JPS61244880A - Low temperature geothermal power system - Google Patents

Low temperature geothermal power system

Info

Publication number
JPS61244880A
JPS61244880A JP8684485A JP8684485A JPS61244880A JP S61244880 A JPS61244880 A JP S61244880A JP 8684485 A JP8684485 A JP 8684485A JP 8684485 A JP8684485 A JP 8684485A JP S61244880 A JPS61244880 A JP S61244880A
Authority
JP
Japan
Prior art keywords
temperature
turbine
geothermal
carbon dioxide
low temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8684485A
Other languages
Japanese (ja)
Inventor
Tsutomu Morie
森江 勉
Kazuo Kondo
和男 近藤
Taisuke Fujise
藤瀬 泰介
Tsutomu Kiuchi
勉 木内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Original Assignee
Shimizu Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd filed Critical Shimizu Construction Co Ltd
Priority to JP8684485A priority Critical patent/JPS61244880A/en
Publication of JPS61244880A publication Critical patent/JPS61244880A/en
Pending legal-status Critical Current

Links

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE:To improve generating efficiency for low temperature geothermal power system by bringing low temperature geothermal fluid in indirect contact with liquefied carbon dioxide so as to drive a turbine by dioxide gas increased in its temperature and pressure. CONSTITUTION:After supplied to a preheat vaporizer 2, low temperature geothermal fluid obtained from geothermal production well #1 is led to another hot water using system. Carbon dioxide liquefied by a compressing pump 5 and a condenser 6 is supplied to the preheat vaporizer 2, and heat exchange is made with geothermal fluid by indirect contact. Liquefied carbon dioxide after heat exchange becomes gas increased in its temperature and pressure which drives a turbine 3 in order to revolve a generator 4. Carbon dioxide gas with low temperature and pressure exhausted from the turbine 3 is resupplied to the compressing pump 5 and the condenser 6 so as to be used circulatingly as a thermal medium.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、低温の地熱で電力を発生させる低温地熱発電
システムに関するものである6〔従来の技術〕 地熱流体の温度があまり高くない場合や、地熱流体が化
学的に強い酸性であるため蒸気タービンのケーシングや
羽根の材料として耐蝕性の十分なものが得られず信頼性
に問題がある場合などに作動媒体を使ったバイナリ−サ
イクル発電が採用される。このバイナリ−サイ)ル発電
では、地熱流体の熱エネルギーを作動媒体に伝えて蒸発
せしめ、その作動媒体の蒸気によりタービンを駆動しこ
れに連結した発電機により電力を発生させているが、そ
の作動媒体としては、間接接触型のフロン系の媒体を使
ったものと直接接触型の二酸化炭素を使ったものとに大
別される。フロン系としては、R11(C1(ictF
)、R12(CHzh) 、R113(CzC1sF3
) 、R114(C1CIKF4) 、R115(Cz
CIFs)、R124(c!HCIF4)、イソブタン
(C4H111)及びアンモニア(Nlh)などがある
。これらは、熱水入口温度とその流量が同じでも、臨界
圧力・温度が異なるため最大出力に差がある。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a low-temperature geothermal power generation system that generates electric power using low-temperature geothermal heat.6 [Prior Art] Binary cycle power generation using a working medium is used when geothermal fluids are chemically strongly acidic, so materials with sufficient corrosion resistance cannot be obtained for steam turbine casings and blades, resulting in reliability problems. Adopted. In binary sile power generation, the thermal energy of the geothermal fluid is transferred to a working medium and evaporated, and the steam of the working medium drives a turbine, which is then connected to a generator to generate electricity. The medium is broadly divided into indirect contact type using fluorocarbon-based media and direct contact type using carbon dioxide. As a fluorocarbon type, R11(C1(ictF
), R12 (CHzh), R113 (CzC1sF3
), R114 (C1CIKF4), R115 (Cz
CIFs), R124 (c!HCIF4), isobutane (C4H111) and ammonia (Nlh). Even if the hot water inlet temperature and flow rate are the same, there is a difference in maximum output because the critical pressure and temperature are different.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、従来の発電では地熱の温度はいずれも150℃
以上であり、80℃程度の地熱蒸気では発電効率が悪い
ため、現状では発電用の蒸気の対象としては考慮されて
いない。フロン系では、入口温度が100℃でも37%
程度の低い最大出力比しか確保できない。
However, in conventional power generation, the geothermal temperature is 150℃.
As described above, geothermal steam at a temperature of about 80° C. has low power generation efficiency, so it is not currently being considered as a steam for power generation. With fluorocarbons, 37% even if the inlet temperature is 100℃
Only a low maximum output ratio can be secured.

他方CO3を媒体として用いる発電システムでは、地下
エネルギーを吸収した地熱流体にCO,を直接接触させ
て熱交換し、高圧CO2ガスにしてタービンを駆動する
システムが提案されているが、ここでは、CO,を媒体
として用いた場合の地熱流体の最大利用効率が追求され
ていない。
On the other hand, in a power generation system that uses CO3 as a medium, a system has been proposed in which CO is brought into direct contact with geothermal fluid that has absorbed underground energy to exchange heat and convert it into high-pressure CO2 gas to drive a turbine. , the maximum utilization efficiency of geothermal fluid is not pursued when geothermal fluid is used as a medium.

本発明は、上記の考察に基づくものであって、CO2を
媒体として用い低、温の地熱流体でも高い発電効率で電
力を発生することができる低温地熱発電システムの提供
を目的とするものである。
The present invention is based on the above considerations, and aims to provide a low-temperature geothermal power generation system that can generate electric power with high power generation efficiency even with low-temperature geothermal fluid using CO2 as a medium. .

〔問題点を解決するための手段〕[Means for solving problems]

そのために本発明の低温地熱発電システムは、低温の地
熱流体の熱エネルギーを利用してタービンを駆動しター
ビンに連結した発電機により電力を発生させる低温地熱
発電システムであって、二酸化炭素を媒体として用い、
低温の地熱流体により間接接触で二酸化炭素を昇温、昇
圧してタービンを駆動することを特徴とするものである
To this end, the low-temperature geothermal power generation system of the present invention is a low-temperature geothermal power generation system that uses the thermal energy of low-temperature geothermal fluid to drive a turbine and generate electric power with a generator connected to the turbine, using carbon dioxide as a medium. use,
It is characterized by increasing the temperature and pressure of carbon dioxide through indirect contact with low-temperature geothermal fluid to drive a turbine.

〔作用〕[Effect]

本発明の低温地熱発電システムでは、臨界温度35℃、
70kg/−の特性と安定した二酸化炭素の性状を活用
し、二酸化炭素を媒体として用いることによって、50
〜80℃程度の低温の地熱流体で昇温、昇圧してタービ
ンを駆動する。また、熱交換を行った後の地熱流体は、
温泉その他の活用システムに利用する。
In the low-temperature geothermal power generation system of the present invention, the critical temperature is 35°C,
By utilizing the characteristics of 70kg/- and stable properties of carbon dioxide, and using carbon dioxide as a medium, 50kg/-
Geothermal fluid at a low temperature of ~80°C is heated and pressurized to drive the turbine. In addition, the geothermal fluid after heat exchange is
Used for hot springs and other utilization systems.

〔実施例〕〔Example〕

以下、図面を参照しつつ実施例を説明する。 Examples will be described below with reference to the drawings.

第1図は本発明の低温地熱発電システムの1実施例を示
す図であり、1は地熱生産井、2は予熱・蒸発器、3は
タービン、4は発電機、5は圧縮ポンプ、6はコンデン
サ、7は媒体ポンプを示す。
FIG. 1 is a diagram showing one embodiment of the low-temperature geothermal power generation system of the present invention, in which 1 is a geothermal production well, 2 is a preheater/evaporator, 3 is a turbine, 4 is a generator, 5 is a compression pump, and 6 is a Condenser, 7 indicates the medium pump.

第1図において、媒体としてCO!を用い、このCOt
を媒体ポンプ7により予熱・蒸発器2に供給する。また
この予熱・蒸発器2には、地熱生産井1から抽出された
65〜80℃程度の低温の地熱流体を供給する。そして
、この予熱・蒸発器2において65〜80℃程度の低温
の地熱流体と媒体のCO,との熱交換を行う。媒体のC
Otは、臨界温度35℃、70kg/cdであり、これ
を65℃、130kg /−に昇温、昇圧しても熱分解
することなく安定性がある。そこで、この臨界温度35
℃、70kg/c+Jの特性と安定したCO8の性状を
活用して、媒体のCOtを65℃、130kg /cd
に昇温、昇圧してタービン3に供給する。これによりタ
ービン3を駆動し発電機4により電力を発生する。予熱
・蒸発器2から排出される低温の地熱流体は、温泉その
他の熱水利用システムに導く。また、タービン稼動後の
CO2は、圧縮ポンプ5によって冷却、圧縮して液化し
コンデンサ6に返却する。そして、この媒体のCOtは
コンデンサ6から再び媒体ポンプ7により予熱・蒸発器
2に供給され循環する。
In FIG. 1, CO! is used as a medium. using this COt
is supplied to the preheating/evaporator 2 by the medium pump 7. Further, the preheater/evaporator 2 is supplied with geothermal fluid extracted from the geothermal production well 1 and at a low temperature of about 65 to 80°C. In this preheating/evaporator 2, heat exchange is performed between the geothermal fluid at a low temperature of about 65 to 80°C and the medium CO. Medium C
Ot has a critical temperature of 35° C. and 70 kg/cd, and is stable without being thermally decomposed even if the temperature and pressure are increased to 65° C. and 130 kg/cd. Therefore, this critical temperature of 35
℃, 70kg/c+J and the stable properties of CO8, the COt of the medium is 65℃, 130kg/cd.
The temperature and pressure are increased to supply the turbine 3. This drives the turbine 3 and causes the generator 4 to generate electric power. The low temperature geothermal fluid discharged from the preheater/evaporator 2 is led to a hot spring or other hot water utilization system. Further, CO2 after the turbine is operated is cooled and compressed by the compression pump 5 to be liquefied and returned to the condenser 6. Then, this medium COt is again supplied from the condenser 6 to the preheater/evaporator 2 by the medium pump 7 and circulated.

第2図は本発明に係るシステムのサイクルを説明するた
めの熱力学線図である。第2図において、縦軸は温度T
1横軸はエンタルピh (kcal/kg)、11と1
3は媒体としてCO8を使った場合における地熱流体の
温度変化線とCO□の飽和蒸気線、12と14は媒体と
してフロン系を使った場合における地熱流体の温度変化
線とフロン系の飽和蒸気線を示す。
FIG. 2 is a thermodynamic diagram for explaining the cycle of the system according to the present invention. In Figure 2, the vertical axis is the temperature T
1 The horizontal axis is enthalpy h (kcal/kg), 11 and 1
3 is the temperature change line of the geothermal fluid and the saturated steam line of CO□ when CO8 is used as the medium, 12 and 14 are the temperature change line of the geothermal fluid and the saturated steam line of the fluorocarbon system when a fluorocarbon system is used as the medium. shows.

媒体としてフロン系を使った場合、媒体は、aからbま
でポンプで昇圧され、その後■′から■まで温度変化す
る地熱流体で加熱されエンタルピが増加してb−c’−
c’まで予熱・蒸発する。そして、タービンでC#から
dまで膨張して仕事(タービンを駆動)し、d−e−a
まで冷却・凝縮されて初めの状態に戻る。これに対して
媒体としてCO2を使った場合、媒体は、aからbまで
ポンプで昇圧された後、■から■まで温度変化する地熱
流体で加熱されエンタルピが増加してbからCまで予熱
・蒸発する。従って、地熱流体の出口温度が同じt、で
ある場合、CO□を媒体とするときの地熱流体の入口温
度t2は、フロン系を媒体とするときの地熱流体の入口
温度む、よりも大幅に低くなり、1.−1.に対し1.
−1.と使用できる温度範囲及び地熱流体の放出熱量に
対する最大出力(1+  1+に対するc ’−d、 
t、−t、に対するc −d )比は非常に優れた結果
が得られる。
When a fluorocarbon system is used as the medium, the medium is pressurized by a pump from a to b, and then heated by geothermal fluid whose temperature changes from ■' to ■, enthalpy increases and b-c'-
Preheat and evaporate to c'. Then, it expands from C# to d in the turbine, does work (drives the turbine), and d-e-a
It is cooled and condensed until it returns to its initial state. On the other hand, when CO2 is used as a medium, the medium is pressurized by a pump from a to b, then heated by geothermal fluid whose temperature changes from ■ to ■, increasing enthalpy and preheating and evaporating from b to C. do. Therefore, when the outlet temperature of the geothermal fluid is the same t, the inlet temperature t2 of the geothermal fluid when CO□ is used as a medium is significantly higher than the inlet temperature of the geothermal fluid when a fluorocarbon system is used as a medium. 1. -1. Against 1.
-1. Maximum output for the usable temperature range and heat release amount of the geothermal fluid (c'-d for 1+ 1+,
Very good results are obtained for the c -d ) ratio to t, -t.

以上に説明したように、媒体としてCO2を用い昇温、
昇圧値を65℃、130kg /cd程度にしてタービ
ンを駆動すると、そのための地熱流体の温度も65〜8
0℃程度でも十分活用できる。さらには、媒体のCO□
の臨界温度35℃よりも高い地熱流体であれば50℃の
地熱流体であっても、臨界状態を越えて媒体を昇温、昇
圧させることができるので、タービンを駆動することが
できる。従って、低温の地熱流体の生産される温泉地に
おいても、地熱発電を行うことができ、多目的利用に供
することにより、地熱流体の総合利用効率を上げること
ができる。
As explained above, by increasing the temperature using CO2 as a medium,
When the turbine is driven with a pressure increase value of 65℃ and 130kg/cd, the temperature of the geothermal fluid for that purpose also increases from 65 to 8℃.
It can be fully used even at temperatures around 0℃. Furthermore, the CO□ of the medium
Even if the geothermal fluid has a temperature higher than the critical temperature of 35° C., it is possible to raise the temperature and pressure of the medium beyond the critical state, so that the turbine can be driven. Therefore, even in hot spring areas where low-temperature geothermal fluid is produced, geothermal power generation can be performed, and by using the geothermal fluid for multiple purposes, the overall utilization efficiency of the geothermal fluid can be increased.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように、本発明によれば、臨界
温度35℃、70kg /−の二酸化炭素を65℃、1
30kg /cnに昇温、昇圧してタービンを駆動する
ため、65〜80℃程度の低温の地熱流体でも有効な発
電ができ、高い出力比を得ることができる。従って、温
泉として用いる直前の低温熱水をも発電用に使うことが
できる。また、二酸化炭素は、臨界温度35℃、70k
g/c+Jから65℃、130kg /−に昇温、昇圧
しても安定性があるので、熱分解による障害も生じない
As is clear from the above description, according to the present invention, 70 kg/- of carbon dioxide at a critical temperature of 35° C. is heated at 65° C. for 1 hour.
Since the turbine is driven by increasing the temperature and pressure to 30 kg/cn, effective power generation can be achieved even with geothermal fluid at a low temperature of about 65 to 80°C, and a high output ratio can be obtained. Therefore, low-temperature hot water immediately before being used as a hot spring can also be used for power generation. In addition, carbon dioxide has a critical temperature of 35°C and 70k
It is stable even when the temperature and pressure are increased from g/c+J to 65°C and 130 kg/-, so no trouble occurs due to thermal decomposition.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の低温地熱発電システムの1実施例を示
す図、第2図は本発明に係るシステムのサイクルを説明
するための熱力学線図である。 1・・・地熱生産井、2・・・予熱・蒸発器、3・・・
タービン、4・・・発電機、5・・・圧縮ポンプ、6・
・・コンデンサ、7・・・媒体ポンプ。
FIG. 1 is a diagram showing one embodiment of the low-temperature geothermal power generation system of the present invention, and FIG. 2 is a thermodynamic diagram for explaining the cycle of the system according to the present invention. 1...Geothermal production well, 2...Preheater/evaporator, 3...
Turbine, 4... Generator, 5... Compression pump, 6...
... Capacitor, 7... Medium pump.

Claims (2)

【特許請求の範囲】[Claims] (1)低温の地熱流体の熱エネルギーを利用してタービ
ンを駆動しタービンに連結した発電機により電力を発生
させる低温地熱発電システムであって、二酸化炭素を媒
体として用い、低温の地熱流体により間接接触で二酸化
炭素を昇温、昇圧してタービンを駆動することを特徴と
する低温地熱発電システム。
(1) A low-temperature geothermal power generation system that uses the thermal energy of low-temperature geothermal fluid to drive a turbine and generate electricity from a generator connected to the turbine, which uses carbon dioxide as a medium and uses low-temperature geothermal fluid to generate electricity. A low-temperature geothermal power generation system that uses contact to raise the temperature and pressure of carbon dioxide to drive a turbine.
(2)二酸化炭素を65℃、130kg/cm^2まで
昇温、昇圧することを特徴とする特許請求の範囲第1項
記載の低温地熱発電システム。
(2) The low-temperature geothermal power generation system according to claim 1, characterized in that carbon dioxide is heated and pressurized to 65° C. and 130 kg/cm^2.
JP8684485A 1985-04-23 1985-04-23 Low temperature geothermal power system Pending JPS61244880A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8684485A JPS61244880A (en) 1985-04-23 1985-04-23 Low temperature geothermal power system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8684485A JPS61244880A (en) 1985-04-23 1985-04-23 Low temperature geothermal power system

Publications (1)

Publication Number Publication Date
JPS61244880A true JPS61244880A (en) 1986-10-31

Family

ID=13898117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8684485A Pending JPS61244880A (en) 1985-04-23 1985-04-23 Low temperature geothermal power system

Country Status (1)

Country Link
JP (1) JPS61244880A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016098192A1 (en) * 2014-12-17 2016-06-23 三菱日立パワーシステムズ株式会社 Geothermal power generation system
RU177203U1 (en) * 2017-06-22 2018-02-13 Расим Наилович Ахмадиев Device for operating a geothermal well

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5133242A (en) * 1974-09-17 1976-03-22 Mitsubishi Heavy Ind Ltd FUKURYUBAINARISAIKURUDORYOKUPURANTO
JPS56148690A (en) * 1980-03-21 1981-11-18 Santi Giunio Guido Geothermal energy conversion system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5133242A (en) * 1974-09-17 1976-03-22 Mitsubishi Heavy Ind Ltd FUKURYUBAINARISAIKURUDORYOKUPURANTO
JPS56148690A (en) * 1980-03-21 1981-11-18 Santi Giunio Guido Geothermal energy conversion system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016098192A1 (en) * 2014-12-17 2016-06-23 三菱日立パワーシステムズ株式会社 Geothermal power generation system
RU177203U1 (en) * 2017-06-22 2018-02-13 Расим Наилович Ахмадиев Device for operating a geothermal well

Similar Documents

Publication Publication Date Title
KR101403798B1 (en) A method and system for generating power from a heat source
US6209307B1 (en) Thermodynamic process for generating work using absorption and regeneration
Xue et al. A review of cryogenic power generation cycles with liquefied natural gas cold energy utilization
Wang et al. A resorption cycle for the cogeneration of electricity and refrigeration
JPS6215731B2 (en)
WO2010065081A1 (en) Refrigerant mixtures for an organic rankine cycle drive
JPS61502829A (en) Utilization of thermal energy
CN109519243A (en) Supercritical CO2With ammonium hydroxide combined cycle system and electricity generation system
CN101929361B (en) Low-temperature power cycle system with absorber
CN101936274A (en) Thermal power generation system based on gas turbine circulation in solar energy regeneration reheating inter-cooling
JP2000204909A (en) Lng cryogenic power generation system
JPS6126832B2 (en)
CN111306835B (en) Ammonia water working medium combined cooling heating and power system utilizing medium-low temperature heat source and working method thereof
CN201943904U (en) Thermal power generating system using solar-energy return-heating, reheating and inter-cooling gas turbine circulation
JPS61244880A (en) Low temperature geothermal power system
CN105713576A (en) Rankine cycle mixing working medium of 1,1,1,3,3-pentafluoropropane and pentafluoroethane for diesel engine waste heat recovery and waste heat recovery method
Zheng et al. Chemical amplifier and energy utilization principles of heat conversion cycle systems
CN210239766U (en) Utilize natural working medium to retrieve LNG cold energy power generation's device
CN113882921A (en) Low-temperature circulating power generation system and method using carbon dioxide gas as working medium
CN205445703U (en) High pressure liquid ammonia pressure energy recovery system
US20070193271A1 (en) Methods of generating exergy
WO2023040188A1 (en) Zero-carbon cold power generator and power generation method therefor
JPS6312506B2 (en)
CN216240842U (en) Low-temperature circulating power generation system using carbon dioxide gas as working medium
Kim et al. Performance Analysis of Ammonia-Water Power Generation Cycle Utilizing LNG Cold Energy