JPS61245413A - Manufacture of conductive high polymer composite film - Google Patents

Manufacture of conductive high polymer composite film

Info

Publication number
JPS61245413A
JPS61245413A JP8649085A JP8649085A JPS61245413A JP S61245413 A JPS61245413 A JP S61245413A JP 8649085 A JP8649085 A JP 8649085A JP 8649085 A JP8649085 A JP 8649085A JP S61245413 A JPS61245413 A JP S61245413A
Authority
JP
Japan
Prior art keywords
film
conductive
polymer
thin film
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8649085A
Other languages
Japanese (ja)
Inventor
西 義一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeon Corp
Original Assignee
Nippon Zeon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Zeon Co Ltd filed Critical Nippon Zeon Co Ltd
Priority to JP8649085A priority Critical patent/JPS61245413A/en
Publication of JPS61245413A publication Critical patent/JPS61245413A/en
Pending legal-status Critical Current

Links

Landscapes

  • Other Resins Obtained By Reactions Not Involving Carbon-To-Carbon Unsaturated Bonds (AREA)
  • Non-Insulated Conductors (AREA)
  • Manufacturing Of Electric Cables (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は導電性高分子膜の製造方法に関し、さらに詳し
くは、高分子膜を、予め形成された導電性高分子薄膜に
一体的に積層して導電性高分子複合膜を得る方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for manufacturing a conductive polymer film, and more specifically, a method for manufacturing a conductive polymer film, in which a polymer film is integrally laminated on a pre-formed conductive polymer thin film. This invention relates to a method for obtaining a conductive polymer composite membrane.

従来の技術 従来、高分子による導電性複合体の製造方法として、導
電性フィラーを高分子マトリックス中に一定量以上添加
する方法が用いられていた。しかし、この方法ではフィ
ラーの添加によって複合体の物性が著しく低下し、使用
するフィラーによって、その導電性が成る範囲内でしか
コントロールできないという欠点があった。また、エレ
クトロニクス関連に使用する際において、フィルム表面
に複雑な形状のパターンを形成することが困難であり、
また、フィラーの脱落するおそれもあった。
2. Description of the Related Art Conventionally, as a method for producing a conductive composite using a polymer, a method has been used in which a certain amount or more of a conductive filler is added to a polymer matrix. However, this method has the drawback that the physical properties of the composite are significantly reduced by the addition of filler, and that the conductivity can only be controlled within the range of the filler used. Furthermore, when used in electronics-related applications, it is difficult to form complex patterns on the film surface.
Additionally, there was a risk that the filler would fall off.

また、日本電信電話株式会社、IBMから発表されてい
る電解重合による高分子膜の導電化技術、例えば、ボリ
マーブレブリンツ、ジャパン、33巻第9号2515〜
18頁(1984年)等では陽極上にポリ塩化ビニル(
PVO)溶液を塗布、乾燥して電極面にPVO薄、膜を
形成せしめた後。
In addition, Nippon Telegraph and Telephone Corporation and IBM have announced technology for making polymer membranes conductive through electrolytic polymerization, such as Polymer Brebrants, Japan, Vol. 33, No. 9, 2515-
18 (1984) etc., polyvinyl chloride (
PVO) solution was applied and dried to form a thin PVO film on the electrode surface.

ピロール、テトラエチルアンモニウムバークロレート及
びアセトニトリルからなる電解質溶液中で電解重合を行
なうことによってPVO薄膜を導電化するものであり、
上記欠点を解決するものではあるが、しかしながら、こ
の方法では、電解重合条件上の制約によって、使用可能
な高分子が限られ、また厚膜のものが得難い等の欠点が
あった。
A PVO thin film is made conductive by electrolytic polymerization in an electrolyte solution consisting of pyrrole, tetraethylammonium verchlorate and acetonitrile,
Although this method solves the above-mentioned drawbacks, this method has drawbacks such as limitations in the usable polymers due to restrictions on electrolytic polymerization conditions and difficulty in obtaining thick films.

発明が解決しようとする問題点 本発明者は、前記欠点を解決すべく鋭意研究の結果、導
電性高分子薄膜を予め形成させ、しかる後に、他の高分
子膜を前記導電性薄膜上に一体的に積層し、複合膜とし
て形成せしめれば、導電性高分子薄膜は他の高分子膜に
転写され、前記欠点のない加工性に優れた導電性高分子
複合膜が形成されることを見い出し、この知見に基いて
本発明を完成Tるに到った。
Problems to be Solved by the Invention As a result of intensive research in order to solve the above-mentioned drawbacks, the inventor of the present invention formed a conductive polymer thin film in advance, and then integrated another polymer film on the conductive thin film. We have discovered that if the conductive polymer thin film is laminated to form a composite film, the conductive polymer thin film will be transferred to another polymer film, and a conductive polymer composite film with excellent workability and without the above-mentioned drawbacks will be formed. Based on this knowledge, we have completed the present invention.

問題点を解決するだめの手段 本発明のかかる目的は、予め電極面に電解重合によって
導電性高分子の薄膜を形成せしめ、該薄膜上に他の高分
子膜を一体的に積層し、該複合膜を電極から剥離して導
電性高分子薄膜を表面層とすることによって達成される
Means for Solving the Problems The object of the present invention is to form a thin film of conductive polymer on the electrode surface in advance by electrolytic polymerization, and then integrally laminate another polymer film on the thin film to form a composite film. This is achieved by peeling off the membrane from the electrode and using a conductive polymer thin film as a surface layer.

ここで述べる導電性高分子薄膜とは、導電性高分子重合
体を形成する能力のある芳香族化合物。
The conductive polymer thin film described here is an aromatic compound that has the ability to form a conductive polymer.

ヘテロ環式化合物及びこれらの誘導体の一厘以上をモノ
マー成分として含む電解質溶液中で電解重合により電極
面上に形成されるものを指す。
Refers to a compound formed on an electrode surface by electrolytic polymerization in an electrolyte solution containing one or more of a heterocyclic compound or a derivative thereof as a monomer component.

前記芳香族化合物としては、ベンゼン、トルエン、キシ
レン、アニリン等が挙げられ、ヘテロ環式化合物として
は、とロール、N−メチルピロール、N−フェニルピロ
ール、 2,3.2’、3’ピロロビロール、インドー
ル、プリン、アズレン、インドリジン、イミダゾール、
チオフェン、フラン。
Examples of the aromatic compounds include benzene, toluene, xylene, aniline, etc., and examples of the heterocyclic compounds include torrole, N-methylpyrrole, N-phenylpyrrole, 2,3.2',3'pyrrolovirol, indole, purine, azulene, indolizine, imidazole,
Thiophene, furan.

オキサゾール、ベンゾフラン、ベンゾチオフェン。Oxazole, benzofuran, benzothiophene.

チェノチオフェン、ジベンゾフラン、チェピン。Chenothiophene, dibenzofuran, chepin.

1、3.4チアダイアゾール等を挙げることができる。1, 3.4 thiadiazole, and the like.

一般に高分子材料は、電気絶縁性が高く、10S /c
m程度以下の電導度を有Tる。本発明の他の高分子とは
、かかる電導度を有する高分子材料を指称し、これに属
する高分子としては、ポリエチレン、ポリプロピレン等
オレフィン系高分子;ポリブタジェン、ポリイソプレン
、スチレン・ブタジェンゴム、アクリロニトリル・ブタ
ジェンゴムスチレン・ブタジェン・スチレン、スチレン
・イソプレン・スチレン、アクリロニトリル・ブタジェ
ン・スチレンm脂等のジエン系高分子;ポリ塩化ビニル
、エチレン・酢酸ビニル共重合体−塩化ビニルグラフト
重合体、ポリスチレン等ビニル。
In general, polymer materials have high electrical insulation properties, with a rate of 10S/c
It has an electrical conductivity of about m or less. Other polymers of the present invention refer to polymer materials having such electrical conductivity, and examples of polymers belonging to this include olefinic polymers such as polyethylene and polypropylene; polybutadiene, polyisoprene, styrene-butadiene rubber, acrylonitrile-based polymers, etc. Diene polymers such as butadiene rubber, styrene, butadiene, styrene, styrene, isoprene, styrene, acrylonitrile, butadiene, and styrene resin; polyvinyl chloride, ethylene/vinyl acetate copolymer-vinyl chloride graft polymer, polystyrene, etc. .

ビニリデン系高分子;ポリウレタン、ポリアミド。Vinylidene polymer; polyurethane, polyamide.

ポリウレア、ポリイミド等含窒素系高分子;ポリアクリ
レート、ポリアクリロニトリル等のアクリル系高分子等
の重合体又はこれらのポリマーブレンド物を挙げること
ができる。
Nitrogen-containing polymers such as polyurea and polyimide; polymers such as acrylic polymers such as polyacrylate and polyacrylonitrile; and polymer blends thereof.

本発明における他の高分子には、所望により、導電性フ
ィラー、導電性m#、及び帯電防止剤等を添加すること
ができる。導電性フィラーとしてはカーボンブラックや
Ag、Ou等の金属粉、 InO2゜SnO3等の金属
酸化物粉、又はガラスピーズ等の担体に上記金属粉、金
属酸化物粉を担持させたものを言い、導電性繊維とはカ
ーボン繊維、金属繊維または導電性ウィスカーを言う。
If desired, conductive filler, conductive m#, antistatic agent, etc. can be added to other polymers in the present invention. Conductive fillers include carbon black, metal powders such as Ag and Ou, metal oxide powders such as InO2゜SnO3, or carriers such as glass beads carrying the above metal powders and metal oxide powders. The term "conductive fibers" refers to carbon fibers, metal fibers, or conductive whiskers.

また、帯電防止剤としては、アニオン、カチオン系界面
活性剤が挙げられる。
Further, examples of the antistatic agent include anionic and cationic surfactants.

電極材料としては、金属、金属酸化物、炭素等が考えら
れるが、陽極に金属、金属酸化物を用いる場合、又は陰
極に金属酸化物を用いる場合には重合電位とそれぞれの
1!極材料のイオン化電位に詔意する必要がある。特に
陽極において金属及び金属酸化物がイオンとして溶出す
るような系では高分子は生成しない。
Possible electrode materials include metals, metal oxides, carbon, etc., but when using metals or metal oxides for the anode or metal oxides for the cathode, the polymerization potential and 1! It is necessary to take care of the ionization potential of the electrode material. Particularly in systems where metals and metal oxides are eluted as ions at the anode, polymers are not produced.

本発明方法の手順について述べると、前述の導電性高分
子重合体を形成し得るモノマー、電解質及び溶媒からな
る電解質溶液を調製し1例えば陽極にネサガラス(ガラ
ス表面にSnO21InO2を蒸着せしめたもの)、陰
極に白金電極を用いて電圧。
To describe the procedure of the method of the present invention, an electrolyte solution consisting of a monomer capable of forming the above-mentioned conductive polymer, an electrolyte, and a solvent is prepared. voltage using a platinum electrode as the cathode.

電解液温度、電解時間等電解条件を設定して電解重合反
応を行ない、陽極上に導電性高分子′!IJMを形成せ
しめる。
Electrolytic polymerization reaction is carried out by setting electrolytic conditions such as electrolyte temperature and electrolysis time, and a conductive polymer' is deposited on the anode! Form the IJM.

電解終了後、重合体の析出した陽極を洗浄乾燥し、次に
この高分子薄膜上に他の高分子膜を一体的に積層する。
After the electrolysis is completed, the anode on which the polymer has been deposited is washed and dried, and then another polymer film is integrally laminated on this polymer thin film.

この一体的に積層する方法としては、他の高分子を溶媒
に溶解して得た溶液を薄膜上に塗布し、溶媒を揮散せし
めて高分子膜を形成せしめる方法、または予め作成した
他の高分子薄膜を酌記導電性薄膜上に、接着、熱融着等
の方法により一体的に積層する方法があり、目的に応じ
て適宜選定ずれはよい、このようにして得られた複合膜
を58iiから剥離し、導電性高分子膜を表面層とする
複合膜を得ることができる。
This integral layering method involves applying a solution obtained by dissolving other polymers in a solvent onto the thin film and evaporating the solvent to form a polymer film, or using other polymers prepared in advance. There is a method of integrally laminating a molecular thin film on a conductive thin film by adhesion, heat fusion, etc., and the method may be selected as appropriate depending on the purpose. A composite film having a conductive polymer film as a surface layer can be obtained by peeling from the film.

発明の効果 かくして、本発明によれば、従来技術に比重して、他の
高分子の物性を低下せしめることなく、透明で電導度が
10087cmから絶縁体に至るほぼ全ての範囲にわた
り導電性を付与することが可能であり、電極の形状を工
夫することによって複雑な形状のものを容易に得ること
ができ、導電膜の脱落のおそれがない。
Effects of the Invention Thus, according to the present invention, compared to the prior art, conductivity can be imparted over almost the entire range from transparent conductivity of 10,087 cm to insulators without deteriorating the physical properties of other polymers. By devising the shape of the electrode, a complex shape can be easily obtained, and there is no fear of the conductive film falling off.

また、更に導電性高分子の形成、他の高分子膜の形成は
それぞれ別個の工程となるため、他の高。
Furthermore, since the formation of the conductive polymer and the formation of other polymer films are separate processes, other polymers may not be used.

分子の種類によって電解重合条件を変更する必要もなく
、広い範囲の膜厚の導電性高分子複合膜を得ることがで
きる。
There is no need to change electrolytic polymerization conditions depending on the type of molecule, and conductive polymer composite films with a wide range of film thicknesses can be obtained.

実施例 以下、実施例、比較例により、本発明を更に具体的に説
明する。
EXAMPLES The present invention will be explained in more detail with reference to Examples and Comparative Examples.

実施例 1 ビロール006モル、テトラエチルアンモニウムバーク
ロレートα1モル、アセトニトリル11・よりなる電解
質溶液で、ネサガラス電極を陽極及び対極に用い、20
℃、2.5Vで2分間電解重合反応を行なったのち、洗
浄、乾燥した。これにポリ塩化ビニル(ゼオン103既
日本ゼオン(株)l!310g、テトラヒドロフラン9
0gよりなるポリ塩化ビニル溶液をLOfi厚に塗布乾
燥した後、電極面から高分子膜を剥離した。
Example 1 An electrolyte solution consisting of 0.6 mol of virol, 1 mol of tetraethylammonium barchlorate α, and 11 mol of acetonitrile was used with Nesa glass electrodes as the anode and counter electrode.
After carrying out an electrolytic polymerization reaction at 2.5 V for 2 minutes at ℃, it was washed and dried. To this, polyvinyl chloride (Zeon 103 made by Nippon Zeon Co., Ltd. 1! 310 g, tetrahydrofuran 9
After applying and drying a polyvinyl chloride solution consisting of 0 g to a thickness of LOfi, the polymer film was peeled off from the electrode surface.

膜厚は100μm’C’、表面基導度tfi 10−”
 S 7cmの導電性複合膜が得られた。
Film thickness is 100 μm'C', surface group conductivity tfi 10-"
A conductive composite membrane with S 7 cm was obtained.

実施例 2 実施例1と同様の電解重合反応を行なった後、電極を洗
浄、乾燥し、ポリウレタン溶液(レザミンME 361
2 LP、大日精化(株)製)をα25m厚に塗布し乾
燥した後、電極面から高分子膜を剥離した。
Example 2 After carrying out the same electrolytic polymerization reaction as in Example 1, the electrode was washed and dried, and a polyurethane solution (Lesamin ME 361
2 LP (manufactured by Dainichiseika Co., Ltd.) was applied to a thickness of α25 m and dried, and then the polymer film was peeled off from the electrode surface.

膜厚80μmで、表面基導度がIQ−2s/cmの実用
に適する導電性ポリウレタン複合膜が得られた。
A conductive polyurethane composite film suitable for practical use with a film thickness of 80 μm and a surface group conductivity of IQ-2 s/cm was obtained.

比較例 1− 実施例1で用いたポリ塩化ビニル溶液をネサガラス上に
01簡厚に塗布乾燥し、膜厚10μmとした電極を用い
て、20℃で2VC’2分間電解重合反応を行ない、1
O−2S/Cmの表面基導度を有する導電性複合膜が得
られたが、この程度の膜厚では、薄く、機械的強度に問
題がある。
Comparative Example 1 - The polyvinyl chloride solution used in Example 1 was coated onto Nesa glass to a thickness of 01 and dried, and using an electrode with a film thickness of 10 μm, an electrolytic polymerization reaction was carried out at 20° C. with 2 VC' for 2 minutes.
Although a conductive composite film having a surface group conductivity of O-2S/Cm was obtained, the film thickness of this level was thin and had a problem in mechanical strength.

比較例 2 実施例1で用いたと同じポリ塩化ビニル溶液をα5閣厚
にネサガラス上に塗布乾燥し、膜厚50μmの塩化ビニ
ル薄膜を形成せしめた。
Comparative Example 2 The same polyvinyl chloride solution as used in Example 1 was applied to Nesa glass with α5 thickness and dried to form a vinyl chloride thin film with a thickness of 50 μm.

このものを試料電極とし、対極に無処理のネサガラスを
用いて実施例1と同一の電解質溶液を用いて20°C’
t’Z5Vで2時間の長時間にわたり電解を行なったが
、ポリピロール複合体の生成は認められなかった。
This was used as a sample electrode, untreated Nesa glass was used as a counter electrode, and the same electrolyte solution as in Example 1 was used at 20°C.
Electrolysis was carried out for a long time of 2 hours at t'Z5V, but no formation of polypyrrole complex was observed.

実施例 3 チオフェン01モル、リチウムテトラフロロボレート0
1モル、アセトニトリル11よりなる電解質溶液で陽極
にネサガラス、対極に白金電極を用い、20vで2分間
電解重合反応を行ない、乾燥後、ポリ塩化ビニル(ゼオ
ン103 EP 、日本ゼオン(株)製)10g、テト
ラヒドロフラン90gよりなるポリ塩化ビニル溶液を1
.0閣厚に塗布乾燥した後、電極面から高分子膜を剥離
した。
Example 3 Thiophene 01 mole, lithium tetrafluoroborate 0
An electrolytic polymerization reaction was carried out at 20 V for 2 minutes using an electrolyte solution consisting of 1 mol of acetonitrile 11 using Nesa glass as an anode and a platinum electrode as a counter electrode, and after drying, 10 g of polyvinyl chloride (Zeon 103 EP, manufactured by Nippon Zeon Co., Ltd.) , a polyvinyl chloride solution consisting of 90 g of tetrahydrofuran
.. After coating and drying, the polymer film was peeled off from the electrode surface.

膜厚は100 umt’、表面基導度が10−287c
mの導電性ポリ塩化ビニル複合膜が得られた。
Film thickness is 100 umt', surface group conductivity is 10-287c
A conductive polyvinyl chloride composite membrane of m was obtained.

Claims (1)

【特許請求の範囲】[Claims] 1、予め電極面に電解重合によって導電性高分子の薄膜
を形成せしめ、該薄膜上に他の高分子膜を一体的に積層
し、該複合膜を電極から剥離して導電性高分子薄膜を表
面層とする複合膜を製造することを特徴とする導電性高
分子複合膜の製造方法。
1. Form a conductive polymer thin film on the electrode surface in advance by electrolytic polymerization, integrally laminate another polymer film on top of the thin film, and peel the composite film from the electrode to form the conductive polymer thin film. A method for producing a conductive polymer composite film, comprising producing a composite film as a surface layer.
JP8649085A 1985-04-24 1985-04-24 Manufacture of conductive high polymer composite film Pending JPS61245413A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8649085A JPS61245413A (en) 1985-04-24 1985-04-24 Manufacture of conductive high polymer composite film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8649085A JPS61245413A (en) 1985-04-24 1985-04-24 Manufacture of conductive high polymer composite film

Publications (1)

Publication Number Publication Date
JPS61245413A true JPS61245413A (en) 1986-10-31

Family

ID=13888422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8649085A Pending JPS61245413A (en) 1985-04-24 1985-04-24 Manufacture of conductive high polymer composite film

Country Status (1)

Country Link
JP (1) JPS61245413A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0415115U (en) * 1990-05-28 1992-02-06
WO2013080908A1 (en) * 2011-11-29 2013-06-06 東レ株式会社 Conductor stack body and display body formed by employing same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0415115U (en) * 1990-05-28 1992-02-06
WO2013080908A1 (en) * 2011-11-29 2013-06-06 東レ株式会社 Conductor stack body and display body formed by employing same
JP5273325B1 (en) * 2011-11-29 2013-08-28 東レ株式会社 Conductive laminate and display body using the same
US9398688B2 (en) 2011-11-29 2016-07-19 Toray Industries, Inc. Electroconductive stack body and display body employing the same

Similar Documents

Publication Publication Date Title
EP0495303B1 (en) Deposition of electroactive polymers
WO1998040435A1 (en) Conductive elastomer film, method for production thereof, and conductive elastomer composition
JPH03183759A (en) Laminated plastic film and its production
JPS61133557A (en) Battery having polymer electrode and making thereof
JPS61245413A (en) Manufacture of conductive high polymer composite film
JPS63125696A (en) Method for plating electrically nonconductive substance
JP2007041579A (en) Light regulator
JPS63269415A (en) Manufacture of transparent composite conductor
JP2674783B2 (en) Method for producing conductive polymer composite film
JPS62144145A (en) Solid state type electrochromic element
JPS60177506A (en) Conductive polymer film and method of producing same
JPH054983B2 (en)
JPS613742A (en) Conductive high-molecular sheet and manufacture thereof
JPH054982B2 (en)
JPS612204A (en) Conductive polymer film material and method of producing same
JPS61245404A (en) Manufacture of conducting high polymer film
JPH0274019A (en) Manufacture of solid electrolytic condenser
JPS60257235A (en) Conductive high-molecular film and manufacture thereof
JPS61131304A (en) Conductive high polymer film and manufacture thereof
JPH01131256A (en) Production of porous electrolytic polymerization film
JPS6124103A (en) Conductive polymer film and method of producing same
JPS618345A (en) Conductive composite film
JPS62100524A (en) Production of electroconductive polymeric membrane
JPS6335628A (en) Production of organic polymeric material
JPS63274790A (en) Thin polymer film having superior surface smoothness and production thereof