JPS61245955A - Method for controlling flow rate of molten metal in casting - Google Patents

Method for controlling flow rate of molten metal in casting

Info

Publication number
JPS61245955A
JPS61245955A JP8607685A JP8607685A JPS61245955A JP S61245955 A JPS61245955 A JP S61245955A JP 8607685 A JP8607685 A JP 8607685A JP 8607685 A JP8607685 A JP 8607685A JP S61245955 A JPS61245955 A JP S61245955A
Authority
JP
Japan
Prior art keywords
molten metal
sectional area
flow rate
cross
casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8607685A
Other languages
Japanese (ja)
Inventor
Masaharu Tamiya
田宮 正治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP8607685A priority Critical patent/JPS61245955A/en
Publication of JPS61245955A publication Critical patent/JPS61245955A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To control effectively the flow rate of a molten metal by embedding blocks made of a good heat conductive material in the parts of a metallic mold where the sectional area of the cavity thereof changes, disposing thermosensors therein and changing the flow rate of the molten metal in accordance with the temp. detected by said sensors. CONSTITUTION:The compressed air in a surge tank 22 is supplied successively to the space in a furnace 13 via a throttle valve 27 and a check valve 22 when a reducing valve 23 and a reducing valve 25 are opened upon starting of casting. The molten metal 14 is forced upward by the resulted pressure increase by which the molten metal is successively forced upward into the 1st large area part 12a and 2nd large area part 12b of the cavity 12. The blocks 17, 18 made respectively of the good heat conductive material are embedded into the parts of the cavity 12 where the sectional area changes and the thermosensors 19, 20 are disposed therein. The feed rate of the compressed air from the tank 22 is changed according to the temp. increase detected by said sensors, by which the flow rate of the molten metal 14 is changed.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は、溶湯を加圧してこれを金型のキャビティ内に
供給して鋳造する場合のその溶湯の流速制御方法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for controlling the flow rate of molten metal when the molten metal is pressurized and supplied into a mold cavity for casting.

[発明の技術的背景とその問題点] 高品質の軽合金鋳物の製造方法として、炉内に空気或は
不活性ガスを供給して、炉の内圧を高め、これにより炉
内の溶湯を押し上げて金型のキャビティ内に供給する低
圧鋳造法が広く採用されている。
[Technical background of the invention and its problems] As a method for manufacturing high-quality light alloy castings, air or inert gas is supplied into the furnace to increase the internal pressure of the furnace, thereby pushing up the molten metal inside the furnace. The low-pressure casting method, in which the metal is supplied into the cavity of the mold, is widely used.

この様に金型を用いて鋳造する場合、金型と溶湯の界面
で熱移動が起り、溶湯はキャビティの内面に凝固層を形
成しながら上昇して行く。この凝固層の厚さδは、次の
(1)式で表わされる様に鋳物の断面積(キャビティの
断面積)、溶湯の温度、金型の温度、溶湯の上昇速度の
関数となる。
When casting using a mold in this manner, heat transfer occurs at the interface between the mold and the molten metal, and the molten metal rises while forming a solidified layer on the inner surface of the cavity. The thickness δ of this solidified layer is a function of the cross-sectional area of the casting (the cross-sectional area of the cavity), the temperature of the molten metal, the temperature of the mold, and the rate of rise of the molten metal, as expressed by the following equation (1).

δ=(1/4)・(D−JF −(32・λ・θt/V ・γ・C・θ2))・・・・
・・(1) 但し D=鋳物の断面積 λ:凝固層の熱伝導率 θl :金型の温度から求まる凝固層の温度θ2 :溶
湯の温度−凝固温度 C:比熱 γ:比重 V:流速 凝固層が成る一定の厚さになると、キャビティ内で溶湯
の流れが停止し、鋳物を形成できなくなってしまう。
δ=(1/4)・(D-JF −(32・λ・θt/V・γ・C・θ2))...
...(1) However, D = Cross-sectional area of casting λ: Thermal conductivity of solidified layer θl: Temperature of solidified layer determined from mold temperature θ2: Temperature of molten metal - solidification temperature C: Specific heat γ: Specific gravity V: Flow rate solidification When the layers reach a certain thickness, the flow of the molten metal stops within the cavity, making it impossible to form a casting.

第3図は鋳物の断面積と溶湯の流れが停止する臨界の流
速との関係を示した実験データである。
Figure 3 shows experimental data showing the relationship between the cross-sectional area of the casting and the critical flow velocity at which the flow of the molten metal stops.

一方、流速は炉内の圧力の単位時間当りの増加率(以下
単に加圧速度pvという)とは次の(2)式の関係にあ
る。
On the other hand, the flow rate has a relationship with the rate of increase of the pressure in the furnace per unit time (hereinafter simply referred to as pressurization rate pv) as expressed by the following equation (2).

Ll =(PV −(V[l +V) +VJ/ ((
7/1000)・(H+V/A>(Vo +V)+V)
 ・H・・・・・・(2) 但し U:溶湯の流速 H:充填高さ PV:加圧速度 A:炉内の溶湯の加圧面積 vo :炉内の空間体積 V;充填体積 γ:溶瀉の比重 このため断面積の変動の少ない一般の鋳物では、鋳物の
代表的な断面積から第3図を用いて溶湯の停止の起きな
い流速■を求め、更に(2)式を用いて炉内への加圧速
度を設定してやればよい。しかしながら、断面積の変動
の大きな鋳物では、一定の加圧速度で鋳造した場合、特
に断面積の変化部分において、第5図に矢印で示す様に
渦が生じ易く、この様な渦が生じると、酸化物の巻込み
ゃ空気巻込みによるガス欠陥等を引起こす。このため、
断面積の変化部分においては、加圧速度を変化させ、渦
を生じさせない様な流速に変化させる必要がある。
Ll = (PV - (V[l +V) +VJ/ ((
7/1000)・(H+V/A>(Vo +V)+V)
・H・・・・・・(2) However, U: Flow rate of molten metal H: Filling height PV: Pressurizing speed A: Pressurizing area of molten metal in the furnace vo: Space volume in the furnace V; Filling volume γ: Specific gravity of the molten metal For general castings whose cross-sectional area varies little, use Figure 3 to determine the flow velocity (■) at which the molten metal does not stop, based on the typical cross-sectional area of the casting, and then use equation (2) to determine All you have to do is set the rate of pressurization into the furnace. However, in castings with large variations in cross-sectional area, when cast at a constant pressurizing speed, vortices are likely to form, especially in areas where the cross-sectional area changes, as shown by the arrows in Figure 5. The entrainment of oxides causes gas defects due to air entrainment. For this reason,
In the portion where the cross-sectional area changes, it is necessary to change the pressurizing speed to a flow rate that does not generate vortices.

断面積の変化部分で加圧速度を変化させる方法としては
、第4図に示す様に金型1のうちキャビティ2の断面積
変化部分の近傍に熱電対3を設け、この熱電対3により
溶湯が断面積変化部分に到達したことを検出し、加圧速
度を変化させることが考えられる。
As shown in Fig. 4, a method of changing the pressurizing speed at a portion where the cross-sectional area changes is to install a thermocouple 3 near the portion where the cross-sectional area of the cavity 2 changes in the mold 1, and use this thermocouple 3 to control the molten metal. It is conceivable to detect that the pressure has reached the cross-sectional area changing portion and change the pressurizing speed.

本発明者は、この加圧制御方法を使用して、実際に鋳造
を行ない、ガス欠陥が生ずるか否か実験した。これによ
れば、断面積の小なる部分から大なる部分へ溶湯が流入
する場合、前者の断面積Alと後者の断面積A2の比が
3以上になると、ガス欠陥の発生が著しくなることが分
った。
The present inventor actually performed casting using this pressurization control method and conducted an experiment to determine whether gas defects would occur. According to this, when molten metal flows from a part with a small cross-sectional area to a part with a large cross-sectional area, if the ratio of the former cross-sectional area Al to the latter cross-sectional area A2 becomes 3 or more, the occurrence of gas defects will become significant. I understand.

これは溶湯が断面積変化部分に到達してから実際に熱電
対の配設部分の温度が上昇するまでに時間的遅れがある
ので、これが加圧速度を変化させる時点の送れとなって
現われからであり、断面積AIとA2との比が3以上の
様に断面積の小なる部分での溶湯の流速が非常に大きく
なる場合には特にその時間的遅れが無視できなくなるか
らである。
This is because there is a time delay between when the molten metal reaches the area where the cross-sectional area changes and when the temperature of the area where the thermocouple is installed actually rises. This is because the time delay cannot be ignored, especially when the flow velocity of the molten metal in a portion where the cross-sectional area is small, such as when the ratio of the cross-sectional area AI to A2 is 3 or more, is extremely large.

[発明の目的] 本発明の目的は、溶湯の到達からこれをサーモセンサが
実際に検出するまでの時間的遅れを極力少なくすること
ができる鋳造における溶湯の流速制御方法を提供するに
ある。
[Object of the Invention] An object of the present invention is to provide a method for controlling the flow rate of molten metal in casting, which can minimize the time delay from the arrival of the molten metal until the thermosensor actually detects the molten metal.

[発明の概要] 本発明は、金型に熱良導材製のブロックを埋設してこの
ブロック内にサーモセンサを配設することにより、溶湯
の到達によりサーモセンサの配設部分が素早く温度上昇
する様にしたものである。
[Summary of the invention] The present invention embeds a block made of a thermally conductive material in a mold and arranges a thermosensor inside the block, so that the temperature of the part where the thermosensor is installed quickly rises when molten metal arrives. It was designed to do so.

[発明の実施例] 以下本発明を低圧鋳造装置に適用した一実施例につき第
1図及び第2図を参照して説明する。第1図において、
11は金型であり、これに形成されたキャビティ12は
、上下両側の横断面の面積が大なる部分12a、12b
と、これら大断面積部12a、12bとを連通ずる横断
面の面積の小なる部分12cとから成る。斯かる金型1
1は、類13内に配置されアルミニュウムの溶湯14を
貯留したるつぼ15内に導入管16を介して連通されて
いる。17及び18は熱良導材例えば銅製の第1及び第
2のブロックで、これらは金型11のうちキャビティ1
2の断面積が変化する部分に埋設されている。即ち、第
1のブロック17は、第1の大断面積部12aと小断面
積部12Gとの境界部、例えば第1の大断面積部12a
の上端部にこの第1の大断面積部12aの側面部の一部
を形成する様に埋設されている。又、第2のプロツり1
8は、小断面積部12Gと第2の大断面積部12bとの
境界部、例えば小断面積部12Cの上端部にこの小断面
積部12cの側面の一部を形成する様に埋設されている
。そして、これら第1及び第2のブロック17及び18
内にはサーモセンサとしての第1及び第2の熱電対19
及び20が配設されている。21は溶湯14を押し上げ
るべく類13内に圧縮空気を供給する圧縮空気供給装置
で、この供給装置21において、22はサージタンク、
23は減圧弁、24は並列に設けられ夫々電磁弁25を
有すると共に互いに径寸法が異なる多数の通気管、26
は絞り弁、27は逆止弁である。このうち各通気管24
の電磁弁25は第1及び第2の熱電対19及び20の後
述する検出動作に基づいて開閉制御される。
[Embodiment of the Invention] An embodiment in which the present invention is applied to a low-pressure casting apparatus will be described below with reference to FIGS. 1 and 2. In Figure 1,
Reference numeral 11 denotes a mold, and a cavity 12 formed in the mold has portions 12a and 12b with large cross-sectional areas on both upper and lower sides.
and a portion 12c with a small cross-sectional area that communicates with these large cross-sectional area portions 12a and 12b. Such mold 1
1 is communicated via an introduction pipe 16 with a crucible 15 which is disposed in a casing 13 and stores a molten aluminum 14. 17 and 18 are first and second blocks made of a thermally conductive material, such as copper, and these are placed in the cavity 1 of the mold 11.
It is buried in the part where the cross-sectional area of No. 2 changes. That is, the first block 17 is located at the boundary between the first large cross-sectional area 12a and the small cross-sectional area 12G, for example, the first large cross-sectional area 12a.
It is buried in the upper end portion of the first large cross-sectional area portion 12a so as to form a part of the side surface portion of the first large cross-sectional area portion 12a. Also, the second protrusion 1
8 is buried in the boundary between the small cross-sectional area 12G and the second large cross-sectional area 12b, for example, at the upper end of the small cross-sectional area 12C, so as to form part of the side surface of the small cross-sectional area 12c. ing. These first and second blocks 17 and 18
Inside are first and second thermocouples 19 as thermosensors.
and 20 are arranged. 21 is a compressed air supply device that supplies compressed air into the group 13 to push up the molten metal 14; in this supply device 21, 22 is a surge tank;
23 is a pressure reducing valve; 24 is a large number of ventilation pipes each having a solenoid valve 25 and having different diameters; 26;
27 is a throttle valve, and 27 is a check valve. Of these, each ventilation pipe 24
The solenoid valve 25 is controlled to open and close based on the detection operations of the first and second thermocouples 19 and 20, which will be described later.

次に上記の様に構成した鋳造装置による鋳物の形成過程
につき説明する。鋳造開始により、サージタンク22内
の圧縮空気は減圧弁23.適宜の電磁弁25の開放によ
り多数の通気管24から選択された数個の通気管、絞り
弁26及び逆止弁27を順に介して類13内に供給され
、これによる類13内の圧力上昇により溶湯14が押し
上げられる。押し上げられた溶−414は導入管16を
介してキャビティ12の第1の大断面積部12a内に導
かれる。このとき、溶湯14の流速は第1の大断面積部
12aにおいて凝固により溶湯14の流れが停止するこ
とのない様な流速(これは第3図から求めることができ
る)とするものである。
Next, the process of forming a casting using the casting apparatus configured as described above will be explained. With the start of casting, the compressed air in the surge tank 22 flows through the pressure reducing valve 23. When the appropriate solenoid valve 25 is opened, the air is supplied into the class 13 through several vent pipes selected from the large number of vent pipes 24, the throttle valve 26, and the check valve 27 in order, thereby increasing the pressure inside the class 13. The molten metal 14 is pushed up. The pushed-up melt 414 is guided into the first large cross-sectional area portion 12a of the cavity 12 via the introduction pipe 16. At this time, the flow velocity of the molten metal 14 is such that the flow of the molten metal 14 does not stop due to solidification in the first large cross-sectional area portion 12a (this can be determined from FIG. 3).

この流速の設定は第1図に示す圧縮空気による類13内
の加圧速度を適宜に設定することによりなされる。
This flow rate is set by appropriately setting the rate of pressurization in class 13 by compressed air shown in FIG.

さて、溶114が第1の大断面積部12a内を略完全に
満たし、小断面積部12c内に流入しようとすると、こ
れを第1の熱電対19が検出する。
Now, when the melt 114 almost completely fills the first large cross-sectional area section 12a and attempts to flow into the small cross-sectional area section 12c, the first thermocouple 19 detects this.

このとき、第1のブロック17は第1の大断面積部12
a内の溶湯14に直接接触するため、その接触と期を同
じくして第1のブロック17の温度が上昇し、これによ
り第1の熱電対19が所定の起電力を生じ即ち第1の熱
電対19が検出動作する。この第1の熱電対19の検出
動作に基づいて多数の通気管24の電磁弁25のうち開
放される電磁弁の組合わせが変化し、これにて類13内
の加圧速度が大となる様に変化する。このため、溶湯1
4は凝固による流れ停止を起こさない様な比較的速い流
速をもって小断面積部12c内に流入し且つ上昇して行
く。そして、溶湯14が小断面積部12c内を略完全に
満し第2の大断面積部12b内に流入しようとすると、
これを第2の熱電対20が検出する。このときも、第2
のブロック18が小断面積部12C内の溶湯14に直接
接触するため、その接触と期を同じくして第2のブロッ
ク18の温度が上昇し、これにより第2の熱電対20が
検出動作する。この第2の熱電対20の検出動作に基づ
いて多数の通気管24の電磁弁25のうち開放される電
磁弁の組合わせが再度変化し、これにて類13内の加圧
速度が小となる様に変化する。このため、溶湯14は乱
流を生じない様な比較的低い流速をもって第2の大断面
積部12b内に流入する様になる。そして、溶湯14が
第2の大断面積部12b内を完全に満したところで類1
3内への圧縮空気の供給を停止し、以上にて鋳造を終了
する。
At this time, the first block 17 is connected to the first large cross-sectional area section 12.
Since it comes into direct contact with the molten metal 14 in a, the temperature of the first block 17 rises at the same time as the contact, causing the first thermocouple 19 to generate a predetermined electromotive force, that is, the first thermocouple Pair 19 performs a detection operation. Based on the detection operation of the first thermocouple 19, the combination of solenoid valves to be opened among the many solenoid valves 25 of the ventilation pipes 24 changes, and as a result, the pressurization speed in class 13 is increased. change in different ways. For this reason, molten metal 1
4 flows into the small cross-sectional area portion 12c and rises at a relatively high flow rate that does not cause flow stoppage due to solidification. Then, when the molten metal 14 almost completely fills the small cross-sectional area portion 12c and attempts to flow into the second large cross-sectional area portion 12b,
The second thermocouple 20 detects this. At this time as well, the second
Since the block 18 directly contacts the molten metal 14 in the small cross-sectional area portion 12C, the temperature of the second block 18 rises at the same time as the contact, and this causes the second thermocouple 20 to perform a detection operation. . Based on the detection operation of the second thermocouple 20, the combination of the solenoid valves to be opened among the many solenoid valves 25 of the ventilation pipes 24 changes again, and as a result, the pressurization speed in Class 13 is reduced to a low value. It changes as it becomes. Therefore, the molten metal 14 flows into the second large cross-sectional area portion 12b at a relatively low flow velocity that does not cause turbulence. Then, when the molten metal 14 completely fills the second large cross-sectional area portion 12b, the Class 1
The supply of compressed air into the chamber 3 is stopped, and casting is thus completed.

上記構成によれば、溶114が第1の大断面積部12a
から小断面積部12c内に流入するときには、その速度
を上昇させて、溶湯14が速い流速でもって小断面積部
12c内を上昇して行く様にしたので、小断面積部12
cの内面に形成される凝固層の厚さを成る一定の厚さ以
下に抑えることができ、凝固による湯流れの停止を生ず
ることがない。又、溶湯14が小断面積部12cがら第
2の大断面積部12b内に流入する際には、その流速を
低下させて、溶湯14が低い流速でもって第2の大断面
積部12b内に流入する様にしたので、溶湯14が空気
を巻込むことがなくガス欠陥の発生を未然に防止するこ
とができる。しかも、溶湯14の流速を変化させる元と
なる加圧速度の変化は、第1及び第2の熱電対19及び
2oの検出動作に基づいて行われる。これら熱電対19
及び20は熱良導材たる銅製の第1及び第2のブロック
17及び18内に配設されているので、溶濡14が小断
面積部12c或は第2の大断面積部12b内に流入する
時点に対し時間的な遅れはほとんどなしに、第1及び第
2の熱電対19及び20が検出動作即ち加圧速度の変化
が行われる。従って、溶湯14は当初から適切な流速で
もって小断面積部12c或は第2の大断面積部12b内
に流入する様になり、瀾流れ停止、ガス欠陥等の発生を
より確実に防止することができる。
According to the above configuration, the melt 114 is formed in the first large cross-sectional area portion 12a.
When flowing into the small cross-sectional area section 12c from the molten metal 14, the velocity is increased so that the molten metal 14 rises inside the small cross-sectional area section 12c at a high flow velocity.
The thickness of the solidified layer formed on the inner surface of c can be suppressed to a certain thickness or less, and the flow of the molten metal will not stop due to solidification. Furthermore, when the molten metal 14 flows from the small cross-sectional area section 12c into the second large cross-sectional area section 12b, the flow rate is reduced so that the molten metal 14 flows into the second large cross-sectional area section 12b at a low flow rate. Since the molten metal 14 is configured to flow into the molten metal 14, the molten metal 14 does not entrain air, and gas defects can be prevented from occurring. Moreover, the change in the pressurizing speed, which is the source of changing the flow speed of the molten metal 14, is performed based on the detection operations of the first and second thermocouples 19 and 2o. These thermocouples 19
and 20 are disposed in the first and second blocks 17 and 18 made of copper, which is a good thermal conductor, so that the weld 14 does not enter the small cross-sectional area portion 12c or the second large cross-sectional area portion 12b. The first and second thermocouples 19 and 20 perform a detection operation, that is, a change in the pressurizing speed, with almost no time delay with respect to the time of inflow. Therefore, the molten metal 14 flows into the small cross-sectional area portion 12c or the second large cross-sectional area portion 12b at an appropriate flow rate from the beginning, and the occurrence of stoppage of flowing flow, gas defects, etc. is more reliably prevented. be able to.

ちなみに、第2図は本発明による場合と第4図の場合と
で、熱電対の配設部を通過した時点からどの程度の時間
遅れをもって熱電対が動作し始めるかを比較実験した結
果を示すもので、この第2゛図から特性曲線Aで示す本
発明の場合の方が特性曲1iBで示す第4図の場合より
熱電対の検出動作開始時点が速いことが理解される。尚
、第2図は、縦軸に熱雷対の検出温度を取り、横軸に溶
湯の通過時点からの経過時間を取って示した。
By the way, Figure 2 shows the results of a comparative experiment to determine how much time delay the thermocouple starts to operate after passing through the thermocouple placement area between the case according to the present invention and the case shown in Figure 4. Therefore, it can be seen from FIG. 2 that the thermocouple detection operation starts earlier in the case of the present invention shown by characteristic curve A than in the case of FIG. 4 shown by characteristic curve 1iB. In addition, in FIG. 2, the vertical axis shows the temperature detected by the thermal lightning pair, and the horizontal axis shows the elapsed time from the point of passage of the molten metal.

尚、上記実施例では低圧鋳造装置に適用して説明したが
、本発明はこれに限らず金型内に溶湯を注入して鋳造す
る場合に広く適用して実施することができるものである
Although the above embodiment has been described as being applied to a low-pressure casting apparatus, the present invention is not limited to this, and can be widely applied to casting by injecting molten metal into a mold.

[発明の効果] 以上説明した様に本発明は、キャビティの断面積が変化
する部分に溶湯が到達したことを時間的遅れを極力なく
して検出することができるという優れた効果を奏するも
のである。
[Effects of the Invention] As explained above, the present invention has the excellent effect of being able to detect that the molten metal has reached the part where the cross-sectional area of the cavity changes with as little time delay as possible. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す鋳造装置の断面図、第
2図は熱電対の検出動作特性図、第3図は湯流れ停止臨
界速度の実験結果図、第4図は比較のために示す鋳造装
置の断面図、第5図は溶湯の乱れを示す部分断面図であ
る。 図中、11は金型、12はキャビティ、13は炉、14
は溶湯、17.18は第1.第2のブロック、19.2
0は第1、第2の熱電対(サーモセンサ)、21は圧縮
空気供給装置である。 第 1[] 第2図 時間(sec) 第 3 図 1Jiljll所面措crn’ 第4図 第5図
Fig. 1 is a sectional view of a casting apparatus showing an embodiment of the present invention, Fig. 2 is a detection operation characteristic diagram of a thermocouple, Fig. 3 is an experimental result of the critical velocity for stopping the flow of molten metal, and Fig. 4 is a comparison diagram. FIG. 5 is a partial sectional view showing turbulence in the molten metal. In the figure, 11 is a mold, 12 is a cavity, 13 is a furnace, and 14
is the molten metal, 17.18 is the 1st. Second block, 19.2
0 is a first and second thermocouple (thermo sensor), and 21 is a compressed air supply device. Fig. 1 [] Fig. 2 Time (sec) Fig. 3

Claims (1)

【特許請求の範囲】[Claims] 1、溶湯を加圧してこれを金型のキャビティ内に供給す
るものにおいて、前記金型のうちキャビティの断面積が
変化する部分に熱良導材製のブロックを埋設してこのブ
ロック内にサーモセンサを配設し、このサーモセンサが
温度上昇を検出したことに基づき前記溶湯に対する加圧
力を変化させて溶湯の流速を変える様にしたことを特徴
とする鋳造における溶湯の流速制御方法。
1. In a device that pressurizes molten metal and supplies it into the cavity of a mold, a block made of a thermally conductive material is embedded in the part of the mold where the cross-sectional area of the cavity changes, and a thermostat is installed in this block. 1. A method for controlling the flow rate of molten metal in casting, characterized in that a sensor is provided, and the flow rate of the molten metal is changed by changing the pressure applied to the molten metal based on the detection of a temperature rise by the thermosensor.
JP8607685A 1985-04-22 1985-04-22 Method for controlling flow rate of molten metal in casting Pending JPS61245955A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8607685A JPS61245955A (en) 1985-04-22 1985-04-22 Method for controlling flow rate of molten metal in casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8607685A JPS61245955A (en) 1985-04-22 1985-04-22 Method for controlling flow rate of molten metal in casting

Publications (1)

Publication Number Publication Date
JPS61245955A true JPS61245955A (en) 1986-11-01

Family

ID=13876611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8607685A Pending JPS61245955A (en) 1985-04-22 1985-04-22 Method for controlling flow rate of molten metal in casting

Country Status (1)

Country Link
JP (1) JPS61245955A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5022458A (en) * 1989-01-10 1991-06-11 Cosworth Casting Processes Limited Controlling the position of liquid metal in a vessel
JPH04123860A (en) * 1990-09-14 1992-04-23 Ryobi Ltd Method and device for controlling degassing device in injection molding machine
US5597032A (en) * 1993-05-10 1997-01-28 Merrien; Pierre Controlled method for injection casing using a mold under vacuum, especially intended for aluminium or magnesium alloys and device for carrying out said method
EP1481748A1 (en) * 2003-05-28 2004-12-01 Bayerische Motoren Werke Aktiengesellschaft Apparatus and process for casting metal
GB2456918A (en) * 2008-02-01 2009-08-05 Smartcast Solutions Ltd Metal casting using varaiable pressure

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5022458A (en) * 1989-01-10 1991-06-11 Cosworth Casting Processes Limited Controlling the position of liquid metal in a vessel
JPH04123860A (en) * 1990-09-14 1992-04-23 Ryobi Ltd Method and device for controlling degassing device in injection molding machine
US5597032A (en) * 1993-05-10 1997-01-28 Merrien; Pierre Controlled method for injection casing using a mold under vacuum, especially intended for aluminium or magnesium alloys and device for carrying out said method
EP1481748A1 (en) * 2003-05-28 2004-12-01 Bayerische Motoren Werke Aktiengesellschaft Apparatus and process for casting metal
GB2456918A (en) * 2008-02-01 2009-08-05 Smartcast Solutions Ltd Metal casting using varaiable pressure

Similar Documents

Publication Publication Date Title
US7100672B2 (en) Device for cooling die casting metallic pattern
CN106890985B (en) It is a kind of to be used to manufacture the method that the casting device without shrinkage cavity casting is cast
WO2007032174A1 (en) Casting method
CN206160718U (en) A automatic temperature control type heat preservation stove that is used for preparing in succession half solid -state thick liquids of aluminum alloy
JPS61245955A (en) Method for controlling flow rate of molten metal in casting
KR100550445B1 (en) Pouring apparatus for forging
CN1268459C (en) Oriented solidification casting method and apparatus
TW201829094A (en) Stopper equipped with an integrated temperature measurement device
CN111230047A (en) Combined mold core
JPH11156529A (en) Differential pressure casting method and molten metal holding method therefor as well as differential casting device
JP2011240392A (en) Casting apparatus, die structure, and casting method
KR20120086305A (en) Control pin and spout system for heating metal casting distribution spout configurations
JP3322865B2 (en) Method and apparatus for casting metal articles by antigravity feeding of metal molds
WO2000044516A1 (en) Casting method and apparatus
JP3188815B2 (en) High pressure casting apparatus and hot water supply method
KR920002106B1 (en) Method and apparatus for press casting
JPS60184460A (en) Method for embedding aluminum pipe by casting
JPS61154447A (en) Casting method of squirrel cage conductor of rotor
JP4239160B2 (en) Low pressure casting system
JPH1157972A (en) Pressure casting device
CN213614033U (en) Water cooling device for hardware die castings
JPH01271050A (en) Method and device for feeding molten metal
JP2000343198A (en) Die cast casting method
JP2002346728A (en) Casting method and casting device
JP2904834B2 (en) Low pressure casting method