JPS6124469B2 - - Google Patents

Info

Publication number
JPS6124469B2
JPS6124469B2 JP7593081A JP7593081A JPS6124469B2 JP S6124469 B2 JPS6124469 B2 JP S6124469B2 JP 7593081 A JP7593081 A JP 7593081A JP 7593081 A JP7593081 A JP 7593081A JP S6124469 B2 JPS6124469 B2 JP S6124469B2
Authority
JP
Japan
Prior art keywords
metal
metals
bridge
arc
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7593081A
Other languages
Japanese (ja)
Other versions
JPS57192263A (en
Inventor
Takeshi Sasamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP7593081A priority Critical patent/JPS57192263A/en
Publication of JPS57192263A publication Critical patent/JPS57192263A/en
Publication of JPS6124469B2 publication Critical patent/JPS6124469B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)

Description

【発明の詳細な説明】 本発明は第1の金属にこれと同種あるいは異種
の第2の金属を被覆する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of coating a first metal with a second metal of the same or different type.

従来、金属表面の腐蝕を防ぎまたはその一部ま
たは全表面の電気的、機械的或いは物性的な特性
を変えまたは改善する目的で一つの金属表面に同
種または異種の金属を被覆することは広く一般に
行われている。このような金属被覆方法としては
電解法により電解液中で金属のイオンを移動し他
の金属体表面に折出層を形成せしめる所謂電気メ
ツキ法が最も古くより行なわれている。一方、近
年においては一方の金属の蒸気中でそのイオンを
作り、このイオン流を他方の金属表面に投射して
金属層を形成させるイオンプレーテングおよび蒸
着など、さらにはアーク放電による金属イオンの
移動を利用した金属被覆方法が用いられる。
Conventionally, it has been common practice to coat a metal surface with the same or different metals for the purpose of preventing corrosion or changing or improving the electrical, mechanical, or physical properties of a part or all of the surface. It's being done. Among such metal coating methods, the so-called electroplating method, in which metal ions are moved in an electrolytic solution to form a deposited layer on the surface of another metal body, has been used for the longest time. On the other hand, in recent years, methods such as ion plating and vapor deposition, in which ions are created in the vapor of one metal and the ion stream is projected onto the surface of the other metal to form a metal layer, have also been developed, as well as the movement of metal ions by arc discharge. A metal coating method using

しかしながら、電解析出による電気メツキ法は
複雑な電解と析出の化学変化の機構を通して行わ
ねばならず、一般に金属材料の選択に大きな制限
が生ずるとともに、工業的にこれを行なうには電
解液の管理保全に多くの工程を要する場合が多
い。また、アーク放電を用いる放電加工法には、
両金属を両放電電極とする方法アーク放電によつ
て生ずる一方の金属の金属イオンを他方の金属表
面で固相金属化する方法の二種があるが、アーク
放電を利用するこれらの方法は高温においても酸
化しない僅かな金属を除いて大気中または酸素を
含む雰囲気中ではアークによる高熱のため酸化し
金属酸化物を被覆することになる。また酸化雰囲
気でなくても被覆すべき金属と高温で反応する雰
囲気中は、純粋の金属を被覆することが不可能で
あり設備の複雑化を免れ得ない。さらに、後者の
方法において被覆される金属表面の温度が低いと
きは被覆すべき金属表面にて両金属が拡散し難く
なり密着性の低下を招く。一方、前者の方法では
アークによつて被覆される金属のアークスポツト
近傍の広い面積が高温になるため一般に両金属が
互いに拡散する程度が著しく、被覆層が薄いとき
は被覆される金属が多く被覆後の表面に残存する
ことがある。
However, the electroplating method using electrolytic deposition must be carried out through a complicated mechanism of chemical changes during electrolysis and deposition, which generally imposes large restrictions on the selection of metal materials, and in order to carry out this process industrially, it is difficult to control the electrolyte. Maintenance often requires many steps. In addition, electric discharge machining methods using arc discharge include:
There are two methods: a method in which both metals are used as both discharge electrodes, and a method in which the metal ions of one metal generated by arc discharge are solid-phase metallized on the surface of the other metal. Except for a few metals that do not oxidize, they will oxidize in the air or in an atmosphere containing oxygen due to the high heat generated by the arc, and will be coated with metal oxides. Furthermore, even if the atmosphere is not an oxidizing atmosphere, it is impossible to coat pure metal in an atmosphere that reacts with the metal to be coated at high temperatures, which inevitably complicates the equipment. Furthermore, in the latter method, when the temperature of the metal surface to be coated is low, it becomes difficult for both metals to diffuse on the metal surface to be coated, resulting in a decrease in adhesion. On the other hand, in the former method, a large area near the arc spot of the metal coated by the arc becomes high temperature, so generally the two metals diffuse to each other to a remarkable extent, and when the coating layer is thin, a large amount of the metal coated is coated. May remain on subsequent surfaces.

本発明の目的は、一般に広い種類の金属間に適
用できる上に、大気中においても容易に且つ高密
着力をもつて高純度の金属被覆を成すことができ
る金属被覆方法を提供することにある。
An object of the present invention is to provide a metal coating method that is generally applicable to a wide variety of metals and can easily form a high-purity metal coating with high adhesion even in the atmosphere.

本発明の金属被覆方法は、接触状態にある第1
および第2の金属間に通電しながら前記両金属を
漸次開離させて溶融金属ブリツジを形成する工程
と、前記両金属間の電圧が少なくとも一方の金属
が溶融する電圧以上でかつ最小アーク電圧以下に
おいて前記ブリツジを切断して前記第1および第
2の金属のうちの一方の金属を他方の金属に転移
させて被覆する工程とを有することを特徴とす
る。
The metal coating method of the present invention provides a first
and forming a molten metal bridge by gradually separating the two metals while passing electricity between the second metals, and the voltage between the two metals is at least a voltage at which at least one of the metals melts and at least a minimum arc voltage. The method further comprises the step of cutting the bridge and transferring one of the first and second metals to the other metal for coating.

以下、本発明の実施例について図面を参照して
説明する。
Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明による金属被覆方法の一実施例
を示す工程図である。また、第2図は第1図に示
す第1および第2金属間に印加される電流の時間
的変化と両金属間に生じる電圧降下との関係を示
す波形図であり、電圧a〜dは第1図の工程イ〜
ニにそれぞれ対応する。なお、第2図において、
Vmは溶融電圧を、且つVcは最小アーク電圧を示
す。
FIG. 1 is a process diagram showing an embodiment of the metal coating method according to the present invention. Moreover, FIG. 2 is a waveform diagram showing the relationship between the temporal change in the current applied between the first and second metals shown in FIG. 1 and the voltage drop occurring between the two metals, and the voltages a to d are Process I in Figure 1
Each corresponds to d. In addition, in Figure 2,
Vm indicates the melting voltage and Vc indicates the minimum arc voltage.

両図を参照すると、第1図の工程イは第1の金
属1と第2の金属2とが接触している初期状態を
示す。
Referring to both figures, step A in FIG. 1 shows an initial state in which the first metal 1 and the second metal 2 are in contact.

この状態で矢印A方向すなわち第2の金属2よ
り第1の金属1に電流を流し始めるとともに工程
ロ、ハと次第に両金属間の相対位置を移動させて
行く。両金属間隙の増大過程においてその接触要
積が十分小さくなると接触面の電気抵抗が増大す
るとともに、電流がその狭い面積に集中するため
ジユール熱が生じる。これにより両金属が溶融を
始め工程ロに示すように溶融金属による橋絡(ブ
リツジ)4を作る。この状態において電流が減少
しなければ両金属間の円筒状の溶融金属ブリツジ
4部分におけるジユール熱が増大し、両者の溶融
がさらに増して工程ハに示すように両金属間によ
り大きいブリツジ4を作る。続いて、このブリツ
ジ4部分の構造を拡大して示した第3図を併用し
て第1図の工程ニへの遷移すなわちブリツジ4が
切断するとき第2の金属2の一部が第1の金属1
の表面に移動(転移)する機構について説明す
る。第3図の直線3−4および直線5−6で示さ
れる第2および第1の金属表面間に生ずる直円筒
のブリツジ1−5−6−2で発生する熱は両金属
に伝導し両金属の半球状溶融部3−11−4およ
び5−12−6を形成する。この溶融部分の大き
さは熱電効果によつて両金属において相異する。
一般には陽極となつている第2の金属への熱量は
陰極となつている第1の金属に伝導する熱量より
も大きいので、第2の金属ブリツジ端近傍の熱伝
導度および温度が第1の金属のそれらと等しいか
大きい場合は第2の金属の溶融部3−11−4の
容積が第1の金属の溶融部分5−12−6よりも
大きくなり、ブリツジに供給される溶融金属はほ
ぼ両溶融部分の容積に比例すると考えられ、両金
属よりブリツジに流入する溶融金属の境界面9−
10はブリツジ軸11−12と垂直のブリツジの
中央より第1の金属に近い面に生ずる。
In this state, current begins to flow in the direction of arrow A, that is, from the second metal 2 to the first metal 1, and the relative position between the two metals is gradually moved in steps B and C. When the contact area becomes sufficiently small in the process of increasing the gap between the two metals, the electrical resistance of the contact surface increases and current is concentrated in that narrow area, resulting in Joule heat. As a result, both metals begin to melt and a bridge 4 is formed by the molten metal as shown in step B. If the current does not decrease in this state, the joule heat in the cylindrical molten metal bridge 4 between the two metals will increase, and the melting of both will further increase, creating a larger bridge 4 between the two metals, as shown in step C. . Next, using FIG. 3, which shows an enlarged view of the structure of the bridge 4, we will explain the transition to step 2 in FIG. metal 1
The mechanism of movement (transfer) to the surface of The heat generated in the right cylindrical bridge 1-5-6-2 between the second and first metal surfaces, indicated by straight lines 3-4 and 5-6 in FIG. 3, is conducted to both metals. Hemispherical melted parts 3-11-4 and 5-12-6 are formed. The size of this melted portion differs in both metals due to the thermoelectric effect.
Generally, the amount of heat transferred to the second metal serving as the anode is greater than the amount of heat conducted to the first metal serving as the cathode, so the thermal conductivity and temperature near the end of the second metal bridge are lower than those of the first metal. If the volume of the second metal molten part 3-11-4 is equal to or larger than that of the first metal molten part 5-12-6, the molten metal supplied to the bridge is approximately The boundary surface 9- of molten metal flowing into the bridge from both metals is considered to be proportional to the volume of both molten parts.
10 occurs on a surface closer to the first metal than the center of the bridge perpendicular to the bridge axis 11-12.

一方、ブリツジ内の温度分布は二次曲線状とな
り、その最高温度はブリツジ中央より第2の金属
に近い面7−8に生ずる。ブリツジが長くなるに
従つてブリツジの温度が高くなりブリツジの表面
張力が零に近づく臨界温度になるとブリツジは最
高温度面7−8にて切断することとなる。ここ
で、ブリツジ最高温度、面7−8および溶融金属
界面9−10に区切られたブリツジ部分の金属は
第2の金属より供給されたものであり、ブリツジ
が面7−8にて切断するとこの部分の第2の金属
が第1の表面上に転移することとなる。通常、ブ
リツジによる転移はこのようにブリツジが切断す
ることによつて生じ、その量は印加される電流の
3乗に比例する。
On the other hand, the temperature distribution within the bridge is quadratic, with the highest temperature occurring at the surface 7-8 closer to the second metal than the center of the bridge. As the bridge becomes longer, the temperature of the bridge increases, and when the bridge reaches a critical temperature at which the surface tension of the bridge approaches zero, the bridge will break at the highest temperature surface 7-8. Here, the metal in the bridge portion separated by the bridge maximum temperature, plane 7-8 and molten metal interface 9-10 is supplied from the second metal, and when the bridge is cut at plane 7-8, this metal is The second metal of the portion will be transferred onto the first surface. Normally, bridge transfer is caused by this bridge cutting, and the amount thereof is proportional to the third power of the applied current.

さて、溶融金属ブリツジが切断した後、第1お
よび第2の金属間の電圧降下が増大し第2の金属
の最小アーク電圧に違するときは両金属間にアー
クが発生する。アークが発生すると両金属相互に
て溶融の転移が生じ、その量はアーク時間に比例
するアークエネルギに比例する。アークによる転
移の方向はアークの長さ、すなわち、両金属の間
隙によつて決まる。両金属表面上の端におけるア
ーク温度はブリツジ端の温度の2倍を超える。
Now, after the molten metal bridge breaks, an arc will occur between the first and second metals if the voltage drop between the first and second metals increases and the minimum arcing voltage of the second metal is exceeded. When an arc occurs, a melting transition occurs between the two metals, and the amount thereof is proportional to the arc energy, which is proportional to the arc time. The direction of transition due to the arc is determined by the length of the arc, ie, the gap between the two metals. The arc temperature at the ends on both metal surfaces is more than twice the temperature at the bridge end.

以上説明したように本発明よれば、ブリツジは
それが切断するときもその電圧降下が数V以下で
ありまた、電流が増大するにつれて電流密度は小
さくなりブリツジ端周辺の温度上昇もアーク放電
と比し小さいので、両金属表面の酸化を抑制でき
酸化し易い金属でも不活性ガスの雰囲気を必要と
せず大気中で容易に被覆することができる。ま
た、両金属間隔当りの1回の転移量は電流の3乗
に比例するので、ブリツジが切断するときの電流
値を大きくすることにより例えば電流を2倍とす
ると転移量は8倍となり電流効率を大きくとれ
る。さらに、金属転移量は両金属内の溶融部分の
容積差に比例して大きくなるので電気回路を一定
にしておいても一方の金属を加熱することによつ
てさらに転移量を増加させたりあるいは減少させ
たりすることも可能である。
As explained above, according to the present invention, even when the bridge is cut, the voltage drop is less than a few volts, and as the current increases, the current density decreases, and the temperature rise around the bridge end is also comparable to arc discharge. Because of its small size, oxidation of both metal surfaces can be suppressed, and even metals that are easily oxidized can be easily coated in the atmosphere without the need for an inert gas atmosphere. In addition, since the amount of transfer at one time per gap between both metals is proportional to the cube of the current, if the current value when the bridge is cut is increased, for example, if the current is doubled, the amount of transfer will be eight times, and the current efficiency will be You can get a large amount of Furthermore, the amount of metal transfer increases in proportion to the difference in volume between the molten parts of both metals, so even if the electric circuit is kept constant, heating one metal can further increase or decrease the amount of transfer. It is also possible to do so.

なお、上述した実施例においては、第1および
第2の金属の一回の開離について検討したが、一
方の金属の広い面積に及んで金属を被覆する場合
には両金属の接触点の位置を順次所要面全体に移
動して行えばよい。また、一方の金属の一部分に
例えば半球状の接点を作成する場合など、局部的
に厚い金属被覆を施すには多数回の転移の累積に
より行なえる。
In the above-mentioned embodiments, one separation of the first and second metals was considered, but when covering a large area of one metal, the position of the contact point of both metals may be changed. This can be done by sequentially moving to the entire required surface. Furthermore, locally thick metal coatings can be applied by accumulating a large number of transfers, such as when creating a hemispherical contact on a portion of one metal.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による金属被覆方法の一実施例
を示す工程図、第2図は第1図に示す第1および
第2の金属に印加される電流の時間的変化と両金
属間に生じる電圧降下との関係を示す波形図、お
よび第3図は溶融金属ブリツジの構成図である。 1……第1の金属、2……第2の金属、3……
接触点、4……溶融金属ブリツジ。
FIG. 1 is a process diagram showing an embodiment of the metal coating method according to the present invention, and FIG. 2 is a diagram showing temporal changes in the current applied to the first and second metals shown in FIG. 1 and the current generated between the two metals. A waveform diagram showing the relationship with voltage drop, and FIG. 3 is a configuration diagram of a molten metal bridge. 1...first metal, 2...second metal, 3...
Contact point, 4... Molten metal bridge.

Claims (1)

【特許請求の範囲】[Claims] 1 接触状態にある第1および第2の金属間に通
電しながら前記両金属を漸次開離させて溶融金属
ブリツジを形成する工程と、前記両金属間の電圧
が少なくとも一方の金属が溶融する電圧以上でか
つ最少アーク電圧以下において前記ブリツジを切
断して前記第1および第2の金属のうちの一方の
金属を他方の金属に転移させて被覆する工程とを
有することを特徴とする金属被覆方法。
1. Step of forming a molten metal bridge by gradually separating the first and second metals while passing current between the first and second metals in contact, and the voltage between the two metals being a voltage at which at least one of the metals melts. A metal coating method characterized by comprising the step of cutting the bridge at the above and below the minimum arc voltage and transferring one of the first and second metals to the other metal for coating. .
JP7593081A 1981-05-20 1981-05-20 Method of coating metal Granted JPS57192263A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7593081A JPS57192263A (en) 1981-05-20 1981-05-20 Method of coating metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7593081A JPS57192263A (en) 1981-05-20 1981-05-20 Method of coating metal

Publications (2)

Publication Number Publication Date
JPS57192263A JPS57192263A (en) 1982-11-26
JPS6124469B2 true JPS6124469B2 (en) 1986-06-11

Family

ID=13590470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7593081A Granted JPS57192263A (en) 1981-05-20 1981-05-20 Method of coating metal

Country Status (1)

Country Link
JP (1) JPS57192263A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69120658T2 (en) * 1990-11-24 1996-10-31 Renishaw Plc KEY PROBE

Also Published As

Publication number Publication date
JPS57192263A (en) 1982-11-26

Similar Documents

Publication Publication Date Title
US6455108B1 (en) Method for preparation of a thermal spray coated substrate for use in an electrical energy storage device
US20020139662A1 (en) Thin-film deposition of low conductivity targets using cathodic ARC plasma process
EP0147170A2 (en) Film resistor heater
EP0182560A2 (en) Semi-transferred arc in a liquid stabilized plasma generator and method for utilizing the same
Frey et al. Metallurgical aspects of contact materials for vacuum switching devices
SU1069611A3 (en) Tool electrode for electrical discharge cutting
KR920010091B1 (en) Clad precious metal bushing
US2576405A (en) Protector for electric circuits
US5857888A (en) Method of manufacturing a plasma torch eletrode
JPS6124469B2 (en)
ZA200502206B (en) Method for obtaining a good contact surface on an electrolysis cell busbar and busbar.
WO2001043506A1 (en) A method of producing electrically resistive heating elements composed of semi-conductive metal oxides and resistive elements so produced
Sun et al. The model of interaction between arc and AgMeO contact materials
KR101076633B1 (en) Method for the formation of a good contact surface on an aluminium support bar and a support bar
US3588405A (en) Arc chute having arc runners coated with thermally sprayed refractory metal
US3310433A (en) Ceramic article coated with silver containing oxygen and method of making same
JPH0719075Y2 (en) Substrate type thermal fuse
CN101372743A (en) Ultralong service-life electric soldering iron welding nozzle fabrication technique
JPH1050184A (en) Chip fuse element
JPH09148094A (en) Plasma spraying torch
Chen et al. Polarity effect of unsymmetrical material combination on the arc erosion and contact resistance behavior
US4701933A (en) Method of supplying heat energy to a metal melt or the like and a heating element for use with said method
SU1381614A1 (en) Contact coating for magnetocontrolled contacts
JPH0192026A (en) Electric discharge machining method for insulating material
JPS58142505A (en) Overload fusion resistor