JPS61243816A - Production of amino resin - Google Patents

Production of amino resin

Info

Publication number
JPS61243816A
JPS61243816A JP8454485A JP8454485A JPS61243816A JP S61243816 A JPS61243816 A JP S61243816A JP 8454485 A JP8454485 A JP 8454485A JP 8454485 A JP8454485 A JP 8454485A JP S61243816 A JPS61243816 A JP S61243816A
Authority
JP
Japan
Prior art keywords
oil
water
reactor
vapor
amino resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8454485A
Other languages
Japanese (ja)
Other versions
JPH0613592B2 (en
Inventor
Takaaki Suzuki
鈴木 隆明
Kazunori Kamata
鎌田 一則
Masao Yamaguchi
山口 雅男
Tadahiro Misono
御園 忠弘
Yoshihiko Tokuno
徳野 義彦
Mamoru Seito
清塘 守
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP60084544A priority Critical patent/JPH0613592B2/en
Publication of JPS61243816A publication Critical patent/JPS61243816A/en
Publication of JPH0613592B2 publication Critical patent/JPH0613592B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Phenolic Resins Or Amino Resins (AREA)

Abstract

PURPOSE:To produce an amino resin having a predetermined degree of condensation within a short time, by bringing a vapor produced in the production of an amino resin into countercurrent contact with an oil formed by condensing the vapor and subjecting the condensate to oil/water separation and recirculating this oil into the reactor. CONSTITUTION:Normal- and/or iso-butyl alcohols, formaldehyde, melamine and/or urea and/or benzoguanamine are fed to a reaction vessel 1, and the production of an amino resin is started by heating with a heating source 8. A vapor mainly consisting of said alcohol and water is fed through a gas/liquid contact apparatus 7 and a vapor pipe 2 to a condenser 3 and condensed. This condensate is led through a pipe 4 to an oil/water separator 5, where it is separated into an oil layer based on the alcohol and a water layer. This water layer is discharged out of the system through a pipe 10, and the oil layer 6 is led through a pipe 6 to the contact apparatus 7, where it is brought into gas/liquid contact with the vapor from the reaction vessel 1, and the oil is recirculated into the reactor 1.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、アミノ樹脂の製造方法に関するものである
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to a method for producing amino resins.

従来の技術 アミノ樹脂は、熱硬化型樹脂の架橋剤として安価で優れ
た性能を持つため、熱硬化型アルキッド樹脂、アクリル
樹脂等の架橋絢用途を主体として広く使用される有用な
樹脂である。
BACKGROUND OF THE INVENTION Amino resins are inexpensive and have excellent performance as crosslinking agents for thermosetting resins, so they are useful resins that are widely used mainly for crosslinking resins such as thermosetting alkyd resins and acrylic resins.

この樹脂の製造方法は、従来、ノルマル及び/又はイノ
ブチルアルコール、ホルムアルデヒド。
The conventional method for producing this resin is normal and/or inobutyl alcohol, formaldehyde.

及びメラミン及び/又は尿素及び/又はベンゾグアナミ
ンを特定のモル比のもと酸触媒の存在下。
and melamine and/or urea and/or benzoguanamine in a specific molar ratio in the presence of an acid catalyst.

沸騰状態においてメチロール化及びブチル化縮合反応を
行い、生成する水を加熱しなからブチルアルコールと共
沸させ、第2図に示すような反応器■に接続した凝縮器
■において凝縮させたのち。
The methylolation and butylation condensation reactions are carried out in a boiling state, and the resulting water is azeotroped with butyl alcohol without heating, and then condensed in a condenser (2) connected to a reactor (1) as shown in FIG.

油水分離器■で水を分離排出し、得られた油層のブチル
アルコールを反応器に再び循還する方法によっていた。
Water was separated and discharged using an oil-water separator (1), and the butyl alcohol in the resulting oil layer was recycled back to the reactor.

発明が解決しようとする問題点 しかしながらこの方法においては油水分離器で二層分離
しても、尚温度により定まる油層中の含水分が比較的高
(、これ以下に油層(ブチルアルコール)中の水分を減
少することが出来ないため反応器には水分濃度の高い還
流液が常に循還され。
Problems to be Solved by the Invention However, in this method, even if two layers are separated using an oil-water separator, the water content in the oil layer (butyl alcohol) determined by the temperature is relatively high. Since it is not possible to reduce the water content, reflux liquid with a high water concentration is constantly circulated through the reactor.

反応液中の水分濃度が還流液の水分濃度より高い間は問
題がないが、脱水が進み水分濃度が低下してくると脱水
速度の低下が著しく、ついには反応液中の水分濃度は還
流液の水分により平衡に達してしまう。この為、縮合反
応の進行が著しく阻害され所定の縮合度に達するのに長
い時間を必要としている。
There is no problem as long as the water concentration in the reaction solution is higher than the water concentration in the reflux solution, but as dehydration progresses and the water concentration decreases, the dehydration rate decreases markedly, and eventually the water concentration in the reaction solution reaches the reflux solution. Equilibrium is reached due to the water content. For this reason, the progress of the condensation reaction is significantly inhibited, and a long time is required to reach a predetermined degree of condensation.

問題点を解決するための手段 本発明者は、前記問題点を解決するため鋭意研究を行い
、本発明を完成するに至ったものである。
Means for Solving the Problems The inventor of the present invention has conducted extensive research to solve the above-mentioned problems, and has completed the present invention.

すなわち1本発明のアミノ樹脂の製造方法は。That is, the method for producing an amino resin of the present invention is as follows.

ノルマル及び/又はイソブチルアルコール、ホルムアル
デヒド、及びメラミン及び/又は尿素及び/又はベンゾ
グアナミンを原料として、酸触媒の存在下加熱反応させ
アミノ樹脂を製造するに際し。
When producing an amino resin by heating and reacting normal and/or isobutyl alcohol, formaldehyde, and melamine and/or urea and/or benzoguanamine in the presence of an acid catalyst as raw materials.

反応器で発生する蒸気と該蒸気を凝縮して油水分離して
得られた油分を向流接触させて反応器に還流させること
を特徴とするアミノ樹脂の製造方法である。
This method of producing an amino resin is characterized in that steam generated in a reactor and an oil obtained by condensing the steam and separating oil and water are brought into countercurrent contact and refluxed to the reactor.

本発明によるアミノ樹脂を製造するに際し発生する蒸気
と該蒸気を凝縮して油水分離した油分を向流接触させる
方法の具体例は棚段塔、濡れ壁培等を設置し気液接触さ
せるかあるいは蒸気配管に油分をスプレーする等の方法
により向流接触させることができる。
Specific examples of the method of bringing the steam generated during the production of the amino resin according to the present invention into countercurrent contact with the oil component obtained by condensing the steam and separating the oil and water include installing a plate column, wet wall culture, etc., and bringing the gas-liquid into contact with each other. Countercurrent contact can be achieved by spraying oil onto the steam piping.

図面の説明 本発明を図面により説明する。Drawing description The present invention will be explained with reference to the drawings.

第1図は1本発明のアミノ樹脂の製造方法における一実
施例のフロー図を示すものである。
FIG. 1 shows a flow diagram of an embodiment of the method for producing an amino resin of the present invention.

第1図において反応器■内の溶液は加熱源■により加熱
されブチルアルコールと水を主体とする蒸気となり、気
液接触装置の及び蒸気導管■を通り凝縮器■で凝縮され
る。凝縮液は導管■を通り油水分離器■においてブチル
アルコールを主成分とする油層と水を主成分とする水層
に分離される。
In FIG. 1, the solution in the reactor (2) is heated by a heating source (2) to become a vapor mainly composed of butyl alcohol and water, which passes through a gas-liquid contactor and a steam conduit (2) and is condensed in a condenser (2). The condensate passes through conduit (2) and is separated into an oil layer containing butyl alcohol as the main component and an aqueous layer containing water as the main component in oil/water separator (2).

水層は導管Oにより系外に排出される。The aqueous layer is discharged out of the system through conduit O.

油層は導管■を通り気液接触装置■により反応器   
−からの蒸気と気液接触を行った後反応器に還流される
The oil layer passes through the conduit■ and is transferred to the reactor by the gas-liquid contact device■.
After making gas-liquid contact with the vapor from -, it is refluxed to the reactor.

第2図の従来の方法では油水分離器よりの油層は導管■
を通り第1図によるような気液接触がなされずに反応器
に還流される。
In the conventional method shown in Figure 2, the oil layer from the oil-water separator is piped into
1 and is refluxed to the reactor without any gas-liquid contact as shown in FIG.

発明の効果 本発明によりアミノ樹脂を製造する利点は1反応器出口
蒸気と、水を二層分離しても尚可成りの水分を含有する
還流液とを気液接触させることにより1反応器に循還さ
れる還流液中の水分濃度が低下して、従来法によるよう
な反応器内溶液中の水分濃度が比較的高いところで平衡
に達するようなことがなく、従来法に比較して大巾に反
応器内溶液中の水分濃度が低下することである。
Effects of the Invention The advantage of producing an amino resin according to the present invention is that the vapor at the outlet of one reactor is brought into gas-liquid contact with the reflux liquid, which still contains a considerable amount of water even if water is separated into two layers, into one reactor. The water concentration in the circulating reflux liquid decreases and the water concentration in the solution in the reactor does not reach equilibrium at a relatively high level as in the conventional method, which is much more effective than in the conventional method. This is because the water concentration in the solution inside the reactor decreases.

この為、縮合反応の進行が促進され短時間で所定の縮合
度に到達することができる。
Therefore, the progress of the condensation reaction is accelerated and a predetermined degree of condensation can be reached in a short time.

実施例 以下本発明を実施例により具体的に説明する。Example The present invention will be specifically explained below using examples.

〔実施例1〕 第1図に示す方法で容量5ぜの反応器にイソブチルアル
コール1628kp、37%ホルマリン1946す°、
メラミン504kl?、酸触媒2に9を投入し。
[Example 1] Isobutyl alcohol 1628kp and 37% formalin 1946° were placed in a 5-volume reactor using the method shown in Figure 1.
Melamine 504kl? , 9 was added to the acid catalyst 2.

加熱源として250ゆ/Hの2kl?/ffl・Gスチ
ームを用いてブチル化メチロールメラミン樹脂の製造を
行った。還流を開始して4時間後に所定の縮合2一 度に達した。この時気液接触装置として→→インチラシ
ヒリングを1mの高さに充填した充填塔を用いた。
2kl of 250yu/h as a heating source? A butylated methylol melamine resin was produced using /ffl.G steam. Four hours after starting reflux, the predetermined condensation level 2 was reached. At this time, a packed tower filled with →→ inch Raschig rings to a height of 1 m was used as a gas-liquid contact device.

〔実施例2〕 第1図に示す方法で容量5dの反応器にノルマルブチル
アルコール1628kg、 37 %ホルマリン194
6に9.メラミン378kg、ベンゾグアナミン280
klF、酸触媒2に9を投入し、加熱源として。
[Example 2] In a reactor with a capacity of 5 d, 1628 kg of n-butyl alcohol and 194 % formalin were added by the method shown in Fig. 1.
6 to 9. Melamine 378kg, benzoguanamine 280kg
KlF, 9 was added to the acid catalyst 2 as a heating source.

250 kg/Hの2す/d・qスチームを用いてブチ
ル化メチロールメラミン・ベンゾグアナミン共縮合樹脂
の製造を行った。還流を開始して3時間後に所定の縮合
度に達した。この時、気液接触装置として1mの高さの
濡れ壁培を用いた。
A butylated methylolmelamine/benzoguanamine cocondensation resin was produced using 250 kg/H 2S/d.q steam. Three hours after starting reflux, a predetermined degree of condensation was reached. At this time, a 1 m high wet wall culture medium was used as a gas-liquid contact device.

〔実施例3〕 第1図に示す方法で容量5dの反応器にノルマルブタノ
ール2368kg、37チホルマリン1298kg、尿
素480に9.酸触媒2kgを投入し加熱源としてzs
okg/f(の2kg/ffl・Gスチームを用いてブ
チル化メチロール尿素樹脂の製造を行った。
[Example 3] In a reactor with a capacity of 5 d, 2368 kg of n-butanol, 1298 kg of 37-thiformin, 480 kg of urea and 9.0 kg of urea were placed in a reactor with a capacity of 5 d using the method shown in FIG. Inject 2 kg of acid catalyst and use it as a heating source
A butylated methylol urea resin was produced using 2 kg/ffl G steam.

還流を開始して7時間後に所定の縮合度に達した。Seven hours after starting reflux, a predetermined degree of condensation was reached.

この時気液接触装置として3段のリフトトレイ(関西化
学機械(イ)製)を用いた。
At this time, a three-stage lift tray (manufactured by Kansai Kagaku Kikai (I)) was used as a gas-liquid contact device.

〔実施例4〕 第1図に示す方法で容量51の反応器にイソブチルアル
コール1776に9.37チホルマリン1848ゆ、尿
素360に9.メラミン228kg、酸触媒2に9を投
入し、加熱源として250に9/Hの2に9/ff1−
Gスチームを用いてブチル化メチロール尿素・メラミン
共縮合樹脂の製造を行った。還流を開始して6時間後に
所定の縮合度に達した。この時気液接触装置の代りに、
還流液ポンプで加圧しスプレーノズルを用いて蒸気配管
にスプレーすることにより気液接触を行った。
[Example 4] According to the method shown in Fig. 1, in a reactor with a capacity of 51, 1776 yen of isobutyl alcohol, 9.37 yenol of thiformin, 1848 yuan of thiformalin, and 360 yen of urea were added with 9.37 yuan of thiformin. 228 kg of melamine, 9 in acid catalyst 2, 250 in 9/H as a heating source, 2 in 9/ff1-
A butylated methylol urea/melamine cocondensation resin was produced using G steam. A predetermined degree of condensation was reached 6 hours after the start of reflux. At this time, instead of a gas-liquid contact device,
Gas-liquid contact was carried out by pressurizing the reflux liquid with a pump and spraying it onto the steam piping using a spray nozzle.

〔比較例1〕 第2図に示す方法で実施例1と同一の条件でブチル化メ
チロールメラミン樹脂の製造を行ったところ反応液中の
水分濃度の低下が遅いため縮合度の進みが遅く8時間後
に所定の縮合度に達した。
[Comparative Example 1] When a butylated methylolmelamine resin was produced by the method shown in Figure 2 under the same conditions as Example 1, the degree of condensation progressed slowly for 8 hours because the water concentration in the reaction solution decreased slowly. Afterwards, a predetermined degree of condensation was reached.

〔比較例2〕 第2図に示す方法で実施例2と同一の条件でブチル化メ
チロールメラミン・ベンゾグアナミン共縮合樹脂の製造
を行ったところ5時間後に所定の縮合度に達した。
[Comparative Example 2] A butylated methylolmelamine/benzoguanamine co-condensation resin was produced by the method shown in FIG. 2 under the same conditions as in Example 2, and a predetermined degree of condensation was reached after 5 hours.

〔比較例3〕 第2図に示す方法で実施例3と同一の条件でブチル化メ
チロール尿素樹脂の製造を行ったところ15時間後に所
定の縮合度に達した。
[Comparative Example 3] A butylated methylol urea resin was produced by the method shown in FIG. 2 under the same conditions as in Example 3, and a predetermined degree of condensation was reached after 15 hours.

〔比較例4〕 第2図に示す方法で実施例4と同一の条件でブチル化メ
チロール尿素メラミン共縮合樹脂の製造を行ったところ
11時間後に所定の縮合度に達した。
[Comparative Example 4] A butylated methylol urea melamine cocondensation resin was produced by the method shown in FIG. 2 under the same conditions as in Example 4, and a predetermined degree of condensation was reached after 11 hours.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明のアミノ樹脂の製造方法における一実
施例のフロー図を示すものである。 第2図は、従来のアミノ樹脂の製造方法をフロー図によ
り示す。 ■ 反応器 ■ 蒸気導管 ■ 凝縮器 ■ 凝縮液導管 ■ 油水分離器 ■ 還流液導管 ■ 気液接解装置 ■ 加熱源導管 ■ 冷却水導管 ■ 留出水導管 特許出願人 三井東圧化学株式会社 第  1  図 第2図
FIG. 1 shows a flowchart of one embodiment of the method for producing an amino resin of the present invention. FIG. 2 shows a conventional method for producing an amino resin using a flow diagram. ■ Reactor ■ Steam conduit ■ Condenser ■ Condensate conduit ■ Oil-water separator ■ Reflux liquid conduit ■ Gas-liquid welding device ■ Heating source conduit ■ Cooling water conduit ■ Distillate water conduit Patent applicant Mitsui Toatsu Chemical Co., Ltd. 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] ノルマル及び/又はイソブチルアルコール、ホルムアル
デヒド、及びメラミン及び/又は尿素及び/又はベンゾ
グアナミンを原料として、酸触媒の存在下加熱反応させ
アミノ樹脂を製造するに際し、反応器で発生する蒸気と
該蒸気を凝縮して油水分離して得られた油分を向流接触
させて反応器に還流させることを特徴とするアミノ樹脂
の製造方法。
When producing amino resin by heating and reacting normal and/or isobutyl alcohol, formaldehyde, and melamine and/or urea and/or benzoguanamine in the presence of an acid catalyst as raw materials, the vapor generated in the reactor and the vapor are condensed. A method for producing an amino resin, which comprises bringing the oil obtained by separating oil and water into countercurrent contact and refluxing it into a reactor.
JP60084544A 1985-04-22 1985-04-22 Amino resin manufacturing method Expired - Lifetime JPH0613592B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60084544A JPH0613592B2 (en) 1985-04-22 1985-04-22 Amino resin manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60084544A JPH0613592B2 (en) 1985-04-22 1985-04-22 Amino resin manufacturing method

Publications (2)

Publication Number Publication Date
JPS61243816A true JPS61243816A (en) 1986-10-30
JPH0613592B2 JPH0613592B2 (en) 1994-02-23

Family

ID=13833591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60084544A Expired - Lifetime JPH0613592B2 (en) 1985-04-22 1985-04-22 Amino resin manufacturing method

Country Status (1)

Country Link
JP (1) JPH0613592B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0704467A3 (en) * 1994-09-30 1997-05-07 Basf Ag Aminotriazine resins with etherified methylol groups
CN109395679A (en) * 2018-11-02 2019-03-01 浙江六合工程技术有限公司 Adjustable multipurpose way horizontal separator
CN114773554A (en) * 2022-05-09 2022-07-22 安徽省海徽化工有限公司 Efficient production process of amino resin

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4065267A (en) * 1975-01-17 1977-12-27 Ppg Industries, Inc. Manufacture of alkylated urea or melamine formaldehyde with in-process alcohol recovery
JPS56161421A (en) * 1980-05-15 1981-12-11 Toray Ind Inc Production of polyester

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4065267A (en) * 1975-01-17 1977-12-27 Ppg Industries, Inc. Manufacture of alkylated urea or melamine formaldehyde with in-process alcohol recovery
JPS56161421A (en) * 1980-05-15 1981-12-11 Toray Ind Inc Production of polyester

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0704467A3 (en) * 1994-09-30 1997-05-07 Basf Ag Aminotriazine resins with etherified methylol groups
CN109395679A (en) * 2018-11-02 2019-03-01 浙江六合工程技术有限公司 Adjustable multipurpose way horizontal separator
CN114773554A (en) * 2022-05-09 2022-07-22 安徽省海徽化工有限公司 Efficient production process of amino resin

Also Published As

Publication number Publication date
JPH0613592B2 (en) 1994-02-23

Similar Documents

Publication Publication Date Title
US3349544A (en) Gas drying process
CN101516820B (en) Process for producing acrylic acid
CN100424065C (en) Process for production of (meth)acrylic compounds
CN101665474B (en) Method for recovering epoxy chloropropane from wastewater containing epoxy chloropropane
CN101687743A (en) Glycerol vaporization method
TWI436974B (en) Process for preparing alkyl methacrylates by azeotropic distillation
CN110461811A (en) Purifying (methyl) acrylic acid including the destilling tower with partition wall
WO1996020933A1 (en) Process for manufacturing melamine from urea
JPS61243816A (en) Production of amino resin
CN103864602B (en) A kind of have a set of refining energy-conservation acrylic acid production process of two cover oxidations
CN108689798A (en) A method of improving organic silicon monomer synthesis recycling chloromethanes quality
CA1185618A (en) Manufacture of aqueous formaldehyde
US3174911A (en) Formaldehyde manufacture
KR102140998B1 (en) Method for purifying ethylene glycol to reduce steam consumption
EP1567481B1 (en) Method for inhibiting polymerization during the recovery and purification of unsaturated mononitriles
US4222965A (en) Method of producing acrolein
KR0122429B1 (en) Method and its new apparatus for producing unsaturated carboxylic acid esters
CN214991236U (en) Complete device for preparing acrylic acid by using cyclic propylene oxidation method
RU2098398C1 (en) Method of synthesis of isoprene
US5075083A (en) Plant for the production of alkylated resins
US2868828A (en) Method of removing lactonitrile from aqueous mixtures
KR101095721B1 (en) Method and Apparatus for the Production of High Purity Methylal
JPH03145485A (en) Production of trioxane
RU2036919C1 (en) Method of 1,3-dioxolane synthesis
JP4029454B2 (en) Continuous production method of cyclic formal