JPS61247901A - Detecting method for phase difference of interferometer - Google Patents

Detecting method for phase difference of interferometer

Info

Publication number
JPS61247901A
JPS61247901A JP60089808A JP8980885A JPS61247901A JP S61247901 A JPS61247901 A JP S61247901A JP 60089808 A JP60089808 A JP 60089808A JP 8980885 A JP8980885 A JP 8980885A JP S61247901 A JPS61247901 A JP S61247901A
Authority
JP
Japan
Prior art keywords
light
signal
interference
phase difference
equation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60089808A
Other languages
Japanese (ja)
Other versions
JPH0743243B2 (en
Inventor
Yoshinobu Mihashi
三橋 慶喜
Satoshi Ishihara
石原 聰
Masafumi Tagawa
雅文 田川
Hiroshi Yamazaki
洋 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Azbil Corp
Sumita Optical Glass Inc
Original Assignee
Agency of Industrial Science and Technology
Azbil Corp
Sumita Optical Glass Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Azbil Corp, Sumita Optical Glass Inc filed Critical Agency of Industrial Science and Technology
Priority to JP60089808A priority Critical patent/JPH0743243B2/en
Publication of JPS61247901A publication Critical patent/JPS61247901A/en
Publication of JPH0743243B2 publication Critical patent/JPH0743243B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02001Interferometers characterised by controlling or generating intrinsic radiation properties
    • G01B9/02007Two or more frequencies or sources used for interferometric measurement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02001Interferometers characterised by controlling or generating intrinsic radiation properties
    • G01B9/02002Interferometers characterised by controlling or generating intrinsic radiation properties using two or more frequencies
    • G01B9/02003Interferometers characterised by controlling or generating intrinsic radiation properties using two or more frequencies using beat frequencies
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B2290/00Aspects of interferometers not specifically covered by any group under G01B9/02
    • G01B2290/70Using polarization in the interferometer

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To decide whether the polarity is positive or negative even when the range of a phase difference is expanded greatly by obtaining an envelope signal on which an interference signal of interference light consisting of plural known wavelength components is superposed. CONSTITUTION:The intensity of output interference light when coherent light beams which have wavelength lambda and are mutually phi out of phase is expressed as 2(1+cosphii). When this interference light output is superposed as to i=1, 2 and spectrum component of lambda1 and lambda2 are detected at the same time, the sum IT is as shown by an equation 1 and the difference is as shown by an equation 2; when phi1 and phi2 vary uniformly, the IT and ID draw what is called 'beat waveform'. Then, envelope outputs IHC and IHS of the equations 1 and 2 are as shown by an expression 3. A two-wavelength system using the equation 1 is judged within a range 0<=¦B¦<=pi on condition that envelope informa tion is obtained at the same time. Namely, the direction of variation is judged from ¦B¦, so the direction of variation is judged over a wide range without reference to the values phi1 and phi2 when phi1-phi2 is set small.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光学干渉計を用いた物理量測定方法に関し、特
に、光学干渉法による長さ、変位、温度、圧力等の物理
量の光学干渉計による測定方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for measuring physical quantities using an optical interferometer, and in particular, a method for measuring physical quantities such as length, displacement, temperature, and pressure using an optical interferometer. It is related to the measurement method.

〔従来の技術〕[Conventional technology]

光学干渉計を用いた物理量測定装置は、1つの可干渉性
光源から出射する光束を2つ以上の光束に分け、それぞ
れの光束が媒質中を伝搬するとき、被測定物理量に応じ
て2つの光束を干渉させ、これを観測することによって
物理量を測定しようというものである。
A physical quantity measuring device using an optical interferometer divides the light beam emitted from one coherent light source into two or more light beams, and when each light beam propagates in a medium, it splits into two light beams depending on the physical quantity to be measured. The idea is to measure physical quantities by interfering with and observing this interference.

この干渉現象を利用した測定技術には非接触性、高感度
性等の特徴があり、微少変位の測定、距離測定、光弾性
測定等に利用されている。また、最近の光ファイバやそ
の周辺技術の発達により、この種の測定技術に光ファイ
バが適用されるようになった。これにより光学系のフレ
キシビリティ−の増加、防爆性等の耐環境性の特徴をも
有することになり、種々の応用が成されている。
Measurement technology using this interference phenomenon has features such as non-contact property and high sensitivity, and is used for measurement of minute displacements, distance measurements, photoelasticity measurements, etc. Furthermore, with the recent development of optical fibers and related technologies, optical fibers have come to be applied to this type of measurement technology. This increases the flexibility of the optical system and provides environmental resistance such as explosion resistance, and has been used in a variety of applications.

次に干渉による測定原理をのべる。強度、波長ならびに
等しい偏光面成分を有し、位相差がφなる2つの可干渉
光束の干渉光の強度I(φ)は、I(φ) −2Io(
1+c o sφ)−・・−(1)となる。ただし10
は1つの光束の強度を表わす。
Next, we will discuss the principle of measurement using interference. The intensity I(φ) of the interference light of two coherent beams having the same intensity, wavelength, and polarization plane components and a phase difference of φ is I(φ) −2Io(
1+cosφ)-...-(1). However, 10
represents the intensity of one luminous flux.

φが被測定物理量Sに対し既知の関数関係にあれば、■
(φ)=I(S)と書け、■とSとは一定の関係を持つ
ので、ΔSを知りたければΔIを測定すればよい。
If φ has a known functional relationship with the measured physical quantity S, then ■
It can be written as (φ)=I(S), and since ■ and S have a certain relationship, if you want to know ΔS, you can measure ΔI.

Δ■の測定方法には、2つの光束をスクリーン上に出射
し、空間的に干渉縞を生じさせ、干渉縞の移動の様子を
観察するものと、このスクリーン上の1点にのみ注目し
、あるいは2つの光を1点に集中させ、この点の光強度
の変化を観測するものとがある。後者の方法は、空間的
な広がりを要しないという特徴があり、光ファイバなど
に応用されている。
There are two methods for measuring Δ■: two beams of light are emitted onto a screen, spatially creating interference fringes, and the movement of the interference fringes is observed, and the other is focusing on only one point on the screen. Alternatively, there is a method in which two lights are concentrated at one point and changes in light intensity at this point are observed. The latter method has the characteristic that it does not require spatial expansion, and is applied to optical fibers and the like.

しかしながら、この計測技術の実用化に際しては、干渉
させる2光束の位相差φに対する干渉計出力強度■の応
答が余弦関数に従うため次のような制約を受けていた。
However, when putting this measurement technique into practical use, the following restrictions were imposed because the response of the interferometer output intensity ■ to the phase difference φ between the two interfering beams follows a cosine function.

a6位相差φの信号変化の正方向、負方向の判定は干渉
計出力強度■のみでは判断できない。
Determination of whether the signal change of the a6 phase difference φ is positive or negative cannot be determined only by the interferometer output intensity ■.

b1位相差φ信号の微少変化に対する応答が乏しい。The response to minute changes in the b1 phase difference φ signal is poor.

従って実際には次のように使用されている。Therefore, it is actually used as follows.

i、被測定量と位相差φとの関係が一義的に決まり、か
つ、被測定量が変化するとき、その変化率の正負が既知
であるものを扱う。
i. The relationship between the measured quantity and the phase difference φ is uniquely determined, and when the measured quantity changes, the sign of the rate of change is known.

ii 、  φの変化範囲が、 0≦1φ1≦πまたはπ≦Iφ1≦2πである範囲で使
用する。
ii. It is used in a range where the range of change in φ is 0≦1φ1≦π or π≦Iφ1≦2π.

iii 、干渉させる光束のうちのいずれか1つにπ/
2(rad)の位相バイアスをかけ、cos  (φ+
π/2)=sin(φ)すなわち正弦関数を得て、これ
と上記(1)式とから上記a、bの問題点を解決して使
用する。
iii, π/ to any one of the light beams to be interfered with
Applying a phase bias of 2 (rad), cos (φ+
π/2)=sin(φ), that is, a sine function, is obtained, and the above problems a and b are solved and used from this and the above equation (1).

iv、被測定量に依存するφが波長依存性をもつとき、
ある1つの波長でφ。なる位相差を生じる光波とφ。+
π/2なる位相差を生せしめるもう1つの波長の光波を
用い、前者の光波でcosφ。
iv, when φ, which depends on the measured quantity, has wavelength dependence,
φ at one wavelength. A light wave that produces a phase difference of φ. +
Using a light wave of another wavelength that produces a phase difference of π/2, the former light wave has cosφ.

、後者の光波でcos  (φo+π/2) =3 i
 nφ。の2信号を得べく2つの光波を切換えて使用す
る。
, in the latter light wave cos (φo+π/2) = 3 i
nφ. The two light waves are switched and used to obtain the two signals.

v、ivと同じくφが波長依存性をもつとき、位相差が
φ。からφ。+2πとなるべく波長を角周波数ωなるの
こぎり波で時間的に掃引して、その掃引する周期ωの擬
似的な連続信号cos  (ωt+φ。)の位相差φ。
When φ has wavelength dependence like v and iv, the phase difference is φ. From φ. +2π, the wavelength is temporally swept with a sawtooth wave having an angular frequency ω, and the phase difference φ of a pseudo continuous signal cos (ωt+φ.) with the sweeping period ω.

を測定するいわゆる擬似ヘテロゲイン法を使用する。A so-called pseudo-heterogeneous gain method is used to measure .

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記のような従来の方法には、それぞれ、次に示すよう
な問題点があった。
The conventional methods described above each have the following problems.

(a)、  iの方法では、φの変化をcosφの形で
得ているため、φの変化の不確かさ、つまりφの変化率
の正負が不明のものについて対処できない。
In method (a), i, the change in φ is obtained in the form of cosφ, so it cannot deal with the uncertainty of the change in φ, that is, when the sign of the rate of change in φ is unknown.

(b)、  iiのφの変化範囲を限定すると、被測定
量の測定レンジがきわめて狭められる。
If the range of change of φ in (b) and ii is limited, the measurement range of the measured quantity is extremely narrowed.

(c) 、 iiiの方法では、いずれか1つの光束に
π/2(r a d)の位相要素を挿入するが、2光束
の光路が空間的にも同一で偏波面のみが異なるような場
合、すなわち複屈折ファイバ内を伝搬する2光束の場合
には、一旦光をファイバ外で分離する等の複雑な過程を
とらなければならない。
In methods (c) and iii, a phase element of π/2 (r a d) is inserted into one of the light beams, but in cases where the optical paths of the two light beams are spatially the same and only the plane of polarization differs. That is, in the case of two light beams propagating inside a birefringent fiber, a complicated process such as separating the lights outside the fiber must be taken.

(dl、 iv、  vの方法をとる場合は、複雑な信
号処理装置を必要とする。
(When using the dl, iv, and v methods, a complicated signal processing device is required.

〔問題点を解決するための手段〕[Means for solving problems]

このような問題点を解決するために本発明は、複数の既
知の波長成分からなる光を出射し、この光を干渉計によ
って干渉させて干渉光を生じさせ、この干渉光の干渉信
号を上記既知の波長成分毎に分離し、これらの干渉信号
のうち少なくとも2波長についての信号を重畳させ、こ
の重畳信号の包絡線信号を得るようにしたものである。
In order to solve such problems, the present invention emits light consisting of a plurality of known wavelength components, causes this light to interfere with each other using an interferometer, generates interference light, and converts the interference signal of this interference light into the above-mentioned interference signal. The interference signals are separated into known wavelength components, and signals of at least two wavelengths among these interference signals are superimposed to obtain an envelope signal of the superimposed signal.

〔作用〕[Effect]

本発明においては、位相差の範囲を大幅に拡大しても極
性の正負の判定をすることができる。
In the present invention, it is possible to determine whether the polarity is positive or negative even if the range of the phase difference is greatly expanded.

〔実施例〕〔Example〕

まず本発明に係る原理について説明する。λiなる波長
で互いにφiだけ位相の異なった可干渉光を1つの干渉
計で干渉させた時の出力干渉光強度は、2  (1+c
o3φi)と表わせる。i=1.2について、この干渉
光出力を光学的あるいは電気的に重畳させ、λ1.λ2
のスペクトル成分を同時に検出すると、その和ITは、 IT=2  (2+cosφl+cosφ2)−4(1
+cosA−cosB)  ・・・・(2)ただしA−
(φ1+φ2)/2 B=(φ 1−φ2)/2 となり、また、その差IDは、 ID=2 (cosφ1−cosφ2)=−4s 1n
A−s inB・・・13)となる。
First, the principle according to the present invention will be explained. When coherent light beams with a wavelength λi and phases different from each other by φi are caused to interfere with one interferometer, the output interference light intensity is 2 (1+c
o3φi). For i=1.2, this interference light output is optically or electrically superimposed, and λ1. λ2
When the spectral components of
+cosA-cosB) ...(2) However, A-
(φ1+φ2)/2 B=(φ1-φ2)/2, and the difference ID is: ID=2 (cosφ1-cosφ2)=-4s 1n
A-s inB...13).

φ1およびφ2が一様に変化したとすると、φ1および
φ2は波長依存性を有するため、ITおよびIDは、い
わゆる「うなり波形」となる。そこで、このうなり波形
の包路線をとると、(2)式。
Assuming that φ1 and φ2 change uniformly, since φ1 and φ2 have wavelength dependence, IT and ID become so-called "beat waveforms." Therefore, if we take the envelope line of this beat waveform, we get equation (2).

(3)式についてのそれぞれの包絡線出力IHC,IH
3は、 IHCycosB、IH3ys inBとなる。(1)
式におけるような従来の干渉計で一義的に位相の変化方
向を判断するには、たとえば0≦1φ1≦πの範囲でし
か判断できない。ところが(2)式を用いた2波長方式
では、同時に包絡線情報をも得るものとすれば、0≦I
BI≦πの範囲で判断できる。つまり従来の干渉計と本
発明に係る干渉計とで同じ程度の位相差を測定した場合
にその位相の変化方向を見るとき、本発明の場合はIB
+によって変化方向の判断ができるので、φ1−φ2を
小さく設定すれば、φ1.φ2の大きさには関係なく広
い範囲で変化方向の判断ができる。
Respective envelope outputs IHC and IH for equation (3)
3 becomes IHCycosB, IH3ys inB. (1)
In order to uniquely determine the direction of phase change using a conventional interferometer as in the equation, it can only be determined within the range of, for example, 0≦1φ1≦π. However, in the two-wavelength method using equation (2), if envelope information is also obtained at the same time, 0≦I
It can be determined within the range of BI≦π. In other words, when looking at the direction of change in phase when the same degree of phase difference is measured by the conventional interferometer and the interferometer according to the present invention, in the case of the present invention, IB
Since the direction of change can be determined by +, if φ1-φ2 is set small, φ1. The direction of change can be determined over a wide range regardless of the size of φ2.

さらに(2)式と(3)式とを同時に用いれば、Bおよ
びA成分に対する強度が正弦と余弦の関係にあるので、
(2)式、(3)式で示される強度を監視することによ
りφ1.φ2の変化方向がわかる。
Furthermore, if equations (2) and (3) are used simultaneously, the intensities for the B and A components have a relationship between sine and cosine, so
By monitoring the intensity shown by equations (2) and (3), φ1. The direction of change in φ2 can be seen.

またさらに(2)式、(3)式のそれぞれの包絡線強度
を同時に監視していれば、位相変化の検知幅は2倍に広
がる。すなわち、位相の変化方向は0≦B≦2πの範囲
で判断できる。
Moreover, if the envelope intensities of equations (2) and (3) are simultaneously monitored, the detection range of phase changes can be doubled. That is, the direction of phase change can be determined within the range of 0≦B≦2π.

次に本発明に係わる干渉計における位相差検出方法の一
実施例を説明するための系統を第1図に示す。第1図に
おいて、■は光源、2は2光束分離手段、3は伝送手段
、4は光合流子段、5は光・電気変換手段、6は制御・
信号変換手段である。
Next, FIG. 1 shows a system for explaining an embodiment of a phase difference detection method in an interferometer according to the present invention. In FIG. 1, ■ is a light source, 2 is a two-beam separation means, 3 is a transmission means, 4 is an optical combiner stage, 5 is an optical/electrical conversion means, and 6 is a control/converter.
It is a signal conversion means.

光源1は互いに異なる波長λ1.λ2で発振する2つの
レーザ光源11.12およびそれらの光束を合流させる
合流器13.2光束分離手段2はハーフミラ−21,ミ
ラー22およびレンズ23゜24、伝送手段3はセンシ
ングファイバ31およびリファレンスファイバ32.2
光束分離手段2と対称構造になっており、2光束を結合
させる光合流子段4はハーフミラ−41,ミラー42お
よびレンズ43,44、光・電気変換手段5はレンズ5
1.波長分離要素としての回折格子52.光検出器53
.54およびローパスフィルタ55゜56、制御・信号
変換手段6は制御手段6aおよび信号変換手段6bから
構成され、制御手段6aは積分回路61,62、信号変
換手段6bはアナログ演算器63,64.クリップ増幅
器65.66から構成される。レーザ光源11.12は
外部からの制御信号m、nでそれぞれ強度を変化させら
れるようになっている。
The light sources 1 have mutually different wavelengths λ1. Two laser light sources 11.12 that oscillate at λ2 and a combiner 13.2 that combines their light beams; the beam separation means 2 includes a half mirror 21, a mirror 22, and a lens 23°24; the transmission means 3 includes a sensing fiber 31 and a reference fiber. 32.2
It has a symmetrical structure with the light beam separating means 2, and the light combining stage 4 for combining two light beams is a half mirror 41, a mirror 42 and lenses 43, 44, and the optical/electrical converting means 5 is a lens 5.
1. Diffraction grating 52 as a wavelength separation element. Photodetector 53
.. 54 and low-pass filters 55, 56, the control/signal conversion means 6 is composed of a control means 6a and a signal conversion means 6b, the control means 6a is composed of integrating circuits 61, 62, the signal conversion means 6b is composed of analog arithmetic units 63, 64, . It consists of clip amplifiers 65 and 66. The intensity of the laser light sources 11 and 12 can be changed by external control signals m and n, respectively.

次にこのように構成された装置の動作について説明する
。光源1から出射された光aの電界強度Eaは(4)式
のように表される。
Next, the operation of the apparatus configured as described above will be explained. The electric field intensity Ea of the light a emitted from the light source 1 is expressed as in equation (4).

Ea=E1・exp (j・ω1・t)+E2 ・ e
xp (j ・ω2 ・ t) ・ ・ ・ ・(4)
ただしEl、E2はレーザ光源11.12のそれぞれの
電界強度、ω1.ω2はレーザの発振角周波数である。
Ea=E1・exp (j・ω1・t)+E2・e
xp (j ・ω2 ・t) ・ ・ ・ ・(4)
However, El and E2 are the respective electric field strengths of the laser light sources 11 and 12, and ω1. ω2 is the oscillation angular frequency of the laser.

2光束分離手段2から出射される光す、  cの電界強
度は、 Eb=Ec=Ea/2 ・・・151 となる。
The electric field strength of the light beam c emitted from the two-beam separation means 2 is Eb=Ec=Ea/2...151.

センシングファイバ31は被測定量としての物理量を外
部ストレスとして受け、このときセンシングファイバ3
1は歪光学効果や電気光学効果。
The sensing fiber 31 receives a physical quantity as the measured quantity as an external stress, and at this time the sensing fiber 3
1 is the distorted optical effect and electro-optic effect.

磁気光学効果、熱膨張効果などにより屈折率変化、すな
わち、伝搬定数の・変化を被り、ここを伝搬する光に対
し被測定量に応じた位相変化を与える。
Due to the magneto-optical effect, thermal expansion effect, etc., the refractive index changes, that is, the propagation constant changes, giving a phase change to the light propagating through it in accordance with the amount to be measured.

センシングファイバ31を伝搬した光の電界強度Ed、
  リファレンスファイバ32を伝搬した光の電界強度
Eeは、それぞれ(6)式のようになる。
The electric field strength Ed of the light propagated through the sensing fiber 31,
The electric field intensity Ee of the light propagated through the reference fiber 32 is expressed by equation (6).

・ ・ ・ ・(6) ただしφ1j=ni・2π・l/λj ni:ファイバの実行屈折率 l:ファイバ長 2光束d、eは光合法手段4で合流されて出射光fとな
り光・電気変換手段5に入る。次に回折格子52により
光束をλl、λ2成分の2光束に分離した後に光検出器
53.54でそれぞれ電気信号に変換される。ローパス
フィルタ55の出力信号であるλ1成分信号gの出力値
Vl、ローパスフィルタ56の出力信号であるλ2成分
信号りの出力値■2についてそれぞれ(7)式のように
なる。
・ ・ ・ ・(6) However, φ1j=ni・2π・l/λj ni: Effective refractive index of the fiber l: Fiber length 2 The light beams d and e are combined by the optical law means 4 to become the output light f, and optical-to-electrical conversion Enter method 5. Next, the light beam is separated into two light beams of λl and λ2 components by a diffraction grating 52, and then converted into electric signals by photodetectors 53 and 54, respectively. The output value Vl of the λ1 component signal g, which is the output signal of the low-pass filter 55, and the output value 2 of the λ2 component signal, which is the output signal of the low-pass filter 56, are expressed by equation (7).

y1=1+cos   (φ ■ −φ El)V2=
1+cos  (φI2−φ2□)・・・・(7) 信号g、倍信号はアナログ加算演算器63で加算された
後に(8)式のようなビート信号となる。
y1=1+cos (φ ■ −φ El)V2=
1+cos (φI2−φ2□) (7) After the signal g and the double signal are added by the analog addition calculator 63, they become a beat signal as shown in equation (8).

V63=2+cosΔB−cosΔA・・・・(8)こ
こでΔA= (Δφ1+Δφ2)/2ΔB=(Δφ1−
Δφ2)/2 Δφ1=φ目−φ21 Δφ2=φ、2−φ2□ アナログ加算演算器63から出力されたビート信号は、
クリップ増幅器65.66により、余弦信号の振幅のみ
が取り出され、 l cosΔB−CO3ΔA1 なる信号lとなってアナログ加算演算器64から出力さ
れる。
V63=2+cosΔB−cosΔA (8) where ΔA= (Δφ1+Δφ2)/2ΔB=(Δφ1−
Δφ2)/2 Δφ1=φth −φ21 Δφ2=φ, 2−φ2□ The beat signal output from the analog addition calculator 63 is
Only the amplitude of the cosine signal is extracted by the clip amplifiers 65 and 66, and is outputted from the analog addition calculator 64 as a signal l expressed as l cosΔB−CO3ΔA1 .

積分回路61.62はλ1成分、λ2成分の光強度を監
視するためのものであり、両成分の強度が常に等しくな
るように光源1にフィードバックしている。
Integrating circuits 61 and 62 are for monitoring the light intensities of the λ1 component and the λ2 component, and feed back to the light source 1 so that the intensities of both components are always equal.

次に第1図に示す系の動作を、第1図、第2図を用いて
、物理量を温度変化とした場合の測定について説明する
。シングルモードファイバに温度を印加したとき、各波
長成分毎の2光束位相差の温度変化に対する感度は、 Δ(φ、−φ!l)/ΔT、Δ(φIz−φ2t)/Δ
Tで表され、はぼ一定である。
Next, the operation of the system shown in FIG. 1 will be described with reference to FIGS. 1 and 2 regarding measurement when the physical quantity is temperature change. When temperature is applied to a single mode fiber, the sensitivity of the phase difference of the two beams for each wavelength component to temperature changes is as follows: Δ(φ, −φ!l)/ΔT, Δ(φIz−φ2t)/Δ
It is represented by T and is approximately constant.

第2図(a)は干渉計に外部ストレスとしてかかる温度
変化の波形、第2図(b)はλ1成分による干渉信号g
の波形、第2図(C)はλ2成分による干渉信号りの波
形、第2図(d)は信号gと信号りとの加算信号(アナ
ログ加算演算器63の出力)、第2図(e)は包絡線を
とるための変換信号lの波形、第2図(f)はその包絡
線をプロットしてその間を補間したものである。
Figure 2 (a) is the waveform of temperature change applied as external stress to the interferometer, and Figure 2 (b) is the interference signal g due to the λ1 component.
FIG. 2(C) is the waveform of the interference signal due to the λ2 component, FIG. ) is the waveform of the converted signal l for taking the envelope, and FIG. 2(f) is the plot of the envelope and interpolation between them.

このようにして、第2図(a)のTA、TB間の温度範
囲の任意の温度もしくは温度変化率は、第2図(f)の
包絡線の傾きにより、その変化率の極性を知ることがで
きる。また信号g、hを観測することにより、従来と同
じ精度で第2図(沿に示すφの変化を検出することもで
きる。
In this way, for any temperature or rate of temperature change in the temperature range between TA and TB in Figure 2(a), the polarity of the rate of change can be known from the slope of the envelope in Figure 2(f). I can do it. Furthermore, by observing the signals g and h, it is also possible to detect changes in φ shown in FIG. 2 (along) with the same accuracy as before.

第1図においては、光・電気変換手段5.制御・信号変
換手段6で2波長それぞれの干渉波の重畳を電気的に行
っているが、第3図のように光学的に重畳させてもよい
。第3図において、5aは光・電気変換手段であり、5
7は光検出器、58はローパスフィルタである。第3図
において第1図と同一部分又は相当部分には同一符号が
付しである。ここでは透過光を利用して光波光学的重畳
を行っている。ローパスフィルタ58から出力される信
号pは第2図(d)に示す信号と同じものである。
In FIG. 1, optical/electrical conversion means 5. Although the interference waves of the two wavelengths are electrically superimposed by the control/signal conversion means 6, they may be superimposed optically as shown in FIG. In FIG. 3, 5a is a light-to-electricity conversion means;
7 is a photodetector, and 58 is a low-pass filter. In FIG. 3, the same or equivalent parts as in FIG. 1 are given the same reference numerals. Here, optical superposition of light waves is performed using transmitted light. The signal p output from the low-pass filter 58 is the same as the signal shown in FIG. 2(d).

第4図は他の実施例を示したものであって、複屈折効果
を用いた定偏波ファイバを用いた偏波モード干渉型セン
サの例を示したものである。第4図において、7は第1
図の光源1と同じ光源、8は光学的結合手段、9は伝送
手段、10は検光子である。第4図において第1図と同
一部分又は相当部骨には同一符号が付しである。
FIG. 4 shows another embodiment, and shows an example of a polarization mode interference type sensor using a polarization constant fiber using a birefringence effect. In Figure 4, 7 is the first
The light source is the same as the light source 1 in the figure, 8 is an optical coupling means, 9 is a transmission means, and 10 is an analyzer. In FIG. 4, the same parts or corresponding bones as in FIG. 1 are given the same reference numerals.

第4図の場合、ビート信号は(8)式のようになる。In the case of FIG. 4, the beat signal is expressed by equation (8).

すなわち、 VCX:2+CO5ΔB会CO3ΔA ΔB=(Δφ1−Δφ2)/2 ΔA=(Δφ1+Δφ2)/2 ここでΔφ1はλ1に対する伝送手段9の2つの主軸の
沿う光波間の位相差、すなわち、直交する第1の主軸偏
光面成分と第2の主軸偏光面成分とをそれぞれの軸に4
5度方位の検光子を通した後に同一の偏光成分として干
渉させたときの第1の主軸成分と第2の主軸成分間の位
相差である。同じくΔφ2はλ2に対する伝送手段90
2つの主軸に沿う光波間の位相差である。
That is, VCX:2+CO5ΔB CO3ΔA ΔB=(Δφ1−Δφ2)/2 ΔA=(Δφ1+Δφ2)/2 Here, Δφ1 is the phase difference between the light waves along the two principal axes of the transmission means 9 with respect to λ1, that is, the orthogonal first The principal axis polarization plane component and the second principal axis polarization plane component are 4 on each axis.
This is the phase difference between the first principal axis component and the second principal axis component when they are caused to interfere as the same polarized light component after passing through an analyzer oriented at 5 degrees. Similarly, Δφ2 is the transmission means 90 for λ2.
It is the phase difference between light waves along two principal axes.

従来の測定系において、λ=830(nm)で測定した
とき、その温度対位相感度は3(rad/に−m)であ
った。ここで位相変化φの変化率の極性−をcosφの
1/4周期を利用して検知しようとすると、φの検知範
囲はO≦1φ1≦πとなり、温度変化率の極性検知範囲
は、最大で、T、、、=πCr a d)  / 3 
 (r a d/に−m)= 1.04 (k−m)で
ある。
In the conventional measurement system, the temperature vs. phase sensitivity was 3 (rad/-m) when measured at λ=830 (nm). If we try to detect the polarity of the rate of change of the phase change φ using 1/4 period of cosφ, the detection range of φ becomes O≦1φ1≦π, and the polarity detection range of the temperature change rate is at most , T, , = πCr ad) / 3
(ra d/−m)=1.04 (k−m).

これに対し本発明による場合の一例について述べると、 Δφ1/ΔT = 3.0.  Δφ2/ΔT=3.3
ここでλ1−1−780(n、  λ2=830 (n
m〕である。したがって、 1 (Δφ1−Δφ2)/21<π/2ΔTくπ/ (
3,3−3,0)=π10.3= 10.4となり、温
度の測定範囲は約10倍程度に拡大されたことがわかる
On the other hand, to describe an example of the case according to the present invention, Δφ1/ΔT = 3.0. Δφ2/ΔT=3.3
Here, λ1-1-780(n, λ2=830(n
m]. Therefore, 1 (Δφ1−Δφ2)/21<π/2ΔTkuπ/ (
3,3-3,0)=π10.3=10.4, and it can be seen that the temperature measurement range has been expanded about 10 times.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、複数の既知の波長成分か
らなる光を出射し、この光を干渉計によって干渉させて
干渉光を生じさせ、この干渉光の干渉信号を上記既知の
波長成分毎に分離し、これらの干渉信号のうち少なくと
も2波長についての信号を重畳させ、この重畳信号の包
絡線信号を得ることにより、従来においては1波長の光
の2光束干渉信号強度の位相差に対して1/4周期内で
の測定でしかその極性が判断できなかったものが、位相
差の範囲を大幅に拡大でき、構成もそれほど大がかりに
ならずに精度を下げることもなく極性情報をも測定でき
るという効果を成すものである。
As explained above, the present invention emits light consisting of a plurality of known wavelength components, causes the light to interfere with each other using an interferometer to generate interference light, and generates an interference signal of the interference light for each of the known wavelength components. Conventionally, by superimposing signals for at least two wavelengths of these interference signals and obtaining an envelope signal of this superimposed signal, it is possible to Previously, the polarity could only be determined by measuring within 1/4 period, but now the range of phase difference can be greatly expanded, and polarity information can also be measured without requiring a large-scale configuration or reducing accuracy. It has the effect of being possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係わる干渉計における位相差検出方法
の一実施例を説明するための系統図、第2図はその系統
における信号の波形図、第3図は他の実施例を示す系統
図、第4図はさらに他の実施例を示す構成図である。 1・・・・光源、2・・・・2光束分離手段、3・・・
・伝送手段、4・・・・光合流子段、5・・・・光・電
気変換手段、6・・・・制御・信号変換手段、6a・・
・・制御手段、6b・・・・信号変換手段、11.12
・・・・レーザ光源、13・・・・合流器、21.41
・・・・ハーフミラ−122,42・・・・ミラー、2
3,24.43,44.51・・・・レンズ、31・・
・・センシングファイバ、32・・・・リファレンスフ
ァイバ、52・・・・回折格子、53.54・・・・光
検出器、55. 56・・・・ローパスフィルタ、61
.62・・・・積分回路、63゜64・・・・アナログ
加算演算器、65.66・・・・クリップ増幅器。
FIG. 1 is a system diagram for explaining one embodiment of the phase difference detection method in an interferometer according to the present invention, FIG. 2 is a signal waveform diagram in that system, and FIG. 3 is a system diagram showing another embodiment. 4 are configuration diagrams showing still another embodiment. 1... Light source, 2... 2 beam separation means, 3...
- Transmission means, 4... Optical combiner stage, 5... Optical/electric conversion means, 6... Control/signal conversion means, 6a...
...Control means, 6b...Signal conversion means, 11.12
... Laser light source, 13 ... Combiner, 21.41
...Half mirror-122,42...Mirror, 2
3,24.43,44.51...lens, 31...
...Sensing fiber, 32...Reference fiber, 52...Diffraction grating, 53.54...Photodetector, 55. 56...Low pass filter, 61
.. 62...Integrator circuit, 63°64...Analog addition calculator, 65.66...Clip amplifier.

Claims (1)

【特許請求の範囲】[Claims] 干渉計を用いた位相差検出方法において、複数の既知の
波長成分からなる光を出射し、この光を干渉計によって
干渉させて干渉光を生じさせ、この干渉光の干渉信号を
上記既知の波長成分毎に分離し、これらの干渉信号のう
ち少なくとも2波長についての信号を重畳させ、この重
畳信号の包絡線信号を得ることを特徴とする干渉計にお
ける位相差検出方法。
In a phase difference detection method using an interferometer, light consisting of a plurality of known wavelength components is emitted, this light is interfered by an interferometer to generate interference light, and an interference signal of this interference light is converted into an interference signal of the above-mentioned known wavelengths. A method for detecting a phase difference in an interferometer, which comprises separating interference signals into components, superimposing signals of at least two wavelengths among these interference signals, and obtaining an envelope signal of the superimposed signal.
JP60089808A 1985-04-25 1985-04-25 Phase difference detection method in interferometer Expired - Lifetime JPH0743243B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60089808A JPH0743243B2 (en) 1985-04-25 1985-04-25 Phase difference detection method in interferometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60089808A JPH0743243B2 (en) 1985-04-25 1985-04-25 Phase difference detection method in interferometer

Publications (2)

Publication Number Publication Date
JPS61247901A true JPS61247901A (en) 1986-11-05
JPH0743243B2 JPH0743243B2 (en) 1995-05-15

Family

ID=13981018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60089808A Expired - Lifetime JPH0743243B2 (en) 1985-04-25 1985-04-25 Phase difference detection method in interferometer

Country Status (1)

Country Link
JP (1) JPH0743243B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005015149A1 (en) * 2003-08-12 2005-02-17 Bussan Nanotech Research Institute, Inc. Detection device, optical path length measurement device, measurement instrument, optical member evaluation method, and temperature change detection method
CN109459412A (en) * 2018-12-12 2019-03-12 南京吉隆光纤通信股份有限公司 Measurement of Refractive Index Profile o device and acquisition and judge coherence method at optical fiber parameter method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58169004A (en) * 1982-03-31 1983-10-05 Agency Of Ind Science & Technol Highly accurate interference length measuring method in atmosphere
JPS60306A (en) * 1983-06-16 1985-01-05 Agency Of Ind Science & Technol Range finding method using composite wavelength method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58169004A (en) * 1982-03-31 1983-10-05 Agency Of Ind Science & Technol Highly accurate interference length measuring method in atmosphere
JPS60306A (en) * 1983-06-16 1985-01-05 Agency Of Ind Science & Technol Range finding method using composite wavelength method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005015149A1 (en) * 2003-08-12 2005-02-17 Bussan Nanotech Research Institute, Inc. Detection device, optical path length measurement device, measurement instrument, optical member evaluation method, and temperature change detection method
US7426038B2 (en) 2003-08-12 2008-09-16 Fujikura Ltd. Detection device, optical path length measurement device, measurement instrument, optical member evaluation method, and temperature change detection method
CN109459412A (en) * 2018-12-12 2019-03-12 南京吉隆光纤通信股份有限公司 Measurement of Refractive Index Profile o device and acquisition and judge coherence method at optical fiber parameter method

Also Published As

Publication number Publication date
JPH0743243B2 (en) 1995-05-15

Similar Documents

Publication Publication Date Title
CN110365415B (en) Frequency modulation demodulation device based on fiber grating sensor array
CA1339426C (en) Hydrophone demodulator circuit and method
JPH05272982A (en) Method and device for measuring rotation speed
CN101231367A (en) High resolution wavelength demodulation system and demodulation method thereof
JPH01238297A (en) Optical fiber hydrophone and antenna connected to a series of hydrophones
US4180328A (en) Interferometer which corrects for spurious vibrations
US4874244A (en) Method and apparatus for increasing the unambiguous sensing range in an interferometric fiber gyroscope
Liu et al. Signal processing techniques for interferometric fiber-optic strain sensors
US4522495A (en) Optical sensing devices
CA1189725A (en) Dual-polarization interferometer with a single-mode waveguide
US7095963B2 (en) Multi-channel optical receiver for processing tri-cell polarization diversity detector outputs
JPH0654236B2 (en) Digital phase lamp type optical interference gyro
JPS61247901A (en) Detecting method for phase difference of interferometer
US4875775A (en) Reciprocally switched four modulator system
Leilabady et al. Combined interferometric-polarimetric fibre optic sensor capable of remote operation
JPS62135703A (en) End measuring machine
Giles et al. Self-compensating technique for remote fibre optic intensity modulated transducers
JP2580443B2 (en) Optical voltage sensor
WO2002063237A2 (en) Interferometer
Rodríguez-Asomoza et al. Electric signal sensor using an electrooptic coherence modulator
JPS60111112A (en) Optical detecting method of information to be measured
JP2894824B2 (en) Zero offset canceling method for optical fiber gyro
JPWO2021247912A5 (en)
JPS61223822A (en) Optical measuring instrument
JPS63172928A (en) Optical fiber hydrophone

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term