JPS61244535A - Manufacture of grid structure - Google Patents

Manufacture of grid structure

Info

Publication number
JPS61244535A
JPS61244535A JP60086231A JP8623185A JPS61244535A JP S61244535 A JPS61244535 A JP S61244535A JP 60086231 A JP60086231 A JP 60086231A JP 8623185 A JP8623185 A JP 8623185A JP S61244535 A JPS61244535 A JP S61244535A
Authority
JP
Japan
Prior art keywords
grid structure
frame
crosspiece
prepregs
prepreg
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60086231A
Other languages
Japanese (ja)
Other versions
JPH0441889B2 (en
Inventor
Takao Endo
孝夫 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP60086231A priority Critical patent/JPS61244535A/en
Publication of JPS61244535A publication Critical patent/JPS61244535A/en
Publication of JPH0441889B2 publication Critical patent/JPH0441889B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D28/00Producing nets or the like, e.g. meshes, lattices

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

PURPOSE:To obtain a gird structure having an adequate strength by laminating various prepregs in one bottom force of a die, pressing the prepregs into a shape with the other top force, and forming a grid structure through curing process applied to the prepregs. CONSTITUTION:Prepregs B1 for linkage corresponding to a connexion, a frame and a crosspiece are arranged in a circumferential direction so that they may be laid in each groove 11a, 11b. Prepregs B3 for linkage corresponding to the connexion and part of the crosspiece, and prepregs A1 for the frame cut to a proper size are laminated. Processes following these two processes are alternately carried out several times. The fiber direction of the frame 101 is divided into a circumferential direction of the frame 101 and a direction at right angles with the former. In addition, the layer of the flange 101a integrally formed is formed in a state that it is overlapped with almost an axial direction of said grid structure G. Thus an adquate strength can be obtained against a load in a compression direction and also a load in a tensile direction.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) この発明は、繊維強化プラスチック製のグリッド構造体
の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a method for manufacturing a grid structure made of fiber-reinforced plastic.

(従来の技術) 一般に、繊維強化プラスチック(FRP)製のグリッド
構造体としては、例えば第10図に示すようなものがあ
る。
(Prior Art) Generally, as a grid structure made of fiber reinforced plastic (FRP), there is one shown in FIG. 10, for example.

すなわち、図に示す筒状の三角グリッド構造体Gは、二
つのリング状枠部101,101の間に多数の桟部10
2から成るグリッドを設けたものであって、人工衛星の
中核構造体やロケットの最上段部におけるキックモータ
と下段のロケットモータとの接手として用いられており
、材質としては、特に、炭素繊維を用いた繊維強化プラ
スチック(CFRP)が適用されている。
That is, the cylindrical triangular grid structure G shown in the figure has a large number of crosspieces 10 between two ring-shaped frames 101, 101.
It is used as a joint between the kick motor in the core structure of a satellite or the top stage of a rocket and the lower rocket motor, and is made of carbon fiber. Fiber-reinforced plastic (CFRP) is used.

そして、従来における上記のグリッド構造体Gの製造は
、フィラメントワインディング法に基づいて行っていた
。これは、円筒状コアの外周に、着脱可能な治具を用い
てグリッド構造体Gの形状に対応する溝を形成し、回転
する前記コアの溝に、樹脂を含浸した連続する炭素繊維
フィラメントを一定の張力をかけながら巻き付けるもの
である。また、巻き付けが終了した後には、初期の熱硬
化処理を施し、そののち、治具を外して硬化したグリッ
ド構造体を取外す。なお、フィラメントワインディング
法による製造方法の具体的な例としては、例えば特開昭
57−178830号公報などが知られている。
The above-mentioned grid structure G has conventionally been manufactured based on a filament winding method. This involves forming a groove corresponding to the shape of the grid structure G on the outer periphery of a cylindrical core using a removable jig, and inserting continuous resin-impregnated carbon fiber filaments into the groove of the rotating core. It is wrapped while applying a constant tension. Further, after winding is completed, an initial heat curing treatment is performed, and then the jig is removed and the hardened grid structure is removed. In addition, as a specific example of the manufacturing method using the filament winding method, for example, Japanese Patent Application Laid-open No. 178830/1983 is known.

(発明が解決しようとする問題点) しかしながら、」−記したようなグリッド構造体の製造
方法にあっては、連続する炭素繊維フィラメントを順次
巻き伺ける方法であるため、第11図にコアの一部を示
すように、桟部用溝103から枠部用溝104へ巻き伺
けたフィラメン)Fと、枠部用溝104から他の桟部用
溝103へ巻き付けたフィラメンl−Fとの間に繊維が
疎の状態になる部分105aが生じ、他方ではフィラメ
ントFの交差部分105bが生じるので、繊維の含有率
が部分的に著しく異なって強度的に好ましくないという
問題があり、さらに、部分的な補強を行うことができな
いという問題点があった。また、グリッド構造体の枠部
101には、第12図に示すように、他の構造物との連
結に用いるクランプバンドやポルト・ナツト等を取付け
るためのフランジ部101aが形成されることが多いが
、上記したように繊維が疎の状態になる部分105aが
生じるのに加えて当該枠部101におけるフィラメント
Fの繊維方向がすべて円周方向となるため、特にフラン
ジ部101a付近の引張荷重に対する強度が低下すると
いう問題があった。
(Problems to be Solved by the Invention) However, in the method for manufacturing a grid structure as described in "-", since the method involves winding continuous carbon fiber filaments one after another, the core shown in FIG. As shown in part, between the filament F wound from the crosspiece groove 103 to the frame groove 104 and the filament L-F wound from the frame groove 104 to another crosspiece groove 103. On the other hand, a portion 105a where the fibers are sparse is created, and on the other hand, a crossing portion 105b of the filaments F is created, so there is a problem that the fiber content differs significantly in some parts, which is unfavorable in terms of strength. There was a problem in that it was not possible to provide proper reinforcement. Furthermore, as shown in FIG. 12, the frame 101 of the grid structure is often provided with a flange 101a for attaching a clamp band, port/nut, etc. used for connection with other structures. However, as described above, in addition to the portion 105a where the fibers are sparse, the fiber direction of the filaments F in the frame portion 101 is all circumferential, so the strength against tensile load is particularly low near the flange portion 101a. There was a problem that the

この発明は、」二重の諸問題点に着目して成されたもの
で、部分的な繊維の疎密化、部分的な補強不可能および
引張荷重に対する強度不足等の問題を解消し、全体的に
充分な強度を備えたグリッド構造体を得ることができる
グリッド構造体の製造方法を提供することを目的として
いる。
This invention was made by focusing on the two-fold problem, and solves the problems such as partial fiber sparsity, partial inability to reinforce, and lack of strength against tensile loads, and improves overall fiber density. It is an object of the present invention to provide a method for manufacturing a grid structure that can obtain a grid structure having sufficient strength.

「発明の構成」 (問題点を解決するだめの手段) この発明によるグリッド構造体の製造方法を第1図に基
づいて説明すると、m維強化プラスチック製のグリッド
構造体を製造するに際し、工程1において、一定の繊維
方向を有し珪っグリ・ンド構造体の枠部、桟部および枠
部と桟部との連結部等の夫々の部分に対応する各種のプ
リプレグ材を一方の型に積層したのち、工程2において
、他方の型で前記プリプレグ材を押圧整形し、次いで工
程3において、前記プリプレグ材に硬化処理を施してグ
リッド構造体を形成することを特徴としている。また、
上記のプリプレグ材は、炭素#li維フィラメント等の
繊維束を一定の繊維方向で布状にし、これに硬化剤や充
填材などを混合した熱硬化性樹脂を含浸させて乾燥した
ものであり、上記構成の場合、積層時に部位の異なるプ
リプレグ材同士の継目が重なることを防ぐため、一つの
部分に対応するプリプレグ材に寸法の異なるものをいく
つか用いることがより望ましい。
"Structure of the Invention" (Means for Solving Problems) The method for manufacturing a grid structure according to the present invention will be explained based on FIG. In this method, various prepreg materials having a certain fiber direction and corresponding to each part of the silica grid structure, such as the frame, the crosspiece, and the connection between the frame and the crosspiece, are laminated in one mold. Thereafter, in step 2, the prepreg material is pressed and shaped using the other mold, and then in step 3, the prepreg material is subjected to a curing treatment to form a grid structure. Also,
The above prepreg material is made by forming fiber bundles such as carbon #li fiber filaments into a cloth shape in a certain fiber direction, impregnating this with a thermosetting resin mixed with a hardening agent and filler, and drying it. In the case of the above structure, in order to prevent the seams of prepreg materials in different parts from overlapping during lamination, it is more desirable to use several prepreg materials with different sizes for one part.

(実施例) 以下、この発明を図面に基づいて説明する。(Example) The present invention will be explained below based on the drawings.

第2図および第3図は、この発明によるグリッド構造体
の製造方法の一実施例に用いる装置を説明する図である
FIGS. 2 and 3 are diagrams illustrating an apparatus used in an embodiment of the method for manufacturing a grid structure according to the present invention.

すなわち、図中の装置は筒状の三角グリッド構造体(第
10図参照)を製造するのに用いるものであって、符号
5は、円筒状を成し且つ軸6で回転可能に保持されたコ
アであり、このコア5の外周に、グリッド構造体の形状
に対応する一方の型としての雌型が形成しである。また
、雌型を形成するにあたっては、コア5に、分割可能な
円筒部材7を間にして二つのリング8,8を嵌装すると
共に、前記円筒部材7の表面に、多数の三角形の治具9
を夫々ボルト10で固定することにより、リング8と治
具9どの間にグリッド構造体の枠部に対応する枠部用溝
11aを形成し、各治具9の間にグリッド構造体の桟部
に対応する桟部用溝11bを形成している さらに、各リング8には、当該リング8との間でフラン
ジ付の枠部を形成する他方の型としての枠部用雄型12
(図には一部を示す)がポル)・12aで着脱可能に設
けてあり、各冶具9の外周側には、当該治具9および円
筒部材7との間で桟部を形成する同しく他方の型として
の桟部用雄型13(図には一部を示す)が着脱可能に設
けである。なお、前記桟部用雄型13は、各治具9との
間にスペーサ14を介装するとともに前記治具9を貫通
して円筒部材7にねじ込まれるポルト13aで取伺ける
ようになっており、各雄型12.13は、いくつかに分
割されている。
That is, the device shown in the figure is used to manufacture a cylindrical triangular grid structure (see FIG. 10), and reference numeral 5 denotes a device having a cylindrical shape and rotatably held by a shaft 6. A female mold is formed on the outer periphery of the core 5 as one mold corresponding to the shape of the grid structure. Furthermore, in forming the female mold, two rings 8, 8 are fitted onto the core 5 with a splittable cylindrical member 7 in between, and a large number of triangular jigs are placed on the surface of the cylindrical member 7. 9
By fixing them with bolts 10, respectively, a frame groove 11a corresponding to the frame of the grid structure is formed between the ring 8 and the jig 9, and a crosspiece of the grid structure is formed between each jig 9. Further, each ring 8 has a male frame part 12 as the other mold which forms a frame part with a flange between it and the ring 8.
(part of which is shown in the figure) is removably provided with a pole) 12a, and on the outer circumferential side of each jig 9, there is a same plate that forms a crosspiece between the jig 9 and the cylindrical member 7. A male mold 13 (partially shown in the figure) for the crosspiece as the other mold is removably provided. The male die 13 for the crosspiece can be accessed by a port 13a which is inserted through the jig 9 and screwed into the cylindrical member 7, with a spacer 14 interposed between it and each jig 9. Each male mold 12, 13 is divided into several parts.

第4図(a)〜(h)は、プリプレグ材の種類を説明す
る図である。
FIGS. 4(a) to 4(h) are diagrams for explaining types of prepreg materials.

プリプレグ材は、一定の繊維方向を有する炭素繊維のマ
ットに熱硬化性樹脂を含浸させて乾燥したものであり、
大別すると、枠部用プリプレグ材A、枠部と桟部との連
結部付近に用いる連結部用プリプレグ材B、および桟部
用プリプレグ材Cに分けられている。
Prepreg material is made by impregnating a carbon fiber mat with a certain fiber direction with a thermosetting resin and drying it.
Broadly speaking, they are divided into prepreg material A for the frame portion, prepreg material B for the connecting portion used near the connecting portion between the frame portion and the crosspiece portion, and prepreg material C for the crosspiece portion.

枠部用プリプレグ材Aは、枠部の円周方向に沿った繊維
方向を有しており、第4図(a)に示すように枠部だけ
に対応するプリプレグ材A1と、第4図(b)に示すよ
うに枠部および連結部の一部に対応するプリプレグ材A
2とがあり、適宜の寸法に切断して用いることもある。
The prepreg material A for the frame has a fiber direction along the circumferential direction of the frame, and as shown in FIG. 4(a), there is a prepreg material A1 corresponding only to the frame, and a As shown in b), prepreg material A corresponding to a part of the frame part and the connecting part
2, and may be cut into appropriate dimensions for use.

連結部用プリプレグ材Bは、グリッド構造体の軸方向に
沿った繊維方向を有しており、第4図(c)(d)に示
すように連結部と枠部および桟部の一部とに対応するプ
リプレグ材Bl、B2、第4図(e)に示すように連結
部と桟部の一部とに対応するプリプレグ材B3、連結部
の一部に対応するプリプレグ材B4、第4図(f)に示
すように連結部および枠部の一部に対応するプリプレグ
材B5などがある。なお、連結部用プリプレグ材Bは、
例えば連結部と桟部および枠部の一部とに対応するプリ
プレグ材Bl、B2で形態が類似していても、枠部に対
応する部分を相反する方向にずらせたものや、桟部に対
応する長さ寸法文(第4図(d)に示す)を異ならせた
ものなど数種類のプリプレグ材がある。
The prepreg material B for the connection part has a fiber direction along the axial direction of the grid structure, and as shown in FIGS. As shown in FIG. 4(e), prepreg materials B1 and B2 correspond to the connecting portion and a part of the crosspiece, prepreg material B3 corresponds to a part of the connecting portion, prepreg material B4 corresponds to a part of the connecting portion, as shown in FIG. As shown in (f), there is a prepreg material B5 corresponding to a part of the connecting part and the frame part. In addition, the prepreg material B for the connecting part is
For example, even if the prepreg materials Bl and B2 corresponding to the connecting part, the crosspiece, and a part of the frame are similar in form, the parts corresponding to the frame may be shifted in opposite directions, or the prepreg materials corresponding to the crosspiece may be similar. There are several types of prepreg materials, including those with different length dimensions (shown in FIG. 4(d)).

桟部用プリプレグ材Cは、主に長手方向に沿った繊維方
向を有する帯状を成しており、第4図(g)(h)に示
すように、適宜の長さに切断された各種プリプレグ材0
1〜C4がある。また、桟部用プリプレグ材Cには、第
4図(e)(f)に示すように、連結部の一部にも対応
するプリプレグ材C5,CBもあり、このプリプレグ材
C5,C6は、連結部における繊維方向が軸方向と一致
するように端部を屈曲させている。なお。
The prepreg material C for the crosspiece has a strip shape with the fiber direction mainly along the longitudinal direction, and as shown in FIGS. 4(g) and (h), various prepreg materials are cut into appropriate lengths. Material 0
There are 1 to C4. In addition, as shown in FIGS. 4(e) and 4(f), the prepreg materials C for the crosspieces include prepreg materials C5 and CB that also correspond to a part of the connecting portion, and these prepreg materials C5 and C6 are The end portions are bent so that the fiber direction at the connecting portion coincides with the axial direction. In addition.

七記各桟部用プリプレグ材01〜C6は、連結部用プリ
プレグ材Bの寸法などに応じて長さを設定することがで
き、図示からも明らかなように、切断寸法によっては連
結部用プリプレグ材Bとして用いることもできる。
The length of each of the prepreg materials 01 to C6 for the crosspieces described in Section 7 can be set depending on the dimensions of the prepreg material B for the connecting portion, and as is clear from the illustration, the prepreg material for the connecting portion may vary depending on the cutting dimensions. It can also be used as material B.

第5図(a)〜(q)および第6図は、上記各プリプレ
グ材A、B、Cの積層工程の一例を説明する図である。
FIGS. 5(a) to 5(q) and FIG. 6 are diagrams illustrating an example of the lamination process of the prepreg materials A, B, and C.

なお、各図中における符号9はコア5(第2図参照)に
固定した治具、11aは雌型となる枠部用溝、llbは
同じく雌型となる桟部用溝である。
In each figure, the reference numeral 9 is a jig fixed to the core 5 (see FIG. 2), 11a is a groove for a frame portion which is a female type, and llb is a groove for a crosspiece portion which is also a female type.

まず、第5図(a)〜(i)および第6図に示すように
、初めに、連結部と枠部および桟部の一部とに対応する
連結部用プリプレグ材Blを円周方向に並べて各溝11
a、llb内に敷設したのち、連結部および桟部の一部
に対応する連結部用プリプレグ材B3と、適宜の寸法に
切断した枠部用プリプレグ材AIとを積層し、上記の二
工程を以下数回にわたって交互に行う。このとき、枠部
の一部にも対応する連結部用プリプレグ材Bは、第5図
(a)(c)(e)(g)(+)に示すように、枠部に
対応する部分が相反する方向にずれているプリプレグ材
Bl、B2を交互1こ用いており、全体を通して見ると
、連結部用プリプレグ材Bにおける桟部に対応する部分
が徐々に短くなっている。
First, as shown in FIGS. 5(a) to (i) and FIG. Line up each groove 11
After laying the prepreg material B3 for the connecting portion corresponding to the connecting portion and a part of the crosspiece, and the prepreg material AI for the frame portion cut into appropriate dimensions, the above two steps are carried out. Do this alternately several times. At this time, as shown in FIG. Prepreg materials Bl and B2 shifted in opposite directions are used alternately, and when viewed as a whole, the portions of the prepreg material B for the connecting portion corresponding to the crosspieces become gradually shorter.

次に、第5図(D〜(q)同じく第6図に示すように、
枠部用プリプレグ材Al、A2、連結部用プリプレグ材
B1〜B5および桟部用プリプレグ材01〜C6を適宜
に組合わせて積層を行う。このときにも、枠部に対応す
る部分が相反する方向にずれている連結部用プリプレグ
材Bl。
Next, as shown in FIG. 5 (D to (q)) and also in FIG. 6,
The prepreg materials Al and A2 for frame portions, the prepreg materials B1 to B5 for connecting portions, and the prepreg materials 01 to C6 for crosspiece portions are appropriately combined and laminated. At this time as well, the prepreg material Bl for the connecting portion has portions corresponding to the frame shifted in opposite directions.

B2(第5図(立)(P)参照)を交互に用い、さらに
、両側の連結部に至る桟部用プリプレグ材C5,C6(
第5図(j)  (k)  (n)  (o)参照)の
積層順序を交互に変化させるようにしている。つまり、
]−述したように、部分的に寸法が異なるプリプレグ材
を順次積層すれば、部位の異なるプリプレグ材同士の継
目が一箇所に集中するのを防ぐことができる。
B2 (see Fig. 5 (vertical) (P)) is used alternately, and prepreg materials C5 and C6 (
The stacking order (see FIGS. 5(j), (k), (n), and (o)) is alternately changed. In other words,
] - As described above, by sequentially laminating prepreg materials having partially different dimensions, it is possible to prevent the joints between the prepreg materials in different parts from concentrating in one place.

なお、上記の工程において枠部に積層していく際には、
フランジ部を形成しうるように各プリプレグ材の縁を折
り上げるようにして積層し、フランジ部における層をグ
リッド構造体の軸方向に重なった状態に形成する。
In addition, when laminating on the frame in the above process,
The edges of each prepreg material are folded up and laminated to form a flange portion, and the layers in the flange portion are formed to overlap in the axial direction of the grid structure.

そして、以上の積層工程を数回繰返して全積層工程を行
い、こののち、枠部用雄型12および桟部用雄型13(
第2図および第3図参照)を夫々取付けて各ポルト12
a、13aの締め(=1けにより積層したプリプレグ材
を押圧整形し、次いでこの状態のままで初期の熱硬化処
理を施す。さらに、プリプレグ材が硬化したのちには、
各雄型12.13の取外しに続いてリング8および治具
9を取外し、グリッド構造体を円筒部材7とともにコア
5から抜き出したのち、前記円筒部材7を分解してグリ
ッド構造体を得る。
Then, the above lamination process is repeated several times to complete the entire lamination process, and then the frame male mold 12 and the crosspiece male mold 13 (
(See Figures 2 and 3) and attach each port 12.
a. Press and shape the laminated prepreg material by tightening 13a (= 1 digit), then perform an initial heat curing treatment in this state.Furthermore, after the prepreg material has hardened,
Following the removal of each male die 12, 13, the ring 8 and jig 9 are removed, and the grid structure is extracted from the core 5 together with the cylindrical member 7, and then the cylindrical member 7 is disassembled to obtain the grid structure.

このようにして形成されたグリッド構造体Gは、第7図
に示すように、とくに枠部101における繊維方向が、
枠部101の円周方向とこれに直交する方向との二方向
になり、しかも一体成形されたフランジ部101aの層
が当該グリッド構造体Gの略軸方向に重なった状態で形
成されるため、圧縮方向の荷重には当然のことながら引
張力向の荷重に対しても充分な強度を得ることができる
。また、当該グリッド構造体Gは、プリプレグ材だけで
一体に成形することから、他の構造物との結合部、例え
ばポルトの取伺孔106などを任意の位置に精度良く設
けることができ、この際、ポルト取イ1けの都合によっ
てフランジ部101aの内側に同質部材から成るボス部
材107を設けることもある。
In the grid structure G thus formed, as shown in FIG. 7, the fiber direction in the frame portion 101 is
Since the layers of the flange portion 101a are formed in two directions, that is, the circumferential direction of the frame portion 101 and the direction orthogonal to the circumferential direction of the frame portion 101, and are formed integrally with each other in the approximately axial direction of the grid structure G, Sufficient strength can be obtained not only for loads in the compression direction but also for loads in the tensile force direction. In addition, since the grid structure G is integrally molded only from prepreg material, connection parts with other structures, such as port access holes 106, can be provided with high precision at arbitrary positions. In some cases, a boss member 107 made of a homogeneous material may be provided inside the flange portion 101a depending on the portability.

なお、上記実施例では、円筒状の三角グリッド構造体を
製造する場合を例に挙げて説明したが、グリッド構造体
の形状が限定されることはなく、例えば第8図(a)(
b)に示すような矩形筒状の三角グリッド構造体108
や、第9図に示すような矩形グリッド構造体109など
の様々な形状にすることができ、その用途に応じた必要
な部位を本体と一体で成形することができる。さらに、
構造体の夫々の部分に対応するプリプレグ材の種類が上
記実施例に限定されることもない。
In the above embodiment, the case where a cylindrical triangular grid structure was manufactured was explained as an example, but the shape of the grid structure is not limited, and for example, as shown in FIG. 8(a) (
Rectangular cylindrical triangular grid structure 108 as shown in b)
It can be made into various shapes, such as a rectangular grid structure 109 as shown in FIG. 9, and necessary parts depending on the application can be molded integrally with the main body. moreover,
The type of prepreg material corresponding to each part of the structure is not limited to the above embodiments.

[発明の効果] 以」−説明してきたように、この発明のグリッド構造体
の製造方法によれば、繊維強化プラスチック製のグリッ
ド構造体を製造するに際し、一定の繊維方向を有し且つ
グリッド構造体の枠部、桟部および枠部と桟部との連結
部等の夫々の部分に対応する各種のプリプレグ材を一方
の型に積層したのち、他方の型で前記プリプレグ材を押
圧整形し、次いで前記プリプレグ材に硬化処理を施して
グリッド構造体を形成するようにしたため、フィラメン
トワインディング法に基づ〈従来の製造方法と比較する
と繊維方向を自由に設定することができるので、想定さ
れる荷重の方向に対して充分な強度を備えたグリッド構
造体を得ることができ、部分的な繊維の疎密化を防ぐこ
とができると共に、部分的な補強を自由に行うことがで
きるという著大な効果を奏する。
[Effects of the Invention] As described above, according to the method for manufacturing a grid structure of the present invention, when manufacturing a grid structure made of fiber reinforced plastic, the grid structure has a fixed fiber direction and After laminating various prepreg materials corresponding to each part of the body, such as the frame portion, the crosspiece, and the connecting portion between the frame and the crosspiece, in one mold, the prepreg materials are pressed and shaped using the other mold, Next, the prepreg material was hardened to form a grid structure, so based on the filament winding method (compared to conventional manufacturing methods, the fiber direction can be set freely, so the expected load can be reduced). It is possible to obtain a grid structure with sufficient strength in the direction of play.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の詳細な説明するプロ・ンク図、第2
図はこの発明の一実施例に用いる装置を説明する斜視図
、第3図は第2図に示す装置の断面図、第4図(a)〜
(h)は使用するプリプレグ材の主な種類を説明する各
々平面図、第5図(a)〜(q)は積層工程の一例を説
明する各々平面図、第6図は第5図に示す積層工程によ
る枠部伺近の積層状態を分解して説明する斜視図、第7
図は成形されたグリッド構造体を説明する断面図、第8
図(a)(b)はグリッド構造体の他の形状例を説明す
る正面図および平面図、第9図はグリッド構造体のさら
に他の形状例を説明する正面図、第10図は円筒状の三
角グリッド構造体を説明する斜視図、第11図はフィラ
メントワインディング法による製造過程中のフィラメン
トの状態を説明するコアの部分平面図、第12図はフィ
ラメントワインディング法によって成形されたグリッド
構造体の枠部を説明する断面図である。 G、108,109・・・グリッド構造体、AI。 A2・・・枠部用プリプレグ材、B1−B5・・・連結
部用プリプレグ材、C1〜C6・・・桟部用プリプレグ
材、lla・・・枠部用溝(一方の型)、llb・・・
桟部用溝(・方の型)、12・・・枠部用雄型(他方の
型)、13・・・桟部用雄型(他方の型)、101・・
・枠部、102・・・桟部。 特許出願人  日産自動車株式会社 代理人弁理士 小  塩   豊 区 ば) 区 U) =    C) 名YQRパ クシ0關 第9図 第10図
Fig. 1 is a professional diagram explaining the invention in detail, Fig. 2
The figure is a perspective view illustrating a device used in an embodiment of the present invention, FIG. 3 is a sectional view of the device shown in FIG. 2, and FIGS.
(h) is a plan view explaining the main types of prepreg materials used, FIGS. 5(a) to (q) are plan views each explaining an example of the lamination process, and FIG. 6 is shown in FIG. 7th perspective view showing an exploded view of the stacked state near the frame during the stacking process;
The figure is a cross-sectional view illustrating the molded grid structure.
Figures (a) and (b) are a front view and a plan view illustrating another example of the shape of the grid structure, FIG. 9 is a front view illustrating another example of the shape of the grid structure, and FIG. 10 is a cylindrical shape. Fig. 11 is a partial plan view of the core illustrating the state of the filament during the manufacturing process by the filament winding method, and Fig. 12 is a perspective view illustrating the triangular grid structure formed by the filament winding method. It is a sectional view explaining a frame part. G, 108, 109...grid structure, AI. A2...Prepreg material for the frame, B1-B5...Prepreg material for the connecting part, C1-C6...Prepreg material for the crosspiece, lla...Groove for the frame (one type), llb.・・・
Groove for the crosspiece (one mold), 12...Male mold for the frame (the other mold), 13...Male mold for the crosspiece (the other mold), 101...
-Frame part, 102... Crosspiece part. Patent Applicant Nissan Motor Co., Ltd. Patent Attorney Yutaka Oshio U) = C)

Claims (1)

【特許請求の範囲】[Claims] (1)繊維強化プラスチック製のグリッド構造体を製造
するに際し、一定の繊維方向を有し且つグリッド構造体
の枠部、桟部および枠部と桟部との連結部等の夫々の部
分に対応する各種のプリプレグ材を一方の型に積層した
のち、他方の型で前記プリプレグ材を押圧整形し、次い
で前記プリプレグ材に硬化処理を施してグリッド構造体
を形成することを特徴とするグリッド構造体の製造方法
(1) When manufacturing a grid structure made of fiber-reinforced plastic, the fibers have a certain direction and correspond to each part of the grid structure, such as the frame, the crosspiece, and the connection between the frame and the crosspiece. A grid structure characterized by laminating various prepreg materials in one mold, pressing and shaping the prepreg materials in another mold, and then subjecting the prepreg materials to a curing treatment to form a grid structure. manufacturing method.
JP60086231A 1985-04-24 1985-04-24 Manufacture of grid structure Granted JPS61244535A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60086231A JPS61244535A (en) 1985-04-24 1985-04-24 Manufacture of grid structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60086231A JPS61244535A (en) 1985-04-24 1985-04-24 Manufacture of grid structure

Publications (2)

Publication Number Publication Date
JPS61244535A true JPS61244535A (en) 1986-10-30
JPH0441889B2 JPH0441889B2 (en) 1992-07-09

Family

ID=13881017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60086231A Granted JPS61244535A (en) 1985-04-24 1985-04-24 Manufacture of grid structure

Country Status (1)

Country Link
JP (1) JPS61244535A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004009453A (en) * 2002-06-05 2004-01-15 Mitsubishi Electric Corp Grid structure and its manufacturing method
JP2010023366A (en) * 2008-07-22 2010-02-04 Mitsubishi Electric Corp Advanced grid structure with insert
GB2512333A (en) * 2013-03-26 2014-10-01 Crompton Technology Group Ltd Mesh structures

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004009453A (en) * 2002-06-05 2004-01-15 Mitsubishi Electric Corp Grid structure and its manufacturing method
JP2010023366A (en) * 2008-07-22 2010-02-04 Mitsubishi Electric Corp Advanced grid structure with insert
GB2512333A (en) * 2013-03-26 2014-10-01 Crompton Technology Group Ltd Mesh structures
GB2512333B (en) * 2013-03-26 2015-08-19 Crompton Technology Group Ltd Mesh structures

Also Published As

Publication number Publication date
JPH0441889B2 (en) 1992-07-09

Similar Documents

Publication Publication Date Title
US6723271B2 (en) Method and apparatus for making composite parts
US5223067A (en) Method of fabricating aircraft fuselage structure
US5170967A (en) Aircraft fuselage structure
US4734146A (en) Method of producing a composite sine wave beam
JP2009545466A (en) Method of forming a plurality of fiber composite components
US5245813A (en) Structural beam
JP3045659B2 (en) Golf club shaft and method of manufacturing the same
JPS61244535A (en) Manufacture of grid structure
JPH09250247A (en) Composite material reinforced concrete structural body
JPH03222723A (en) Manufacture of fiber reinforced plastic shaft with metallic flange
JP3278097B2 (en) Tubular body
JPH05138759A (en) Production of bent pipe
JPS5823627Y2 (en) flange structure
JPS62202728A (en) Manufacture of square pipe made of fiber reinforced plastics
JPH0615750A (en) Method for molding fiber reinforced resin pipe having bent part and fiber reinforced resin pipe
JPH064294B2 (en) Method for manufacturing FRP beam
GB2103572A (en) Winding a strut
JPS633941A (en) Preparation of grid structure
JPH04151232A (en) Manufacture of square pipe made of fiber-reinforced plastic
JP7268956B2 (en) Bent pipe manufacturing method, mold pipe member used for this method, and bent pipe
JPS61266234A (en) Manufacture of bent square pipe made of fiber reinforced plastic
JPS6149833A (en) Manufacture of fiber-reinforced resin structural member
JPH0674369A (en) Parallel joint member and manufacture thereof for fiber reinforced resin-made pipe
JPS62196123A (en) Connection of fiber reinforced plastic constructional members
JPS63262233A (en) Manufacture of beam member of composite material

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term