JPS61246558A - Refrigerator - Google Patents

Refrigerator

Info

Publication number
JPS61246558A
JPS61246558A JP8628585A JP8628585A JPS61246558A JP S61246558 A JPS61246558 A JP S61246558A JP 8628585 A JP8628585 A JP 8628585A JP 8628585 A JP8628585 A JP 8628585A JP S61246558 A JPS61246558 A JP S61246558A
Authority
JP
Japan
Prior art keywords
refrigerant
temperature
pressure
evaporator
outlet side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8628585A
Other languages
Japanese (ja)
Inventor
葵 誓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoshizaki Electric Co Ltd
Original Assignee
Hoshizaki Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoshizaki Electric Co Ltd filed Critical Hoshizaki Electric Co Ltd
Priority to JP8628585A priority Critical patent/JPS61246558A/en
Publication of JPS61246558A publication Critical patent/JPS61246558A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 a、産業上の利用分野 この発明は、冷凍装置に関し、特に1つの圧縮機に対し
て複数の蒸発器がそれぞれ並列に接続されて組み込まれ
ている冷凍回路を備えた冷凍装置に関するものである。
[Detailed Description of the Invention] a. Field of Industrial Application This invention relates to a refrigeration system, and in particular, a refrigeration circuit equipped with a plurality of evaporators connected in parallel to one compressor. This relates to refrigeration equipment.

b、従来の技術 第3図は従来の冷凍装置の冷凍回路図であって、気体状
の冷媒は圧縮機1で高圧・高温の気体状となる。圧縮機
1は気体状の冷媒を液体状に相変化させる凝縮器2を介
してレシーバタンク3に接続されている。液体状の冷媒
を貯留するレシーバタンク3には、それぞれ冷媒の圧力
を減圧する膨張弁4,5.6を介して蒸発器7,89が
接続されている。周囲から気化熱を奪って冷媒を蒸発化
する蒸発器7,8.9は、蒸発器7゜8.9内の蒸気圧
力を調整する調整弁10.11を介して前記圧縮機1と
接続されている。
b. Prior Art FIG. 3 is a refrigeration circuit diagram of a conventional refrigeration system, in which a gaseous refrigerant is converted into a high-pressure, high-temperature gas in the compressor 1. The compressor 1 is connected to a receiver tank 3 via a condenser 2 that changes the phase of a gaseous refrigerant into a liquid state. Evaporators 7 and 89 are connected to the receiver tank 3 that stores liquid refrigerant via expansion valves 4 and 5.6 that respectively reduce the pressure of the refrigerant. The evaporators 7, 8.9, which evaporate the refrigerant by absorbing heat of vaporization from the surroundings, are connected to the compressor 1 via a regulating valve 10.11, which adjusts the vapor pressure within the evaporator 7, 8.9. ing.

従来の冷凍装置は上記のように構成されており、冷凍装
置内の各箇所での冷媒の状態は、縦軸に絶対圧力、横軸
にエンタルピをとった第4図のモリエル線図から知るこ
とができる。圧縮機1の出口側aの高圧・高温気体冷媒
は、レシーバタンク3の出口側すでは高圧・常温液冷媒
に相変化する。この高圧・常温液冷媒は、膨張弁4,5
.6の出口側つまり蒸発器7,8.9の入口側c、d、
eでは湿り蒸気と化した低圧・低温冷媒になる。出口側
c、d、eのうち膨張弁4,5の出口側c、clの冷媒
の圧力は、調整弁10゜11の作用により出口側Cより
も高く、また出口側Cは出口側dよりも高い。蒸発器7
,8.9の入口側c、d、eで低圧・低温状態の冷媒は
、それぞれの蒸発器7.8.9で周囲から気化熱を奪っ
てエンタルピが増加し、蒸発器7,8.9の出口側f、
g、jでは過熱蒸気と化した低圧・低温気体冷媒となる
。蒸発器7,8の出口側f、gの冷媒は、調整弁10.
11でそれぞれ絞り膨張し、調整弁10.11の出口側
り、iでは調整弁10.11と接続されていない蒸発器
9の出口側jと同圧の低圧・低温気体となる。そして、
調整弁10.11からそれぞれ出た冷媒と蒸発器9から
出た冷媒とは圧縮機1の入口側にで気体混合され、この
混合された低圧・低温気体状の冷媒は、圧縮機1に吸い
込まれる。したがって、圧縮機1に吸い込まれる冷媒は
、蒸発器7,8゜9のうち蒸発温度の一番低い蒸発器9
つまり蒸発圧力の一番低い蒸発器9の出口側jの冷媒の
圧力になるので、比体積が大きくなり、圧縮比が大きく
なって冷凍装置の圧縮効率は悪くなる。
Conventional refrigeration equipment is configured as described above, and the state of the refrigerant at each location within the refrigeration equipment can be known from the Mollier diagram in Figure 4, where the vertical axis represents absolute pressure and the horizontal axis represents enthalpy. I can do it. The high-pressure, high-temperature gaseous refrigerant at the outlet side a of the compressor 1 undergoes a phase change to a high-pressure, normal-temperature liquid refrigerant at the outlet side of the receiver tank 3. This high-pressure, room-temperature liquid refrigerant flows through the expansion valves 4 and 5.
.. 6 outlet side, that is, the inlet side of evaporators 7, 8.9 c, d,
In e, it becomes a low-pressure, low-temperature refrigerant that has turned into wet vapor. Among the outlet sides c, d, and e, the pressure of the refrigerant on the outlet sides c and cl of the expansion valves 4 and 5 is higher than that on the outlet side C due to the action of the regulating valves 10 and 11, and the pressure on the outlet side C is higher than that on the outlet side d. It's also expensive. Evaporator 7
, 8.9, the refrigerant in a low-pressure, low-temperature state at the inlet sides c, d, and e of the evaporators 7, 8.9 absorbs heat of vaporization from the surroundings and increases its enthalpy. the exit side f,
In g and j, the refrigerant becomes a low-pressure, low-temperature gaseous refrigerant that has turned into superheated steam. The refrigerant on the outlet sides f and g of the evaporators 7 and 8 is supplied to the regulating valve 10.
11, the gas becomes a low-pressure, low-temperature gas at the same pressure as the outlet side of the regulating valve 10.11, and at the outlet side j of the evaporator 9, which is not connected to the regulating valve 10.11. and,
The refrigerant discharged from the regulating valves 10 and 11 and the refrigerant discharged from the evaporator 9 are mixed in gas at the inlet side of the compressor 1, and this mixed low-pressure, low-temperature gaseous refrigerant is sucked into the compressor 1. It can be done. Therefore, the refrigerant sucked into the compressor 1 is transferred to the evaporator 9, which has the lowest evaporation temperature among the evaporators 7 and 8.
In other words, since the pressure of the refrigerant on the outlet side j of the evaporator 9 is the lowest, the specific volume increases, the compression ratio increases, and the compression efficiency of the refrigeration system deteriorates.

C1発明が解決しようとする問題点 上記のように従来の冷凍装置では、圧縮機1に比体積の
大きな気体状の冷媒が吸い込まれ、圧縮比が大きくなっ
て圧縮効率が悪くなるという問題点があった。
C1 Problems to be Solved by the Invention As mentioned above, in the conventional refrigeration system, a gaseous refrigerant with a large specific volume is sucked into the compressor 1, which increases the compression ratio and deteriorates the compression efficiency. there were.

この発明は、かかる問題点を解決するためになされたも
ので、圧縮効率が向上し、成績係数の高い冷凍装置を得
ることを目的とする。
This invention was made to solve these problems, and aims to provide a refrigeration system with improved compression efficiency and a high coefficient of performance.

d、 問題点を解決するための手段 この発明に係る冷凍装置は、蒸発温度の最も高い高温蒸
発器7以外の中間温、低温蒸発器8゜9のそれぞれの出
口側g、jに、高温蒸発器7の蒸発圧力まで冷媒を加圧
する加圧ポンプ12゜13を接続したものである。
d. Means for Solving the Problems The refrigeration system according to the present invention has a high temperature evaporator at each outlet side g, j of the intermediate temperature and low temperature evaporators 8° and 9 other than the high temperature evaporator 7 having the highest evaporation temperature. Pressure pumps 12 and 13 are connected to pressurize the refrigerant up to the evaporation pressure of the vessel 7.

θ、  作   用 この発明においては、中間温、低温蒸発器8゜9から出
た冷媒は、それ等の出口g、jで加圧ポンプ12.[に
より蒸発温度の最も高いつまり蒸発圧力の最も高い高温
蒸発器7まで加圧され、圧縮機1には圧力の高い過熱蒸
気が吸入される。
θ, Operation In the present invention, the refrigerant exiting from the intermediate temperature and low temperature evaporators 8.9 is sent to the pressurizing pump 12. The pressure is increased to the high temperature evaporator 7 which has the highest evaporation temperature, that is, the highest evaporation pressure, and the compressor 1 takes in high-pressure superheated steam.

f、実施例 以下、この発明の実施例を図について説明する。第1図
はこの発明の一実施例を示す冷凍装置の冷凍回路図であ
って、第3図、第4図と同一または相当部分は同一符号
を付し、その説明は省略する。蒸発器7.8.9のうち
一番蒸発温度の高い高温蒸発器7の出口側fを除いた中
間温蒸発器8および一番蒸発温度の低い低温蒸発器9の
出口側g、jには、加圧ポンプ12.13が接続されて
いる。加圧ポンプ12.15は、高温蒸発器7の出口側
fの圧力と同圧となるまで中間温蒸発器8、低温蒸発器
9から出た冷媒を加圧する。これ等加圧された冷媒は、
高温蒸発器7から出た冷媒と圧縮機1の入口側nで混合
され、圧縮機1に吸入される。
f. Examples Examples of the present invention will now be described with reference to the drawings. FIG. 1 is a refrigeration circuit diagram of a refrigeration system showing an embodiment of the present invention, and the same or corresponding parts as in FIGS. 3 and 4 are given the same reference numerals, and the explanation thereof will be omitted. Among the evaporators 7.8.9, the intermediate temperature evaporator 8 excluding the outlet side f of the high temperature evaporator 7 having the highest evaporation temperature and the outlet sides g and j of the low temperature evaporator 9 having the lowest evaporation temperature are , pressure pumps 12.13 are connected. The pressurizing pump 12.15 pressurizes the refrigerant discharged from the intermediate temperature evaporator 8 and the low temperature evaporator 9 until it reaches the same pressure as the pressure at the outlet side f of the high temperature evaporator 7. These pressurized refrigerants are
The refrigerant discharged from the high-temperature evaporator 7 is mixed with the refrigerant at the inlet side n of the compressor 1, and is sucked into the compressor 1.

上記のように構成された冷凍装置内の各箇所での冷媒の
状態は第2図に示したモリエル線図から解る。圧縮機1
の出口側0から吐出された冷媒の各蒸発器7,8,9の
出口側f、g、jまでの状態変化は、第4図に示した従
来のものと同様であり、その説明は省略する。低温蒸発
器9の出口側jでの冷媒は過熱蒸気の状態であり、この
冷媒は加圧ポンプ13に吸入される。冷媒は、加圧ポン
プ13によって断熱圧縮され、等エントロピ線に沿って
高温蒸発器7の出口側fの冷媒の圧力まで加圧される。
The state of the refrigerant at each location in the refrigeration system constructed as described above can be understood from the Mollier diagram shown in FIG. Compressor 1
The state changes of the refrigerant discharged from the outlet side 0 of the evaporators 7, 8, and 9 to the outlet sides f, g, and j of the evaporators 7, 8, and 9 are the same as in the conventional one shown in FIG. 4, and the explanation thereof is omitted. do. The refrigerant at the outlet side j of the low-temperature evaporator 9 is in a superheated vapor state, and this refrigerant is sucked into the pressurizing pump 13. The refrigerant is adiabatically compressed by the pressurizing pump 13 and pressurized along an isentropic line to the pressure of the refrigerant at the outlet side f of the high-temperature evaporator 7.

こうして、加圧ポンプ13の出口側mの冷媒の圧力は高
温蒸発器7の出口側fと一致する。過熱蒸気状態である
中間温蒸発器8の出口側gの冷媒も、加圧ポンプ12で
断熱圧縮され、高温蒸発器7の出口側fの冷媒の圧力ま
で加圧される。加圧ポンプ12の出口側!および加圧ポ
ンプ13の出口側mの冷媒゛は、高温蒸発器7の出口側
fの冷媒と同じ圧力であり、しかも高圧であり、これ等
冷媒が高温蒸発器7から出た冷媒と圧縮機1の出口側n
で混合される。したがって、圧縮機1に吸入される冷媒
の比体積は前述の従来のものと比べて小さくなり、圧縮
比も小となって冷凍装置の圧縮効率が向上する。
In this way, the pressure of the refrigerant on the outlet side m of the pressurizing pump 13 matches the pressure on the outlet side f of the high temperature evaporator 7. The refrigerant on the outlet side g of the intermediate temperature evaporator 8, which is in a superheated vapor state, is also adiabatically compressed by the pressurizing pump 12, and is pressurized to the pressure of the refrigerant on the outlet side f of the high temperature evaporator 7. The outlet side of the pressure pump 12! The refrigerant on the outlet side m of the pressurizing pump 13 has the same pressure as the refrigerant on the outlet side f of the high-temperature evaporator 7, and is also at a high pressure. 1 outlet side n
mixed in. Therefore, the specific volume of the refrigerant sucked into the compressor 1 is smaller than that of the conventional compressor 1, and the compression ratio is also reduced, improving the compression efficiency of the refrigeration system.

次に、この発明の冷凍装置と従来のものとの圧縮所要動
力を冷媒R−22を用いた場合についで一例として計算
により求める。この発明のものおよび従来のものの凝縮
器2の出口の温度を40℃とする。冷凍装置の各箇所で
の冷媒の温度を、高温蒸発器7の入口側Cでは0℃、そ
の出口側fでは5℃、中間温蒸発器8の入口側dでは一
20℃、その出口側gでは一15℃、低温蒸発器9の入
口側eでは一40℃、その出口側jでは一35℃とする
。そのときの第2図、第4図のモリエル線図中の各符号
で示す各箇所での概略エンタルピは、符号aのところで
は165.7Kcal−AC9,f 、 h テハ14
9.8KCal/KP、 g?i テハ147.8KC
a’/Kp、 j テは145.7KCa1/に9.に
テは147.8KCa’/Kg 、 1− テハi 5
2,0Kca1//に、 、 m テハ155.0 K
oaVKy 、 o r: ハ159.6 KCa1/
Kyとなる。また、各蒸発器7,8.9を通過する冷媒
循環量をそれぞれa、Ky/hとする。
Next, as an example, the required compression power for the refrigeration system of the present invention and the conventional one will be calculated using refrigerant R-22. The temperature at the outlet of the condenser 2 of the present invention and the conventional one is 40°C. The temperature of the refrigerant at each point in the refrigeration system is 0°C at the inlet side C of the high-temperature evaporator 7, 5°C at the outlet side f, -20°C at the inlet side d of the intermediate-temperature evaporator 8, and -20°C at the outlet side g. Here, the temperature is -15°C, -40°C on the inlet side e of the low temperature evaporator 9, and -35°C on the outlet side j. At that time, the approximate enthalpy at each point indicated by each symbol in the Mollier diagrams of FIGS. 2 and 4 is 165.7 Kcal-AC9, f, h Teha 14
9.8KCal/KP, g? i Teha 147.8KC
a'/Kp, j Te is 145.7KCa1/9. Nite is 147.8 KCa'/Kg, 1-Tehi 5
2,0Kca1//, m Teha 155.0K
oaVKy, or: Ha159.6 KCa1/
It becomes Ky. Further, the amount of refrigerant circulated through each evaporator 7, 8.9 is assumed to be a and Ky/h, respectively.

ここで、従来の冷凍装置の圧縮所要動力N。Here, the compression required power N of the conventional refrigeration system.

を求めると、 N、 = 3− G(a−k)Kcal/h、= 53
.7 G Kcal/hとなる。
When calculating, N, = 3- G(a-k)Kcal/h, = 53
.. 7 G Kcal/h.

また、この発明の冷凍装置の圧縮所要動力N2を求める
と、 N2=(m−j)・G+(J−g)・G+3・G(o−
n)= 55,40Kcaし令となる。
Further, when calculating the required compression power N2 of the refrigeration system of this invention, N2=(m-j)・G+(J-g)・G+3・G(o-
n) = 55,40Kca.

上記計算結果から解るように、 この発明のものの所要動力N2<従来のものの所要動力
N1となり、この発明の冷凍装置は従来の冷凍装置より
も小さな圧縮所要動力で従来のものと同じ冷却能力を持
つことができ、冷凍装置の成績係数ε(冷却能力/圧縮
所要動力)の値を高めることができる。
As can be seen from the above calculation results, the required power N2 for the inventive system is less than the required power N1 for the conventional system, and the refrigeration system of the present invention has the same cooling capacity as the conventional system with a smaller required compression power than the conventional refrigeration equipment. It is possible to increase the value of the coefficient of performance ε (cooling capacity/required compression power) of the refrigeration system.

なお、上記実施例では中間温蒸発器(8)が1個の場合
のものについて説明したが、2個以上のものでもよいこ
とは勿論である。
In the above embodiment, the case where there is one intermediate temperature evaporator (8) has been described, but it goes without saying that two or more intermediate temperature evaporators (8) may be used.

g3発明の詳細 な説明したようにこの発明によれば、蒸発温度の最も高
い高温蒸発器7以外の中間温、低温蒸発器8,9のそれ
ぞれの出口側g、jに、高温蒸発器7の蒸発圧力まで冷
媒を加圧する加圧ポンプ12.13を接続したことによ
り、圧縮機1に吸入される冷媒の比体積が小さくなり、
冷凍装置の圧縮効率が向上し、成績係数が高くなるとい
う効果がある。
g3 Detailed Description of the Invention According to the present invention, the high temperature evaporator 7 is provided at the outlet sides g and j of the intermediate temperature and low temperature evaporators 8 and 9 other than the high temperature evaporator 7 having the highest evaporation temperature. By connecting the pressurizing pumps 12 and 13 that pressurize the refrigerant to the evaporation pressure, the specific volume of the refrigerant sucked into the compressor 1 becomes smaller.
This has the effect of improving the compression efficiency of the refrigeration equipment and increasing the coefficient of performance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の冷凍装置の冷凍回路図、第2図は第
1図のもののモリエル線図、第3図は従来の冷凍装置の
冷凍回路図、第4図は第6図のもののモリエル線図であ
る。 1・・圧縮機、7・・高温蒸発器、8・・中間温蒸発器
、9・・低温蒸発器、12.13・・加圧ポンプ。 特許出願人  星崎電機株式会社 第1図 見2図
Fig. 1 is a refrigeration circuit diagram of the refrigeration system of the present invention, Fig. 2 is a Mollier diagram of the one shown in Fig. 1, Fig. 3 is a refrigeration circuit diagram of a conventional refrigeration system, and Fig. 4 is a Mollier diagram of the one shown in Fig. 6. It is a line diagram. 1. Compressor, 7. High temperature evaporator, 8. Intermediate temperature evaporator, 9. Low temperature evaporator, 12.13. Pressure pump. Patent applicant: Hoshizaki Electric Co., Ltd. Figure 1, Figure 2

Claims (1)

【特許請求の範囲】[Claims]  1つの圧縮機(1)に対して、蒸発温度の最も高い高
温蒸発器(7)、蒸発温度の最も低い低温蒸発器(9)
およびそれ等の間の蒸発温度を有する1個以上の中間温
蒸発器(8)とがそれぞれ並列に接続されて組み込まれ
ている冷凍回路を備えた冷凍装置において、前記低温蒸
発器(9)および中間温蒸発器(8)のそれぞれの出口
側(j,g)に、前記高温蒸発器(7)の蒸発圧力まで
冷媒を加圧する加圧ポンプ(13,12)を接続したこ
とを特徴とする冷凍装置。
For one compressor (1), a high temperature evaporator (7) with the highest evaporation temperature and a low temperature evaporator (9) with the lowest evaporation temperature
and one or more intermediate-temperature evaporators (8) having evaporation temperatures between them, each of which is connected in parallel and incorporated therein, the low-temperature evaporator (9) and A pressurizing pump (13, 12) for pressurizing the refrigerant up to the evaporation pressure of the high-temperature evaporator (7) is connected to each outlet side (j, g) of the intermediate-temperature evaporator (8). Refrigeration equipment.
JP8628585A 1985-04-24 1985-04-24 Refrigerator Pending JPS61246558A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8628585A JPS61246558A (en) 1985-04-24 1985-04-24 Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8628585A JPS61246558A (en) 1985-04-24 1985-04-24 Refrigerator

Publications (1)

Publication Number Publication Date
JPS61246558A true JPS61246558A (en) 1986-11-01

Family

ID=13882558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8628585A Pending JPS61246558A (en) 1985-04-24 1985-04-24 Refrigerator

Country Status (1)

Country Link
JP (1) JPS61246558A (en)

Similar Documents

Publication Publication Date Title
US6698234B2 (en) Method for increasing efficiency of a vapor compression system by evaporator heating
US20120036854A1 (en) Transcritical thermally activated cooling, heating and refrigerating system
JP2000161805A (en) Refrigerating apparatus
Cao et al. Performance analysis of an ejector-assisted two-stage evaporation single-stage vapor-compression cycle
JP6472379B2 (en) Energy conversion system
JPH10318614A (en) Air conditioner
US4528823A (en) Heat pump apparatus
KR20080012638A (en) Refrigeration system
CN105705882A (en) Refrigeration cycle device
JP4326004B2 (en) Air conditioner
JPS61246558A (en) Refrigerator
JPH1019402A (en) Low temperature refrigeration system by gas turbine
CN112815561B (en) Refrigeration device
JP2007212071A (en) Refrigerating cycle device
CN210951965U (en) Heat pump system for drying and dehumidifying
JPS60105869A (en) Chemically assisted machine refrigeration method
JP3248235B2 (en) Operating method of binary refrigeration apparatus and its apparatus
JP2018059666A (en) Controller and refrigerant circuit system and control method
US20180259232A1 (en) Cooling system and cooling method
US20040118133A1 (en) Heat pump and dehumidifying air-conditioning apparatus
CN109425140B (en) Refrigeration circuit and refrigeration plant based on non-azeotropic mixed working medium
KR102446555B1 (en) Refrigerator for super-freezing a storing chamber
JP2766356B2 (en) Refrigeration system with double evaporator for home refrigerator
US10782048B2 (en) Deep freezer
JP2003314908A (en) Low-temperature refrigerating machine