JPS61248007A - Optical demultiplexer - Google Patents

Optical demultiplexer

Info

Publication number
JPS61248007A
JPS61248007A JP8855985A JP8855985A JPS61248007A JP S61248007 A JPS61248007 A JP S61248007A JP 8855985 A JP8855985 A JP 8855985A JP 8855985 A JP8855985 A JP 8855985A JP S61248007 A JPS61248007 A JP S61248007A
Authority
JP
Japan
Prior art keywords
optical
prism
grating
waveguide
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8855985A
Other languages
Japanese (ja)
Inventor
Koji Ishida
宏司 石田
Hiroyoshi Matsumura
宏善 松村
Katsuyuki Imoto
克之 井本
Minoru Maeda
稔 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP8855985A priority Critical patent/JPS61248007A/en
Publication of JPS61248007A publication Critical patent/JPS61248007A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29304Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating
    • G02B6/29305Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating as bulk element, i.e. free space arrangement external to a light guide
    • G02B6/29307Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating as bulk element, i.e. free space arrangement external to a light guide components assembled in or forming a solid transparent unitary block, e.g. for facilitating component alignment
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29304Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating
    • G02B6/29305Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating as bulk element, i.e. free space arrangement external to a light guide
    • G02B6/29311Diffractive element operating in transmission
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29371Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating principle based on material dispersion
    • G02B6/29373Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating principle based on material dispersion utilising a bulk dispersive element, e.g. prism
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29379Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device
    • G02B6/2938Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device for multiplexing or demultiplexing, i.e. combining or separating wavelengths, e.g. 1xN, NxM

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To improve the resolution for demultiplexing by forming a grating to at least a part of a plane optical waveguide constituting a prism. CONSTITUTION:The waveguide type optical prism 4 formed with a diffraction grating is provided on the surface of the plane waveguide 1. The light signal transmitted from an optical fiber 11 is received by optical fibers 12, 13. The dispersion effect of the grating is added to the dispersion effect of the refractive angle when the light is made incident to the prism 4 and the diffraction angle when the light is emitted therefrom and therefore the separating angle between the different wavelengths increases. More specifically, the two wavelength dispersibility of the prism and grating is utilized and therefore the optical demultiplexer which is small in size and has the high resolution is constituted.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は波長多重光通信システムにおいて異波長の光信
号を分離する光分波器に係り、特に他の光部品と集積化
が可能な導波路型の光分波器に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to an optical demultiplexer that separates optical signals of different wavelengths in a wavelength division multiplexing optical communication system, and particularly relates to a waveguide that can be integrated with other optical components. Regarding type optical demultiplexers.

〔発明の背景〕[Background of the invention]

異なる波長の光が混在する波長多重光通信システムにお
いては所望の波長の光を分離して取り出す機能を持つ光
分波器が必要である。そしてこの光分波器は将来受光器
などの他の光部品とのモノリシックな集積化の可゛能な
ことが望まれている。
In a wavelength division multiplexing optical communication system in which light of different wavelengths coexist, an optical demultiplexer is required that has the function of separating and extracting light of a desired wavelength. In the future, it is desired that this optical demultiplexer be able to be monolithically integrated with other optical components such as a photoreceiver.

バルク型の光分波器の一方式としてプリズムを用いたも
のが数多く提案されている。また光導波路型のプリズム
は、たとえば米国のTienらがすでに報告している(
ビー・ケー・ティエン他: 「光集積回路の二層構造お
よび薄膜プリズムレンズと反射鏡の形成」応用物理レタ
ー、第25巻、第547頁、1974年(P、に、Ti
en et al ”Two−LayerConstr
uction of Integrated 0pti
cal C1rcuitsand  Formatio
n  of  Th1n  Film  Pr15m5
e  Lensasand Reflectors”A
ppl、Phys、Lett、 24 、547 。
Many types of bulk optical demultiplexers using prisms have been proposed. In addition, optical waveguide type prisms have already been reported by Tien et al. in the United States (
B. K. Tien et al.: "Two-layer structure of optical integrated circuits and formation of thin film prism lenses and reflective mirrors" Applied Physics Letters, Vol. 25, p. 547, 1974 (P., Ti.
en et al “Two-LayerConstr.
uction of Integrated 0pti
cal C1rcuitsand Formatio
n of Th1n Film Pr15m5
e Lensasand Reflectors"A
ppl, Phys, Lett, 24, 547.

1974)参照)、第1図はプリズムを用いた従来の導
波路型光分波器の一構成例を示したもので、1は平面光
導波路、2は平面光導波路の1部に設けた薄膜型光プリ
ズム、11は伝送用光ファイバ、12.13は分波され
た光を受ける光ファイバである。
(1974)), Figure 1 shows an example of the configuration of a conventional waveguide type optical demultiplexer using a prism, where 1 is a planar optical waveguide, and 2 is a thin film provided in a part of the planar optical waveguide. 11 is a transmission optical fiber, and 12 and 13 are optical fibers that receive the demultiplexed light.

このように構成された従来の光分波器の動作例を説明す
ると、まず光ファイバ11から光導波路1に導かれた光
が入射角θ1でプリズム2に入射される。このプリズム
2に入射された光はθ2なる屈折角で屈折するが、その
値は光の波長によって異なる。またプリズム2からの光
はθ、の屈折角で出射されるが、この屈折角θ、も波長
によって異なる。したがって光ファイバ11から光分波
器に導かれた光のうち波長λ、の光が光ファイバ12に
、λ2なる波長の光が・13に結合する。波長の異なる
光信号が2つ以上存在するときにも同様である。
To explain an example of the operation of the conventional optical demultiplexer configured as described above, first, light guided from the optical fiber 11 to the optical waveguide 1 is incident on the prism 2 at an incident angle θ1. The light incident on this prism 2 is refracted at a refraction angle θ2, but the value differs depending on the wavelength of the light. Further, the light from the prism 2 is emitted at a refraction angle θ, which also differs depending on the wavelength. Therefore, of the light guided from the optical fiber 11 to the optical demultiplexer, the light with the wavelength λ is coupled to the optical fiber 12, and the light with the wavelength λ2 is coupled to the optical fiber 13. The same applies when there are two or more optical signals with different wavelengths.

第2図はグレーティングを用いた導波路型光分波器の構
成例を示したもので、5はグレーティングである。この
グレーティング5への入射角αと出射角βの間には sin a +ginβ=mλ/A という関係がある。ここでmは回折次数、λは波長1人
はグレーティング定数である。この光分波器においては
出射角βは上式からも明らかなように波長によって異な
る。伝搬方向が異なる光信号は平面光導波路を伝搬する
うちに空間的に分離され、λ1.λ8なる光信号はそれ
ぞれ光ファイバ12.13に結合される。
FIG. 2 shows a configuration example of a waveguide type optical demultiplexer using a grating, and 5 is a grating. The relationship between the incident angle α and the exit angle β to the grating 5 is sin a +ginβ=mλ/A. Here, m is the diffraction order, and λ is the wavelength and the grating constant. In this optical demultiplexer, the output angle β differs depending on the wavelength, as is clear from the above equation. Optical signals with different propagation directions are spatially separated while propagating through the planar optical waveguide, and λ1. The optical signals λ8 are each coupled into optical fibers 12.13.

以上のように構成された光分波器では、異波長間の伝搬
方向の差が小さいために1分解能を上げようとすると素
子長が長くなるという欠点があった。
The optical demultiplexer configured as described above has the disadvantage that the element length becomes longer if one resolution is to be increased because the difference in propagation direction between different wavelengths is small.

〔発明の目的〕[Purpose of the invention]

本発明は上記欠点を除去した素子長の短い光分波器を提
供することを目的としている。
An object of the present invention is to provide an optical demultiplexer with a short element length that eliminates the above-mentioned drawbacks.

〔発明の概要〕[Summary of the invention]

本発明は、プリズムを構成している平面光導波路の少な
くとも一部分にグレーティングを形成して分波の分解能
を向上させることである。
The present invention is to improve the demultiplexing resolution by forming a grating in at least a portion of a planar optical waveguide constituting a prism.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の一実施例を第3図および第4図を用いて説
明する。
An embodiment of the present invention will be described below with reference to FIGS. 3 and 4.

第3図は素子の平面図で、第4図はプリズム部の断面図
である。1は平面光導波路、4はその表面に回折格子を
形成した導波路型光プリズム、11.12.13は各々
伝送用光ファイバおよび分離された光信号を受ける光フ
ァイバである。
FIG. 3 is a plan view of the element, and FIG. 4 is a sectional view of the prism portion. 1 is a planar optical waveguide, 4 is a waveguide type optical prism having a diffraction grating formed on its surface, and 11, 12, and 13 are transmission optical fibers and optical fibers for receiving separated optical signals.

上記のように構成された光分波器においてはプリズムに
入射するときの屈折角および出射するときの屈折角の分
散効果に、前述の式で表されるグレーティングの分散効
果が加わるために異波長間の分離角が大となる。
In the optical demultiplexer configured as above, the dispersion effect of the grating expressed by the above formula is added to the dispersion effect of the refraction angle when entering the prism and the refraction angle when exiting the prism. The separation angle between them becomes large.

このようなグレーティングは第4図のようにプリズムの
上部に形成するのみならず第5図、第6図のように光導
波路層1と基板31との界面に形成することや、光導波
路層の下に設けたクラッド層32と基板31との間に形
成することも可能である。このときグレーティングを形
成した領域とプリズムを形成した領域とが完全に一致す
る必要はなく、グレーティングを形成した領域の1部分
にプリズムが形成されていても同様の効果を有すること
は明らかである。
Such a grating may be formed not only on the top of the prism as shown in FIG. 4, but also on the interface between the optical waveguide layer 1 and the substrate 31 as shown in FIGS. 5 and 6, or on the surface of the optical waveguide layer. It is also possible to form it between the cladding layer 32 provided below and the substrate 31. At this time, it is not necessary that the region where the grating is formed and the region where the prism is formed completely coincide with each other, and it is clear that the same effect can be obtained even if the prism is formed in a portion of the region where the grating is formed.

さらに本実施例では平面光導波路の1部に形成した導波
路型光プリズムが平面光導波路と同じ材料で形成した場
合について述べたが、プリズムが画面導波路の材料より
もより屈折率分散、の大なる物質で構成されている場合
には、異波長光信号の分離角がさらに大となることは明
らかである。
Furthermore, in this example, a case has been described in which the waveguide-type optical prism formed in a part of the planar optical waveguide is made of the same material as the planar optical waveguide, but the prism has a higher refractive index dispersion than the material of the screen waveguide. It is clear that the separation angle of different wavelength optical signals becomes even larger when the optical fiber is made of a larger material.

〔発明の効果〕〔Effect of the invention〕

以上本発明によればプリズムとグレーティングの2つの
波長分散性を利用しているので、小型でかつ高い分解能
を有する光分波器が構成できるため、光情報処理、光通
信などの当技術の実用化。
As described above, according to the present invention, since the wavelength dispersion properties of the prism and the grating are utilized, it is possible to construct an optical demultiplexer that is small and has high resolution. ification.

高度化に寄与する効果がある。It has the effect of contributing to sophistication.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のプリズム型光分波器の構成図、第2図は
従来のグレーティング型光分波器の構成。 図、第3図は本発明の実施例の構成図、第4〜第6rM
は本発明の実施例の断面図である。 1・・・平面光導波路、2・・・導波路型光プリズム、
4・・・上面にグレーティングを有する導波路型光プリ
ズム、5・・・グレーティング、11・・・伝送用光フ
ァイバ、12.13・・・受光用光ファイバ、31・・
・基板、32・・・クラッド層。 第 3 日 第 4  口
FIG. 1 is a configuration diagram of a conventional prism-type optical demultiplexer, and FIG. 2 is a configuration diagram of a conventional grating-type optical demultiplexer. Figure 3 is a configuration diagram of an embodiment of the present invention, 4th to 6th rM
1 is a cross-sectional view of an embodiment of the present invention. 1... Planar optical waveguide, 2... Waveguide type optical prism,
4... Waveguide type optical prism having a grating on the upper surface, 5... Grating, 11... Optical fiber for transmission, 12.13... Optical fiber for light reception, 31...
- Substrate, 32... cladding layer. 3rd day 4th mouth

Claims (1)

【特許請求の範囲】 1、薄膜光導波路中に設けたプリズムによつて異なる波
長の光を分離する光分波器において、上記プリズム一部
または全部と重複するように光導波路の1部に回折格子
を設けたことを特徴とする光分波器。 2、上記プリズムを構成する材料が、信号光の波長領域
においてそれよりも屈折率分散の小さな物質によつて囲
まれていることを特徴とする特許請求の範囲第1項記載
の光分波器。
[Claims] 1. In an optical demultiplexer that separates light of different wavelengths using a prism provided in a thin film optical waveguide, diffraction is applied to a part of the optical waveguide so as to overlap part or all of the prism. An optical demultiplexer characterized by a grating. 2. The optical demultiplexer according to claim 1, wherein the material constituting the prism is surrounded by a material having a smaller refractive index dispersion in the wavelength region of the signal light. .
JP8855985A 1985-04-26 1985-04-26 Optical demultiplexer Pending JPS61248007A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8855985A JPS61248007A (en) 1985-04-26 1985-04-26 Optical demultiplexer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8855985A JPS61248007A (en) 1985-04-26 1985-04-26 Optical demultiplexer

Publications (1)

Publication Number Publication Date
JPS61248007A true JPS61248007A (en) 1986-11-05

Family

ID=13946221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8855985A Pending JPS61248007A (en) 1985-04-26 1985-04-26 Optical demultiplexer

Country Status (1)

Country Link
JP (1) JPS61248007A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7440654B2 (en) * 2003-11-28 2008-10-21 Mcgill University Wavelength multiplexer/demultiplexer comprising an optically dispersive stratified body

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5529824A (en) * 1978-08-24 1980-03-03 Nippon Telegr & Teleph Corp <Ntt> Photo branching filter
JPS58194001A (en) * 1982-05-10 1983-11-11 Fujitsu Ltd Optical switch

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5529824A (en) * 1978-08-24 1980-03-03 Nippon Telegr & Teleph Corp <Ntt> Photo branching filter
JPS58194001A (en) * 1982-05-10 1983-11-11 Fujitsu Ltd Optical switch

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7440654B2 (en) * 2003-11-28 2008-10-21 Mcgill University Wavelength multiplexer/demultiplexer comprising an optically dispersive stratified body

Similar Documents

Publication Publication Date Title
US5894535A (en) Optical waveguide device for wavelength demultiplexing and waveguide crossing
US7376308B2 (en) Optical off-chip interconnects in multichannel planar waveguide devices
US4343532A (en) Dual directional wavelength demultiplexer
US4881791A (en) Optical device
JP2001141946A (en) Multiplexing and demultiplexing element
US4756587A (en) Optical multi/demultiplexer
JPH08304664A (en) Wavelength demultiplexing element
US4701009A (en) Spectral filter for integrated optics
WO2022062676A1 (en) Wavelength division multiplexer/demultiplexer, photonic integrated chip, and optical module
US5054873A (en) High density integrated optical multiplexer/demultiplexer
JP3246710B2 (en) Optical device manufacturing method
JPS61248007A (en) Optical demultiplexer
JPH05203830A (en) Optical multiplexer demultiplexer
US7440654B2 (en) Wavelength multiplexer/demultiplexer comprising an optically dispersive stratified body
JPH11160555A (en) Optical wavelength multiplexer/demultiplexer
JPS63244003A (en) Multiplexer/demultiplexer
US20020085801A1 (en) Wavelength division multiplexing and de-multiplexing element and wavelength router
JPS5815926Y2 (en) Composite optical wavelength demultiplexing circuit
JP2002258079A5 (en)
JPH10260437A (en) Nonlinear optical coupler
JP2600507B2 (en) Optical multiplexer / demultiplexer
JPS6247005A (en) Wavelength multiplexing and demultiplexing diffraction grating
US6952506B2 (en) Device for adding and dropping optical signals
JPS6266208A (en) Waveguide type optical demultiplexer
KR100485888B1 (en) Planer Lightwave Circuit Module with Single Port