JPS61247083A - Semiconductor laser - Google Patents

Semiconductor laser

Info

Publication number
JPS61247083A
JPS61247083A JP8790385A JP8790385A JPS61247083A JP S61247083 A JPS61247083 A JP S61247083A JP 8790385 A JP8790385 A JP 8790385A JP 8790385 A JP8790385 A JP 8790385A JP S61247083 A JPS61247083 A JP S61247083A
Authority
JP
Japan
Prior art keywords
current
diode
temperature
thermal resistance
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8790385A
Other languages
Japanese (ja)
Inventor
Shoji Katayama
片山 昌二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP8790385A priority Critical patent/JPS61247083A/en
Publication of JPS61247083A publication Critical patent/JPS61247083A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/0014Measuring characteristics or properties thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • H01S5/0261Non-optical elements, e.g. laser driver components, heaters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/06804Stabilisation of laser output parameters by monitoring an external parameter, e.g. temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/06808Stabilisation of laser output parameters by monitoring the electrical laser parameters, e.g. voltage or current

Abstract

PURPOSE:To make it possible to accurately measure the foward direction voltage for obtaining the temperature of an element and to obtain an accurate thermal resistance by a method wherein a diode section where direct and weak current is to be made to flow is formed on a section where the temperature rise is measured separately from the light-emitting region to measure the temperature with direct current. CONSTITUTION:An electrically insulated layer 9 is partially formed from the surface of the P side to the substrate with chemical etching method to form an electrically independent diode B within the same element other than a diode A where the light-emitting section directly below a Zn diffusion layer 6. Therefore, it is possible to accurately measure the forward direction voltage by feeding a weak current with direct current for measuring the temperature of an element to the diode B while feeding a normal driving current to the diode A. Moreover, it is not required to change current from the large current for increase the temperature of the element to the small current for measuring the temperature of the element, thereby simplifying the measuring circuit and providing a low-price thermal resistance measuring instrument.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体レーザの改良に関するものでめる0 更に詳しく言えは半導体レーザ素子に熱抵抗を直接測定
できる機能を付加させるための改良に関するものである
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to improvements in semiconductor lasers.More specifically, it relates to improvements in adding a function to directly measure thermal resistance to semiconductor laser elements. It is.

[従来の技術〕 半導体レーザは光フアイバ通信のキイデバイスでめる。[Conventional technology] Semiconductor lasers are key devices in optical fiber communications.

従って光フアイバ通信システム全般の信頼性は半導体レ
ーザの信頼性に強く影響される。ところで半導体レーザ
の信頼性は他の半導体デバイスと同様に素子温度に依存
するので、使用時の素子温度を正確に求める必要かめる
。このためには素子の熱抵抗を精度よく測定しなけれは
ならない。
Therefore, the reliability of the optical fiber communication system in general is strongly influenced by the reliability of the semiconductor laser. Incidentally, the reliability of a semiconductor laser, like other semiconductor devices, depends on the element temperature, so it is necessary to accurately determine the element temperature during use. For this purpose, it is necessary to accurately measure the thermal resistance of the element.

半導体レーザの熱抵抗の測定にはダイオードの順方向特
性の温度依存性を用いる方法が一般的である。
A common method for measuring the thermal resistance of a semiconductor laser is to use the temperature dependence of the forward characteristics of a diode.

この方法は次のように測定する。まず室温Tにおいて電
流を流さない状態で温度上昇が無視できる程低レベルの
電流IFIにおける順方向電圧VFIを測定する。次に
充分大きな電流IFZを流して、素子温度を上昇させた
後、再度低レベルの電流IFIに切シ変え、この時の順
方向電圧vFlヲ測定する。
This method measures as follows. First, the forward voltage VFI is measured at room temperature T with no current flowing and at a current IFI at a level so low that the temperature rise can be ignored. Next, after flowing a sufficiently large current IFZ to raise the element temperature, the current is switched to a low level current IFI again, and the forward voltage vFl at this time is measured.

電流をIF2からIFIに切り変える時間が素子の熱時
足よシ充分早けれは yp lh t 流i’ 11p
 2のときの素子温度T′における3111方向電圧で
るる。
The time to switch the current from IF2 to IFI is faster than the heat of the element. yp lh t flow i' 11p
The voltage in the 3111 direction at the element temperature T' at 2 is obtained.

従って熱抵抗几thは次の式より求められる。Therefore, the thermal resistance th can be obtained from the following formula.

R1h=(素子温度上昇)/(消費電力)”(T’  
−T  )/ (IF2XVF2)=(弓・−VF・)
)/(IP・・■、・)・・・(1゜α ここで、αは低レベルIFIにおける順方向電圧の温度
係数であり、はぼ定数である。VF2t:を電流IF2
のときの順方向電圧である。
R1h=(element temperature rise)/(power consumption)"(T'
-T ) / (IF2XVF2) = (Bow・-VF・)
)/(IP・・■、・)・・・・(1゜α Here, α is the temperature coefficient of the forward voltage at low level IFI and is a constant. VF2t: is the current IF2
This is the forward voltage when .

ところで、この方法でより正確な熱抵抗を求めるために
は、電流k IP2からIFIに切り変える時間を素子
の熱時定数より小さくする必要がある。
By the way, in order to obtain a more accurate thermal resistance using this method, it is necessary to make the time for switching from the current k IP2 to IFI smaller than the thermal time constant of the element.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

一般に半導体レーザの素子の熱時定数は数100nse
t以下と非常に小さい。そのため前記の方法で電流をI
P2からIFIに切シ変えた後、素子の熱時定数の時間
内で、順方向電圧VFIを正確に測定することは非常に
困難でおる。
Generally, the thermal time constant of a semiconductor laser element is several hundreds of nanoseconds.
Very small, less than t. Therefore, using the method described above, the current is
After switching from P2 to IFI, it is very difficult to accurately measure the forward voltage VFI within the thermal time constant of the element.

特に半導体レーザにおいては、電流IF2が大きすぎる
と光素子内の光電力が過大となり、反射端面を破壊し、
レーザ発振しなくなってしまう。このためIP2はめま
り大きくできないため電圧差(VF−VFI )は小さ
い値となり、vFを一般のダイオードより精度よく測定
できなけれは、正確な熱抵抗値を得ることができない。
Particularly in semiconductor lasers, if the current IF2 is too large, the optical power within the optical element will become excessive, destroying the reflective end facets.
Laser oscillation will no longer occur. Therefore, since IP2 cannot be increased, the voltage difference (VF-VFI) becomes a small value, and unless vF can be measured more accurately than a general diode, an accurate thermal resistance value cannot be obtained.

従って半導体レーザの信頼性を推定するうえで重要なパ
ラメータである熱抵抗を高精度で測定できなかった。
Therefore, thermal resistance, which is an important parameter for estimating the reliability of semiconductor lasers, could not be measured with high precision.

本発明はかかる欠点を改良し、正確な熱抵抗が測定可能
半導体レーザを提供するものである。
The present invention improves these drawbacks and provides a semiconductor laser whose thermal resistance can be accurately measured.

〔問題点を解決するための手段〕[Means for solving problems]

従来技術で熱抵抗を測定するため電流を切り変えるのは
、大電流IF2 を流し素子を温度上昇させる部分と小
電流Iplt−流し素子温度を測定する部分が同一のダ
イオードを用いているからである。
The reason why the current is switched in order to measure thermal resistance in the conventional technology is that the same diode is used in the part that flows the large current IF2 to raise the temperature of the element and the part that flows the small current Iplt and measures the element temperature. .

本発明の半導体レーザ素子では、同一素子内に発光領域
を含む素子を温度上昇させるダイオード部分と電気的に
絶縁された、素子の温度上昇を測定するための小電流を
流すダイオード部分が形成されている。
In the semiconductor laser device of the present invention, a diode portion that is electrically insulated from a diode portion that raises the temperature of the device including a light emitting region is formed in the same device, and a diode portion that flows a small current for measuring the temperature rise of the device. There is.

そのため温度上昇を測定する部分には、発光領域と独立
に直流の小電流IPI k流すことができる。
Therefore, a small direct current IPI k can be passed through the portion where the temperature rise is measured independently of the light emitting region.

直流で測定するため素子温III T’ t−求めるた
めの順方向電圧”F1’t:精度よく測定することがで
き、従って正確な熱抵抗を求めることが可能となる。
Since the measurement is performed using direct current, the forward voltage "F1't" for determining the element temperature III T' t can be measured with high accuracy, and therefore it is possible to determine the accurate thermal resistance.

〔実施例〕〔Example〕

次に本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図は本発明iZnZn拡散型プレーナストライブ導
体レーザに適用した一実施例を示す縦断面図である。
FIG. 1 is a longitudinal sectional view showing an embodiment of the present invention applied to an iZnZn diffused planar striped conductor laser.

第1図において、1はn型基板、2,4はそれぞれn型
およびp型クラッド層、3は活性層、5はn型キャップ
層、6,6′はZn拡散層、7 、7’ 。
In FIG. 1, 1 is an n-type substrate, 2 and 4 are n-type and p-type cladding layers, 3 is an active layer, 5 is an n-type cap layer, 6 and 6' are Zn diffusion layers, and 7 and 7'.

8はそれぞれオーミックコンタクト膚でるる。8 each has ohmic contact skin.

以上の1〜8の部分は従来の半導体レーザと同様である
The above parts 1 to 8 are the same as those of a conventional semiconductor laser.

本発明の半導体レーザでは電気的絶*/ii9が形成さ
れておシ、発光部分を含むダイオードAと電気的に独立
なダイオードBが同一素子内に形成されている。
In the semiconductor laser of the present invention, an electrical isolation*/ii9 is formed, and a diode A including a light emitting portion and an electrically independent diode B are formed in the same element.

電気的絶縁層9は通常のAtGaAs系の半導体レーザ
ではプロトン照射にょシ容易に形成される。
The electrically insulating layer 9 is easily formed by proton irradiation in a typical AtGaAs semiconductor laser.

また、図2のように、化学的エツチングによシ、部分的
にP側表面より基板までエツチングすることにより、同
一素子内に2個のダイオード部分A。
Furthermore, as shown in FIG. 2, two diode portions A are formed in the same element by partially etching from the P-side surface to the substrate using chemical etching.

Bi影形成ることができる。Bi shadow can be formed.

本発明になる半導体レーザでは同一素子内にZn拡散層
6の直下の発光部分を含むダイオードAのほかに電気的
に独立なダイオードBが形成されている。
In the semiconductor laser according to the present invention, in addition to a diode A including a light emitting portion directly under the Zn diffusion layer 6, an electrically independent diode B is formed in the same element.

従って、ダイオードA側に通常の動作電流を流しながら
、ダイオードBに素子温度測定用の小電流IFIを直流
で流すことができ、精度よく号1が測定できる。
Therefore, while a normal operating current is passed through the diode A side, a small current IFI for measuring the element temperature can be passed through the diode B as a direct current, and No. 1 can be measured with high accuracy.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、従来の半導体レーザでは、熱抵抗
を測定するのに、素子温度上昇上の大電流から、素子温
度測定用の小電流へ切変える方法をとっていたので、測
定n度が悪くかつ電流切換え回路等が必要なため熱抵抗
測定器が複雑となシ高価でめった。
As explained above, in order to measure the thermal resistance of conventional semiconductor lasers, a method was used in which the large current used to increase the element temperature was switched to a small current used to measure the element temperature. Moreover, because a current switching circuit and the like are required, the thermal resistance measuring device is complicated and expensive.

本発明の半導体レーザでは同一素子内に電気的に分離し
た発光部分を含むダイオードと熱抵抗測定用のダイオー
ドを含むため、直流での測定でのみよく、熱抵抗の測定
精度を飛躍的に向上させる効果がある。また、直流測定
であるので測定回路が簡単になり、熱抵抗測定器が安価
になる利点もある。
Since the semiconductor laser of the present invention includes a diode with an electrically separated light emitting part and a diode for measuring thermal resistance in the same element, it is only necessary to measure with direct current, which dramatically improves the measurement accuracy of thermal resistance. effective. Additionally, because it is a direct current measurement, the measurement circuit is simple and the thermal resistance measuring device is inexpensive.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明になる半導体レーザ素子の一実施例を示
す断面図であシ、第2図は本発明になる半導体レーザの
もう一つの実施例を示す断面図である。 ここで、1・・・・・・n型基板、2,4,2’、4’
・・・・・・クラッド1.3,3′・・・・・・活性層
、5・・・・・・キヤ、プ層、6.6′・・・・・・p
型拡散層、7.7’、8・・・・・・オーミ。 り電極、9・・・・・・電気的絶縁層、A、B・・・・
・・ダイオードである。 電気的絶縁層 $/111!I 華 21!I
FIG. 1 is a sectional view showing one embodiment of a semiconductor laser device according to the invention, and FIG. 2 is a sectional view showing another embodiment of the semiconductor laser according to the invention. Here, 1... n-type substrate, 2, 4, 2', 4'
......Clad 1.3,3'...Active layer, 5...Kya, P layer, 6.6'...p
Type diffusion layer, 7.7', 8...ohmi. electrode, 9... electrical insulating layer, A, B...
...It is a diode. Electrical insulation layer $/111! I Hana 21! I

Claims (1)

【特許請求の範囲】[Claims] 同一素子内に発光部分を含むダイオード部分と電気的独
立なダイオードを形成して、後者のダイオードにより素
子の熱抵抗測定を可能にしたことを特徴とする。
The present invention is characterized in that a diode electrically independent from the diode portion including the light emitting portion is formed in the same element, and the latter diode enables the thermal resistance of the element to be measured.
JP8790385A 1985-04-24 1985-04-24 Semiconductor laser Pending JPS61247083A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8790385A JPS61247083A (en) 1985-04-24 1985-04-24 Semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8790385A JPS61247083A (en) 1985-04-24 1985-04-24 Semiconductor laser

Publications (1)

Publication Number Publication Date
JPS61247083A true JPS61247083A (en) 1986-11-04

Family

ID=13927854

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8790385A Pending JPS61247083A (en) 1985-04-24 1985-04-24 Semiconductor laser

Country Status (1)

Country Link
JP (1) JPS61247083A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0560358A2 (en) * 1992-03-11 1993-09-15 Sumitomo Electric Industries, Limited Semiconductor laser and process for fabricating the same
WO1999021251A1 (en) * 1997-10-18 1999-04-29 Deutsche Telekom Ag Semiconductor laser chip
JP2013113649A (en) * 2011-11-28 2013-06-10 Wave Technology Inc Measuring method and measuring device for thermal resistance in semiconductor device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0560358A2 (en) * 1992-03-11 1993-09-15 Sumitomo Electric Industries, Limited Semiconductor laser and process for fabricating the same
EP0560358A3 (en) * 1992-03-11 1994-05-18 Sumitomo Electric Industries Semiconductor laser and process for fabricating the same
WO1999021251A1 (en) * 1997-10-18 1999-04-29 Deutsche Telekom Ag Semiconductor laser chip
US6829263B1 (en) 1997-10-18 2004-12-07 Deutsche Telekom Ag Semiconductor laser
JP2013113649A (en) * 2011-11-28 2013-06-10 Wave Technology Inc Measuring method and measuring device for thermal resistance in semiconductor device

Similar Documents

Publication Publication Date Title
JPS61160987A (en) Integrated semiconductor photo element and manufacture thereof
JPS61247083A (en) Semiconductor laser
JPH0197144A (en) Charge completion detector
JPH06101592B2 (en) Light emission output measuring device for semiconductor light emitting element
CN101034791B (en) Laser assembly with integrated photodiode
JPH01281786A (en) Array laser
US4001046A (en) Thermoelement on semiconductor base
US20210249577A1 (en) Heat flow switching element
KR940003436B1 (en) Semiconductor light emitting device
JPS58225679A (en) Semiconductor laser
JPH1065280A (en) Mode detecting and controlling method for semiconductor laser
JPH10335739A (en) Light emitting element module and its temperature control method
JPS61265886A (en) Semiconductor laser and drive thereof
US6596556B2 (en) Light emitting diode and a method for manufacturing the same
JP2005026333A (en) Semiconductor laser equipment
JP2024063545A (en) Semiconductor laser device
JPS61137055A (en) Oxygen sensor element
JPH05315707A (en) Laser diode module
JPS61242091A (en) Semiconductor light-emitting element
JPH01110746A (en) Semiconductor device
JPH11354829A (en) Optical semiconductor element
Shiwei et al. The analysis of thermal characteristics of the laser diode by transient thermal response method
KR890004432B1 (en) Semiconductor laser including temperature detector
JPS6269693A (en) Semiconductor laser
JPS6178176A (en) Manufacture of photoelectronic device