring and the outer ring, at least one member has roughness on the raceway surface of the inner ring or outer ring or roughness on the rolling surface of the rolling elements. Roughness σ of 0.3 to 0.5
μmrms, and the ratio h of the oil film thickness h to the roughness σ
Rolling bearing with /σ less than 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14214584A JPS6124820A (en) | 1984-07-11 | 1984-07-11 | Rolling bearing |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14214584A JPS6124820A (en) | 1984-07-11 | 1984-07-11 | Rolling bearing |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6124820A true JPS6124820A (en) | 1986-02-03 |
Family
ID=15308406
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14214584A Pending JPS6124820A (en) | 1984-07-11 | 1984-07-11 | Rolling bearing |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6124820A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6218650B1 (en) | 1993-10-14 | 2001-04-17 | Fujimak Corporation | High speed oven using a jet of heated air |
CN104948674A (en) * | 2014-03-28 | 2015-09-30 | 住友重机械工业株式会社 | Eccentrically swinging reducer device |
-
1984
- 1984-07-11 JP JP14214584A patent/JPS6124820A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6218650B1 (en) | 1993-10-14 | 2001-04-17 | Fujimak Corporation | High speed oven using a jet of heated air |
CN104948674A (en) * | 2014-03-28 | 2015-09-30 | 住友重机械工业株式会社 | Eccentrically swinging reducer device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Aramaki et al. | The performance of ball bearings with silicon nitride ceramic balls in high speed spindles for machine tools | |
KR910006195B1 (en) | Roller elements for roller bearing | |
JPH01220720A (en) | Rolling bearing and manufacturing method therefor | |
Yunlong et al. | Effects of raceway surface roughness in an angular contact ball bearing | |
JP4465895B2 (en) | Roller bearing | |
US5145267A (en) | Automatic center adjusting roller bearing | |
US4398778A (en) | Ball bearing | |
US2722463A (en) | Hydrodynamic bearing | |
US6238095B1 (en) | Relieved tapered roller bearing with true rolling contacts | |
CN116044904A (en) | Drum-shaped double-conical-surface dynamic-static pressure radial sliding bearing | |
JP2584623Y2 (en) | Tapered roller bearing | |
JP2957009B2 (en) | Radial roller bearing | |
JPS6124820A (en) | Rolling bearing | |
JPH11193817A (en) | Self-aligning roller bearing | |
JPH09166133A (en) | Rolling ball bearing | |
JPS6224025A (en) | Rolling bearing | |
Wang et al. | A dynamic model of the torque and heat generation rate in tapered roller bearings under excessive sliding conditions | |
JP2006105323A (en) | Ball bearing | |
JP2001241446A (en) | Roller bearing | |
JP2615959B2 (en) | Spherical roller bearing | |
JP6867281B2 (en) | Rolling bearing | |
Takemura et al. | Development of a new life equation for ball and roller bearings | |
JP2001107952A (en) | Conical roller bearing | |
Matlin et al. | Rolling Ball Bearings (Review of Publications) | |
JP2629339B2 (en) | Spherical roller bearing |