JPS6124768B2 - - Google Patents

Info

Publication number
JPS6124768B2
JPS6124768B2 JP57218136A JP21813682A JPS6124768B2 JP S6124768 B2 JPS6124768 B2 JP S6124768B2 JP 57218136 A JP57218136 A JP 57218136A JP 21813682 A JP21813682 A JP 21813682A JP S6124768 B2 JPS6124768 B2 JP S6124768B2
Authority
JP
Japan
Prior art keywords
plastic
rubber
tert
butyl
methylphenol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57218136A
Other languages
Japanese (ja)
Other versions
JPS59108209A (en
Inventor
Hitoshi Kimura
Kenji Uesugi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP57218136A priority Critical patent/JPS59108209A/en
Publication of JPS59108209A publication Critical patent/JPS59108209A/en
Publication of JPS6124768B2 publication Critical patent/JPS6124768B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、改良された架橋ゴム・プラスチツク
絶縁電線ケーブルの製造方法に関するものであ
る。 従来、この種の絶縁電線ケーブルの製造方法と
しては、スクリユー式押出機にゴム又はプラスチ
ツクを供給すると共に、押出機の押出バレルの一
部から架橋剤又は架橋剤と老化防止剤との混合物
を直接圧入して、押出機の中でゴム・プラスチツ
クと混練し、これをそのまま導体上又はケーブル
コアー上に押出被覆した後、加熱架橋して架橋ゴ
ム又はプラスチツク絶縁電線ケーブルを製造する
方法が知られている。 しかしながら、このような従来技術において
は、架橋剤と老化防止剤との混合液を圧入する場
合、老化防止剤が完全に架橋剤中に溶解していな
いため、配管、ポンプ等につまりを起こしたり、
又均一に分散しない等の問題があつた。架橋ゴ
ム・プラスチツク絶縁電線ケーブルの老化防止剤
として一般的に使用されている4,4′―チオビス
―(6―ターシヤリーブチル―3―メチルフエノ
ール)は、架橋剤への溶解性が悪いため、完全に
溶解させるためには架橋剤をかなり高温にしなけ
ればならない。このため危険性が大きくなり、押
出機における運転上のメインテナンスが大変であ
る。これに加えて高温のために架橋剤の熱分解に
よつて架橋効率が低下してしまう等の欠点があつ
た。 本発明の目的は、以上の欠点を除去し、安全か
つ容易に架橋効率の向上をもたらすことのできる
架橋ゴム・プラスチツク絶縁電線ケーブルの製造
方法を提供することである。 即ち本発明者等は架橋剤と老化防止剤の押出機
への圧入方法ついて鋭意研究の結果、汎用の老化
防止剤である4,4′―チオビス―(6―ターシヤ
リーブチル―3―メチルフエノール)にラジカル
発生剤を添加し、これを加熱してラジカル発生剤
と4,4′―チオビス―(6―ターシヤリーブチル
―3―メチルフエノール)とを反応させて得た反
応生成物は架橋剤に非常に溶解しやすくなる。従
つて常温で液体の架橋剤に対して加熱しなくても
容易に溶解し、又常温で固体の架橋剤に対しては
その融点で容易に溶解する。よつて低温度にて押
出機中のゴム又はプラスチツクに、うまく圧入で
きることを見出し、これにより従来法に見られた
如き、操業上の諸問題が一気に解決でき、しかも
均一に混練後導体上に押出し被覆し、続いて架橋
を施すことによつて従来法勝る架橋効率をもつて
架橋ゴム・プラスチツク絶縁電線ケーブルが製造
できることを見いだし本発明を完成した。 すなわち、本発明は4,4′―チオビス―(6―
ターシヤリーブチル―3―メチルフエノール)に
ラジカル発生剤を反応作用させることにより、
4,4′―チオビス―(6―ターシヤリーブチル―
3―メチルフエノール)を架橋剤に溶解し易い反
応生成物に改良すること、又これを使用して、架
橋剤を安全に、又容易に、押出機中に注入して操
作運転することができかつ架橋効率の低下を抑制
できることを特徴とする。 つまり本発明は、押出機中のゴム又はプラスチ
ツクに架橋剤を圧入しゴム又はプラスチツクと混
練させ、これを導体又はコアー上に押出被覆し、
次いで加熱架橋せしめて、架橋ゴム又はプラスチ
ツク絶縁電線ケーブルを製造するにあた、架橋剤
として、4,4′―チオビス―(6―ターシヤリー
ブチル―3―メチルフエノール)にラジカル発生
剤を反応せしめて得た反応生成物を溶解混和した
架橋剤を用いることを特徴とする。 しかして、ここでラジカル発生剤とは、ジクミ
ルパーオキサイド、ジターシヤリーブチルパーオ
キサイド、ターシヤリーブチルミルパーオキサイ
ド、α―α′―ビス(ターシヤリーブチルパーオ
キシ)パラジイソプロピルベンゼン、ベンゾイル
パーオキサイド、メチルエチルケトンパーオキサ
イド等の有機過酸化物が使用できる。また、4,
4′―チオビス―(6―ターシヤリーブチル―3―
メチルフエノール)に反応させるラジカル発生剤
の添加量は該化合物に対して0.1〜50重量%が望
ましい。 又、ここでゴム又はプラスチツクとは、ポリエ
チレン、エチレン―酢酸ビニル共重合体、エチレ
ン―プロピレン共重合体、スチレン―ブタジエン
共重合体等が使用でき要は架橋可能なゴム・プラ
スチツクであればよい。 さらに又、架橋剤としては、ジクミルパーオキ
サイド、ジターシヤリーブチルパーオキサイド、
ターシヤリーブチルクミルパーオキサイド、2,
5―ジメチル―2,5―ジ(ターシヤリーブチル
パーオキシ)ヘキサン、2,5―ジメチル―2,
5ジ(ターシヤリーブチルパーオキシ)ヘキシン
―3等の有機過酸化物等が挙げられる。これらの
架橋剤で、常温で固体のものは、その融点まで加
熱し、液体にする必要がある。 以下本発明を実施例につきさらに具体的に比較
例と対比しつつ説明する。 実施例 1 4,4′―チオビス―(6―ターシヤリーブチル
―3―メチルフエノール)にジクミルパーオキサ
イド(以下DCPと略称する。)を10重量%添加
し、これを混合して温度160℃にて30分間窒素ガ
ス中にて反応させる。これを常温に戻し、得られ
た反応生成物を45℃の温度のDCPに15重量%溶
解させ、この溶液を押出機圧縮部から押出機中の
ポリエチレン中に注入し、混練後導体上に押出被
覆し、さらに加熱し架橋処理をして6KV250sqの
架橋ポリエチレン絶縁ケーブルを製造した。製造
結果及び得られたケーブル特性を表―1に示す。
比較例(後出)と対比しても判るように本発明の
顕著な効果が認められた。 実施例 2 4,4′―チオビス―(6―ターシヤリーブチル
―3―メチルフエノール)にターシヤリーブチル
クミルパーオキサイドを20重量%添加し、これを
混合して温度170℃にて20分間窒素ガス中にて加
熱反応させる。これを常温に戻し、得られた反応
生成物を20℃の温度のターシヤリーブチルクミル
パーオキサイドに10重量%溶解させたものを用い
た外は実施例1と同様にして6KV250sqの架橋ポ
リエチレン絶縁ケーブルを試作した。製造結果及
び得られたケーブル特性を表―1に示す。比較例
(後出)と対比して判るように本発明の顕著な効
果が認められた。 比較例 1 温度45℃のDCPに4,4′―チオビス―(6―タ
ーシヤリーブチル―3―メチルフエノール)を15
重量%混合し、そのままこの混合物を使用して実
施例―1と同一の操作により、6KV250sqの架橋
ポリエチレン絶縁ケーブルを製造した。製造結果
及び得られたケーブル特性を表―1に示す。 比較例 2 4,4′―チオビス―(6―ターシヤリーブチル
―3―メチルフエノール)にDCPを0.05重量%添
加し、この混合物をそのまま使用した他はすべて
実施例―1と同じ操作を行なつて、架橋ポリエチ
レン絶縁ケーブルを製造した。製造結果及び得ら
れたケーブル特性を表―1に示す。 比較例 3 温度80℃のDCPに4,4′―チオビス―(6―タ
ーシヤリーブチル―3―メチルフエノール)を15
重量%混合し、そのままこの混合物を使用して実
施例―1と同一の操作により6KV250sqの架橋ポ
リエチレン絶縁ケーブルを製造した。その結果を
表―1に示す。
TECHNICAL FIELD This invention relates to an improved method of manufacturing crosslinked rubber and plastic insulated wire and cable. Conventionally, the method for manufacturing this type of insulated wire cable is to feed rubber or plastic to a screw extruder, and then directly inject a crosslinking agent or a mixture of a crosslinking agent and an anti-aging agent from a part of the extrusion barrel of the extruder. There is a known method of press-fitting, kneading with rubber or plastic in an extruder, extruding this as it is onto a conductor or cable core, and then heating and crosslinking to produce a crosslinked rubber or plastic insulated wire cable. There is. However, in such conventional technology, when a mixed solution of a crosslinking agent and an anti-aging agent is injected under pressure, the anti-aging agent is not completely dissolved in the cross-linking agent, which may cause clogging of pipes, pumps, etc. ,
There were also problems such as non-uniform dispersion. 4,4'-thiobis-(6-tert-butyl-3-methylphenol), which is commonly used as an anti-aging agent for cross-linked rubber and plastic insulated wire cables, has poor solubility in cross-linking agents. The crosslinking agent must be brought to a fairly high temperature for complete dissolution. This increases the risk and requires operational maintenance on the extruder. In addition, there was a drawback that the crosslinking efficiency decreased due to thermal decomposition of the crosslinking agent due to the high temperature. An object of the present invention is to provide a method for manufacturing a crosslinked rubber/plastic insulated wire cable that can eliminate the above-mentioned drawbacks and safely and easily improve the crosslinking efficiency. That is, as a result of intensive research into a method for press-feeding a crosslinking agent and anti-aging agent into an extruder, the present inventors discovered that 4,4'-thiobis-(6-tert-butyl-3-methylphenol), a general-purpose anti-aging agent, ) and then heated to react the radical generator with 4,4′-thiobis-(6-tert-butyl-3-methylphenol), and the reaction product obtained is a crosslinking agent. becomes very soluble. Therefore, it easily dissolves a crosslinking agent that is liquid at room temperature without heating, and it easily dissolves a crosslinking agent that is solid at room temperature at its melting point. Therefore, we discovered that it is possible to successfully press rubber or plastic into an extruder at a low temperature, which solves all the operational problems encountered with conventional methods at once. The present invention was completed based on the discovery that a crosslinked rubber/plastic insulated wire/cable can be produced with crosslinking efficiency superior to conventional methods by coating and then crosslinking. That is, the present invention provides 4,4'-thiobis-(6-
By reacting tert-butyl-3-methylphenol with a radical generator,
4,4′-Thiobis-(6-tert-butyl-
3-methylphenol) into a reaction product that is easily soluble in a crosslinking agent, and can be used to safely and easily inject the crosslinking agent into an extruder for operation. It is also characterized by being able to suppress a decrease in crosslinking efficiency. In other words, the present invention involves press-injecting a crosslinking agent into rubber or plastic in an extruder, kneading it with the rubber or plastic, and extrusion coating the crosslinking agent onto a conductor or core.
Then, when crosslinking is carried out by heating to produce a crosslinked rubber or plastic insulated wire cable, a radical generator is reacted with 4,4'-thiobis-(6-tert-butyl-3-methylphenol) as a crosslinking agent. The method is characterized by using a crosslinking agent in which the reaction product obtained by the above method is dissolved and mixed. Therefore, the radical generators used herein include dicumyl peroxide, ditertiary butyl peroxide, tertiary butyl mil peroxide, α-α′-bis(tertiary butyl peroxy) paradiisopropylbenzene, benzoyl peroxide, Organic peroxides such as methyl ethyl ketone peroxide can be used. Also, 4,
4′-thiobis-(6-tert-butyl-3-
The amount of the radical generator reacted with methylphenol is preferably 0.1 to 50% by weight based on the compound. Further, the rubber or plastic used here includes polyethylene, ethylene-vinyl acetate copolymer, ethylene-propylene copolymer, styrene-butadiene copolymer, etc., and any rubber or plastic that can be crosslinked may be used. Furthermore, as the crosslinking agent, dicumyl peroxide, ditertiary butyl peroxide,
Tertiary butyl cumyl peroxide, 2,
5-dimethyl-2,5-di(tert-butylperoxy)hexane, 2,5-dimethyl-2,
Examples include organic peroxides such as 5-di(tert-butylperoxy)hexyne-3. Among these crosslinking agents, those that are solid at room temperature must be heated to their melting point to become liquid. EXAMPLES The present invention will be described in more detail below with reference to Examples and in comparison with Comparative Examples. Example 1 10% by weight of dicumyl peroxide (hereinafter abbreviated as DCP) was added to 4,4'-thiobis-(6-tert-butyl-3-methylphenol), and the mixture was mixed at a temperature of 160°C. React in nitrogen gas for 30 minutes. This was returned to room temperature, and the resulting reaction product was dissolved at 15% by weight in DCP at a temperature of 45°C. This solution was injected into the polyethylene in the extruder from the compression section of the extruder, and after kneading, it was extruded onto a conductor. A 6KV250sq crosslinked polyethylene insulated cable was manufactured by coating, heating and crosslinking. Table 1 shows the manufacturing results and the cable characteristics obtained.
As can be seen from comparison with comparative examples (described later), the remarkable effects of the present invention were observed. Example 2 20% by weight of tert-butyl cumyl peroxide was added to 4,4'-thiobis-(6-tert-butyl-3-methylphenol), mixed and heated with nitrogen gas at a temperature of 170°C for 20 minutes. Heat the reaction inside. A 6KV250sq cross-linked polyethylene insulated cable was prepared in the same manner as in Example 1, except that the resulting reaction product was dissolved at 10% by weight in tert-butylcumyl peroxide at a temperature of 20°C. We made a prototype. Table 1 shows the manufacturing results and the cable characteristics obtained. As can be seen from comparison with Comparative Examples (described later), remarkable effects of the present invention were observed. Comparative example 1 4,4′-thiobis-(6-tert-butyl-3-methylphenol) was added to DCP at a temperature of 45°C for 15 minutes.
A cross-linked polyethylene insulated cable of 6KV250sq was manufactured using this mixture in the same manner as in Example-1. Table 1 shows the manufacturing results and the cable characteristics obtained. Comparative Example 2 The same procedure as in Example 1 was carried out except that 0.05% by weight of DCP was added to 4,4′-thiobis-(6-tert-butyl-3-methylphenol) and this mixture was used as it was. A cross-linked polyethylene insulated cable was manufactured. Table 1 shows the manufacturing results and the cable characteristics obtained. Comparative example 3 4,4′-thiobis-(6-tert-butyl-3-methylphenol) was added to DCP at a temperature of 80°C for 15 minutes.
A cross-linked polyethylene insulated cable of 6KV250sq was manufactured using this mixture in the same manner as in Example-1. The results are shown in Table-1.

【表】 以上述べたように、4,4′―チオビス―(6―
ターシヤリーブチル―3―メチルフエノール)を
老化防止剤としての効果を損うことなく架橋剤に
容易に溶解できるのに反応改質させたものを、架
橋剤に溶解させた、完全な溶液を押出機に注入さ
せて行なう本発明方法は、従来のものに比し、操
作運転が安全かつ容易になると共に架橋効率を向
上させる効果をもたらし、本発明方法は産業上有
用である。
[Table] As mentioned above, 4,4′-thiobis-(6-
A complete solution of tert-butyl-3-methylphenol (tert-butyl-3-methylphenol), which can be easily dissolved in a cross-linking agent without impairing its effect as an anti-aging agent, has been reactively modified and dissolved in a cross-linking agent. The method of the present invention, which is carried out by injection into a machine, is safer and easier to operate than the conventional method, and has the effect of improving crosslinking efficiency, so the method of the present invention is industrially useful.

Claims (1)

【特許請求の範囲】[Claims] 1 押出機中のゴム又はプラスチツクに架橋剤と
老化防止剤の混合物を圧入しゴム又はプラスチツ
クと混練させ、これを導体又はコアー上に押出被
覆し、次いで加熱加橋せしめて、架橋ゴム又は架
橋プラスチツク絶縁電線ケーブルを製造するにあ
たり、架橋剤の混合物として老化防止剤である、
4,4′―チオビス―(6―ターシヤリーブチル―
3―メチルフエノール)にラジカル発生剤を反応
せしめて得た反応生成物を架橋剤に溶解混和した
混合物を用いることを特徴とする架橋ゴム・プラ
スチツク絶縁電線ケーブルの製造方法。
1. A mixture of a cross-linking agent and an anti-aging agent is press-injected into rubber or plastic in an extruder, kneaded with the rubber or plastic, extruded and coated onto a conductor or core, and then heat-linked to produce cross-linked rubber or cross-linked plastic. In producing insulated wire cables, as a mixture of crosslinking agents, anti-aging agents,
4,4′-Thiobis-(6-tert-butyl-
1. A method for producing a crosslinked rubber/plastic insulated wire and cable, which comprises using a mixture of a reaction product obtained by reacting (3-methylphenol) with a radical generator and dissolved in a crosslinking agent.
JP57218136A 1982-12-13 1982-12-13 Method of producing crosslinked rubber and plastic insulatedwire cable Granted JPS59108209A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57218136A JPS59108209A (en) 1982-12-13 1982-12-13 Method of producing crosslinked rubber and plastic insulatedwire cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57218136A JPS59108209A (en) 1982-12-13 1982-12-13 Method of producing crosslinked rubber and plastic insulatedwire cable

Publications (2)

Publication Number Publication Date
JPS59108209A JPS59108209A (en) 1984-06-22
JPS6124768B2 true JPS6124768B2 (en) 1986-06-12

Family

ID=16715195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57218136A Granted JPS59108209A (en) 1982-12-13 1982-12-13 Method of producing crosslinked rubber and plastic insulatedwire cable

Country Status (1)

Country Link
JP (1) JPS59108209A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2681158B2 (en) * 1988-03-02 1997-11-26 株式会社フジクラ Power cable

Also Published As

Publication number Publication date
JPS59108209A (en) 1984-06-22

Similar Documents

Publication Publication Date Title
FI66700B (en) FREEZER FOR ELECTRICAL DISCHARGES
US3646155A (en) Cross-linking of a polyolefin with a silane
JPS6120969B2 (en)
JPH0593010A (en) Maleic-anhydride-modified ethylene polymer substantially uncross-linked and its production
KR100627528B1 (en) Electric cable and a method for the production thereof
CN105153380A (en) One-step process organosilane crosslinked polyethylene insulated material and impregnation method production technology thereof
CN114350096A (en) High-temperature-resistant two-step silane crosslinked polyethylene insulating material and preparation method thereof
JP2001520294A (en) Electrical cable and method and composition for manufacturing the same
JPS6124768B2 (en)
CN104497409A (en) One-step method silane natural crosslinked polyethylene cable material and preparation method thereof
FR2638015A1 (en) PELABLE SEMICONDUCTOR MIXTURE, ESPECIALLY FOR ELECTRIC CABLES, CROSSLINKABLE USING SILANES, AND METHOD FOR THE IMPLEMENTATION OF SAID MIXTURE
JP3024669B2 (en) Method of manufacturing wear-resistant electric wires and cables
JPH0645168B2 (en) Extrusion cross-linking method for insulators
JP4812931B2 (en) Electric wire manufacturing method
KR102644448B1 (en) Manufacturing method of epdm with polar group amd epdm with polar group using the same
JPH03179031A (en) Production of crosslinked polyethylene pipe
JP2002150860A (en) Manufacturing method of electric wire/cable using water bridging method
JPS581664B2 (en) Crosslinking method for organic polymers
JPH03122126A (en) Crosslinking of polyolefin
JP2001131351A (en) Crosslinked polyolefin resin composition
JP2004039488A (en) Manufacturing method of cross-linked polyolefin insulated cable
JPH01113446A (en) Polyolefin composition
CN116239804A (en) Long-chain branched high-density polyethylene and preparation method thereof
CN115424784A (en) Preparation process of irradiation type rubber sleeve cable
DK164344B (en) PROCEDURE FOR THE MANUFACTURE OF A CRIME HOSE, AND USE OF THIS