JPS61242936A - Multistage preheating apparatus for cement raw material - Google Patents

Multistage preheating apparatus for cement raw material

Info

Publication number
JPS61242936A
JPS61242936A JP7987785A JP7987785A JPS61242936A JP S61242936 A JPS61242936 A JP S61242936A JP 7987785 A JP7987785 A JP 7987785A JP 7987785 A JP7987785 A JP 7987785A JP S61242936 A JPS61242936 A JP S61242936A
Authority
JP
Japan
Prior art keywords
raw material
duct
temperature
cyclone collector
base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7987785A
Other languages
Japanese (ja)
Inventor
田中 政人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UBE JITSUGYO ENG CONSULTANT KK
Original Assignee
UBE JITSUGYO ENG CONSULTANT KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UBE JITSUGYO ENG CONSULTANT KK filed Critical UBE JITSUGYO ENG CONSULTANT KK
Priority to JP7987785A priority Critical patent/JPS61242936A/en
Publication of JPS61242936A publication Critical patent/JPS61242936A/en
Pending legal-status Critical Current

Links

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Furnace Details (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、セメント原料の予熱装置の改良に係るもので
ある。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to an improvement in a preheating device for cement raw materials.

〔従来の技術〕[Conventional technology]

従来一般に、セメント原料の予熱装置としては。 Conventionally, this is generally used as a preheating device for cement raw materials.

NSPキルン方式が採用され2.この方式の予熱装置の
機構、構造並びに性能などについての内容が。
NSP kiln method is adopted.2. The contents include the mechanism, structure, and performance of this type of preheating device.

理論的且つ合理的な考察の解明もなく、そのまま基本的
に採用されているもので、而も熱ガスと原料セメントの
通過径路(パス)系内は3段階系列であった。
The system was basically adopted as is without elucidation of theoretical and rational considerations, and the path system for hot gas and raw cement was a three-stage series.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記の従来技術において述べた如く、従来の方法では、
熱源熱ガスの熱量は、あまり有効に活用されてなく、具
体的に示すならば、熱源入気ガスの温度840℃〜88
0℃に対して、排ガスの温度は350℃〜400℃で、
排ガス中の502ガスの露点発生防止の温度を考慮する
ならば、この温度は必要以上の高温であり、従って必要
以上の余分な熱量を、活用することなく放出しており、
この為に通常60℃の温度で投入される原料は、別途に
熱工学的理論を基本として解析するとき、払出される品
温度は約560℃であって、600℃以上ではない。
As mentioned in the above-mentioned prior art, in the conventional method,
The calorific value of the heat source hot gas is not utilized very effectively, and to be more specific, the temperature of the heat source incoming gas is 840°C to 88°C.
Compared to 0°C, the temperature of exhaust gas is 350°C to 400°C,
Considering the temperature required to prevent the dew point of 502 gas in the exhaust gas, this temperature is higher than necessary, and therefore, more heat than necessary is released without being utilized.
For this reason, the raw materials that are normally input at a temperature of 60°C are separately analyzed based on thermal engineering theory, and the temperature of the discharged products is about 560°C, not higher than 600°C.

原料の予熱装置の機構、構造に伴った原料の加熱。Heating of raw materials according to the mechanism and structure of the raw material preheating device.

昇温性能が上記の如く低いために、セメント製造装置プ
ラント全体としての燃料消費量の増大、延いては、装置
の大きさ、容量の必要以上の増大其他をまねき、即ち、
従来のNSPキルン方式に於ては改良、開発すべき多く
の問題点を含んでいる。
Due to the above-mentioned low temperature increase performance, the fuel consumption of the cement manufacturing equipment plant as a whole increases, and the size and capacity of the equipment increase more than necessary, and so on.
The conventional NSP kiln system has many problems that need to be improved and developed.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、上記の事情に鑑みてなされたもので。 The present invention has been made in view of the above circumstances.

本発明の実施例を示す第1図によって説明すれば。This will be explained with reference to FIG. 1, which shows an embodiment of the present invention.

熱ガスは、原料が仮焼反応炉内の熱ガスの状態下で10
0%の仮焼反応を完了するとき、熱工学的理論上必然的
に発生し且つ払出される温度900℃の熱ガスを入気熱
源熱ガスとし、この温度の熱ガスが原料との熱交換によ
って熱量を失ないなから降温しでゆき、払出されるとき
の排ガスの温度は。
The hot gas is 10
When the 0% calcination reaction is completed, the hot gas at a temperature of 900°C that is inevitably generated and discharged according to thermal engineering theory is used as the incoming heat source hot gas, and the hot gas at this temperature is used for heat exchange with the raw material. The temperature of the exhaust gas decreases without losing heat, and the temperature of the exhaust gas when it is discharged is:

その中に含まれるS02ガスの露点発生防止の温度を考
慮した上で、実用的に許容し得る最低温度として200
℃と設定し、原料は0通常温度とじての60℃の湿潤状
態で投入され、高温の熱ガスと熱交換しながら次第に加
熱され昇温しながら払出されるときには、原料が仮焼反
応炉内の熱ガスの状態下で仮焼反応を行う熱工学的理論
値の品温800℃に極めて近接した品温として、750
℃に加熱・昇温されるなどのことを基本とし、熱ガスと
原料とは相互に混在しながら通過してゆ(通過径路(パ
ス)系内毎に、熱交換を段階式に行ってゆき。
Considering the temperature to prevent the dew point of the S02 gas contained therein, the minimum temperature that is practically acceptable is 200.
℃, the raw material is input in a humid state of 60℃, which is the same as the normal temperature, and is gradually heated while exchanging heat with high-temperature hot gas. The material temperature is 750°C, which is very close to the thermal engineering theoretical value of 800°C for the calcining reaction under hot gas conditions.
Basically, the hot gas and the raw material are heated and raised to a temperature of .

最終的に払出されるときには原料の品温は750℃とな
り、排ガスの温度は200℃となるような機構。
When the material is finally discharged, the temperature of the raw material is 750°C, and the temperature of the exhaust gas is 200°C.

構造並びに性能を本発明は有するものである。但し、各
段階内毎の熱ガスの組成とその物性などの相関関係によ
る理論的詳細な内容、更に計算の内容などについては省
略し、以下に各段階ごとの熱ガスと原料の温度関係につ
いて述べると。
The present invention has both structure and performance. However, detailed theoretical content based on the correlation between the hot gas composition and its physical properties at each stage, as well as the content of calculations, etc., will be omitted, and the temperature relationship between the hot gas and raw materials at each stage will be described below. and.

第1段階通過径路(パス)系内では、投入される原料の
品温は60℃、排ガスの温度は200℃を基準とし、之
に対して払出される原料の品温は、排ガス温度の200
℃より20℃低い180℃とするとき。
In the first stage passage system, the temperature of the input raw material is 60℃, the temperature of the exhaust gas is 200℃, and the temperature of the raw material discharged is 200℃ of the exhaust gas temperature.
When the temperature is 180℃ which is 20℃ lower than ℃.

入気熱ガスの温度は350℃と計算され、このような理
論に基づいてこの系内では原料の乾燥、加熱並びに昇温
現象が行われる。図中Aは、予熱装置本体相当部であり
、A−1乃至A−5は熱ガスと原料とが混在しながら通
過する通過径路(パス)系内相当部で、互にダク)C+
 〜C5で接続した5段階方式である。
The temperature of the incoming hot gas is calculated to be 350° C., and based on this theory, drying, heating, and temperature raising phenomena of the raw materials are performed in this system. In the figure, A is a part corresponding to the main body of the preheating device, and A-1 to A-5 are parts corresponding to the passage system through which hot gas and raw materials pass in a mixed manner.
It is a 5-stage system connected at ~C5.

第2段階通過径路(パス〉系内では、投入される原料の
品温は180℃、排ガス温度は350℃、従って払い出
される原料の品温度を340℃とするとき2入気熱ガス
の温度は480℃の計算値となる。
In the second stage passage (pass) system, the temperature of the input raw material is 180°C, the exhaust gas temperature is 350°C, and therefore, when the temperature of the raw material discharged is 340°C, the temperature of the incoming hot gas is The calculated value is 480°C.

尚この系内では原料の加熱・昇温のみを行う。In this system, only the raw material is heated and its temperature is increased.

第3段階通過径路(パス)系内では、投入される原料の
品温度は340℃、排ガス温度は480℃。
In the third stage passage system, the temperature of the input raw material is 340°C, and the temperature of the exhaust gas is 480°C.

従って払出される原料の品温を470℃とするとき入気
熱ガスの温度は600℃となる計算に基づいてこの系内
では原料の加熱、昇温のみを行う。
Therefore, based on the calculation that when the temperature of the discharged raw material is 470°C, the temperature of the incoming hot gas is 600°C, only the heating and temperature raising of the raw material is performed in this system.

第4段階通過径路(パス)系内では、投入される原料の
品温は470℃、排ガスの温度は600℃。
In the fourth stage passage system, the temperature of the input raw material is 470°C, and the temperature of the exhaust gas is 600°C.

従って払出される原料の品温を590℃とするとき。Therefore, when the temperature of the raw material to be discharged is 590°C.

入気熱ガスの温度は770℃となり、この系内では原料
の加熱、昇温のみを行う。
The temperature of the incoming hot gas is 770°C, and only the heating and temperature raising of the raw material is performed within this system.

第5段階通過径路(パス)系内では、投入される原料の
高温度は590℃、排ガスの温度は770℃。
In the fifth stage passage system, the high temperature of the input raw material is 590°C, and the temperature of the exhaust gas is 770°C.

従って、払出される原料の品温を770℃に対して75
0℃の適正な品温とするとき、この品温は原料を加熱昇
温して最終的に目的とする750℃である。
Therefore, the temperature of the raw material to be discharged is 75°C compared to 770°C.
When the proper product temperature is 0°C, this product temperature is the final target temperature of 750°C by heating the raw material.

この場合2入気熱ガスの温度は900℃が適正な温度と
して計算され、この温度の入気熱ガスは本発明による入
気熱ガスそのものである。
In this case, the temperature of the incoming hot gas is calculated to be 900° C. appropriately, and the incoming hot gas at this temperature is the incoming hot gas itself according to the present invention.

以上の計算結果によって明らかなように、高温度900
℃の熱ガスが原料との熱交換によって降温し、排ガスの
温度200℃となる間に2品温60℃の原料を加熱・昇
温させ、最終目的の品温750℃にするためには、熱交
換による通過径路(パス)系内は5段階方式であるべき
で1本発明は別途に行なった熱工学的計算に基づいて通
過径路(パス)系内の5段階方式を採用している。
As is clear from the above calculation results, the high temperature 900
In order to heat and raise the temperature of two raw materials with a temperature of 60°C while the temperature of the hot gas at ℃ decreases through heat exchange with the raw material, and the temperature of the exhaust gas reaches 200°C, to reach the final target temperature of 750°C, The passage system for heat exchange should be a five-stage system, and the present invention adopts a five-stage system for the passage system based on thermal engineering calculations separately performed.

〔作用〕[Effect]

上記の如き構成によれば1本発明の実施例を示す第1図
により、原料投入ダクト口3に於て原料は60℃で投入
し、第1段階構造部A−1に於ては。
According to the above structure, as shown in FIG. 1 showing an embodiment of the present invention, the raw material is charged at 60 DEG C. at the raw material input duct port 3, and in the first stage structure section A-1.

前記したように原料品温60℃、払出原料を180℃と
するとき1入気熱ガス温度は計算上350℃となり。
As mentioned above, when the raw material temperature is 60°C and the discharged raw material is 180°C, the temperature of one input hot gas is calculated to be 350°C.

第2段階構造部A−2に於ては、投入原料180℃、排
ガス温度を340℃とするとき9入気熱ガスは480℃
となり。
In the second stage structure section A-2, when the input raw material is 180°C and the exhaust gas temperature is 340°C, the input hot gas is 480°C.
Next door.

第3段階構造部A−3に於ては、投入原料温度340℃
、排ガス温度を470℃とするとき、入気熱ガスは60
0℃となり。
In the third stage structure section A-3, the input raw material temperature was 340°C.
, when the exhaust gas temperature is 470°C, the incoming hot gas is 60°C.
It becomes 0℃.

第4段階構造部A−4に於ては、投入原料温度は470
℃、排ガス温度600℃、従って払出原料温度を590
℃に設定すると9入気熱ガス温度は770℃となり。
In the fourth stage structure section A-4, the input raw material temperature was 470
℃, the exhaust gas temperature is 600℃, so the temperature of the discharged raw material is 590℃.
If set to 9°C, the incoming hot gas temperature will be 770°C.

第5段階構造部A−5に於ては、投入原料590℃、排
ガス温度従って払出原料温度を排ガス温度770℃に対
して750℃と設定するとき2品温は原料を加熱、昇温
し最終目的温度は750℃で、この場合入気熱ガス計算
値温度900℃となり、この900℃の熱ガスが原料と
の熱交換で降温し、排ガス温度 200℃となる間に、 60℃温度の原料を加熱昇温さ
せると共に、5段階方式の作用によって最終目的の75
0℃にしている。尚、前記したように、各段階の。
In the fifth stage structure section A-5, when the input raw material is set at 590°C and the exhaust gas temperature and therefore the discharged raw material temperature is set at 750°C with respect to the exhaust gas temperature of 770°C, the temperature of the 2nd product is determined by heating the raw material and raising the temperature. The target temperature is 750°C, and in this case, the calculated value of the incoming hot gas temperature is 900°C, and while this 900°C hot gas cools down through heat exchange with the raw material, and the exhaust gas temperature reaches 200°C, the raw material at a temperature of 60°C is At the same time, the final target of 75
It is kept at 0℃. In addition, as mentioned above, at each stage.

第1段階構造部A−1に於ては、原料の乾燥。In the first stage structure section A-1, raw materials are dried.

加熱、昇温が行われ。Heating and temperature increase are performed.

第2段階構造部A−2に於ては、加熱、昇温が行われ。In the second stage structure section A-2, heating and temperature raising are performed.

第3段階構造部A−3に於ては、加熱、昇温が行われ。In the third stage structure section A-3, heating and temperature raising are performed.

第4段階構造部A−4に於ては、加熱、昇温が行われ。In the fourth stage structure section A-4, heating and temperature raising are performed.

第5段階構造部A−5では、原料中に含まれる結晶水を
分解し、放出する作用が行われる。
In the fifth stage structure section A-5, the action of decomposing and releasing crystal water contained in the raw material is performed.

〔実施例〕〔Example〕

本発明の一実施例を図面に基づいて説明すれば。 An embodiment of the present invention will be described based on the drawings.

図中Aは、原料の予熱装置本体相当部を示し、A−1乃
至A−5は通過径路(パス)系内相当部で。
In the figure, A indicates a part corresponding to the main body of the raw material preheating device, and A-1 to A-5 indicate parts corresponding to the inside of the passage system.

5段階方式の各段は互に連絡ダク)C+〜C5によって
接続し、B1〜BSはサイクロン捕集器。
Each stage of the five-stage system is connected to each other by communication ducts) C+ to C5, and B1 to BS are cyclone collectors.

1は熱ガスの入気ダクト口、2は排ガスの排出ダクト口
、3は原料投入ダクト口、4は加熱・昇温した原料の払
出しダクト口、矢印→は熱ガス、−は原料の夫々の流れ
方向を示す。上記5¥lt階通過径路(パス)系内の原
料予熱装置の機構、構造並びに性能などによる熱ガスと
原料間との現象を各段階毎に説明すると。
1 is the inlet duct for hot gas, 2 is the exhaust duct for exhaust gas, 3 is the raw material input duct, 4 is the discharge duct for heated and heated raw materials, the arrow → indicates the hot gas, and the - symbol for each raw material. Indicates flow direction. The phenomenon between the hot gas and the raw material due to the mechanism, structure, performance, etc. of the raw material preheating device in the 5\lt floor passage system will be explained for each stage.

A−1系内は、前記の第1段階通過径路(パス)系内で
述べたように原料は9品温60℃の湿潤状態で、第1ダ
クトCIの基部に設けた原料投入ダクト口3より投入さ
れ、乾燥し耐着した水分を完全に放出し、無水物となっ
て9品温180℃で排ガス排出ダクト口2から払出され
てA−2系内へ投入され、熱ガスは温度350℃で第1
ダクトC1内に導入され、原料を加熱、昇温、並びに乾
燥させ。
Inside the A-1 system, as described in the first stage passage system, there are 9 raw materials in a wet state with a temperature of 60°C, and the raw material input duct port 3 provided at the base of the first duct CI. The moisture that has dried and adhered to the gas is completely released, and the 9 parts are discharged from the exhaust gas exhaust duct port 2 at a temperature of 180°C as anhydrous products, and are then introduced into the A-2 system, and the hot gas is heated to a temperature of 350°C. 1st in °C
The material is introduced into the duct C1, and the raw material is heated, raised in temperature, and dried.

この原料から放出された水分を伴って、排ガスの排出ダ
クト口2から温度200℃で払出される。此の場合、第
1段階構造部A−1に第1サイクロン捕集器B1を設け
、この第1サイクロン捕集器B1は2円筒形状の胴部と
、漏斗状の底部から形成され、その頂部には、排ガスの
排出ダクト口2を設け、胴部には、第1ダクトC1を接
続し、底部には、第1原料輸送管り、を接続している。
The raw material is discharged from the exhaust duct 2 at a temperature of 200° C. together with the moisture released from the raw material. In this case, the first cyclone collector B1 is provided in the first stage structure A-1, and this first cyclone collector B1 is formed from two cylindrical bodies and a funnel-shaped bottom, and the top part is provided with an exhaust gas exhaust duct opening 2, the body is connected to a first duct C1, and the bottom is connected to a first raw material transport pipe.

この第1サイクロン捕集器B、は原料中の極微細な約2
〜3%の粒子は熱ガス中より分離捕集し得ないで排ガス
と共に放出するが5残り原料の全量は、捕集されて、上
記したようにA−2系内のダクトC2の基部中へ投入さ
れる。
This first cyclone collector B collects ultrafine particles in the raw material.
~3% of the particles cannot be separated and collected from the hot gas and are released with the exhaust gas, but the entire amount of the remaining raw material is collected and, as described above, flows into the base of the duct C2 in the A-2 system. Injected.

このように、この系内は前述したように原料の乾燥、加
熱、及び昇温現象が行なわれる。
In this way, the drying, heating, and temperature rising phenomena of the raw materials are performed in this system as described above.

A−2系内では、前記段階通過径路(パス)系内で述べ
たように、原料は、温度180℃で第2ダクトC2の基
部へ投入され、此の系内には、第1サイクロン捕集器B
1と同一構造の第2サイクロン捕集器B2を設け、その
頂部は第1ダクトC1を接続し1胴部に第2ダク)C2
を接続し、底部には第2原料輸送管D2を接続し、その
先端を第3ダクトC3の基部内に開口する。
In the A-2 system, as mentioned above in the stage passage system, the raw material is introduced into the base of the second duct C2 at a temperature of 180°C, and in this system there is a first cyclone trap. Collector B
A second cyclone collector B2 having the same structure as 1 is provided, the top of which connects the first duct C1, and the second duct C2 is connected to the body of the first cyclone collector B2.
A second raw material transport pipe D2 is connected to the bottom, and its tip is opened into the base of the third duct C3.

この上記した原料は、第2サイクロン捕集器B2によっ
て、その全量が熟ガス中から分離 捕集され9品温34
0℃で、A−3系内の第3ダクトC3の基部内へ投入さ
れる。熱ガスは第1ダク)C+の入気口より温度480
℃で入気し、温度350℃で排ガスの排出ダクト口2か
ら払出されて、残り原料はA−3系内の第3ダク)C3
に投入される。
The entire amount of the above-mentioned raw material is separated and collected from the ripe gas by the second cyclone collector B2, and the temperature of 9 items is 34.
At 0° C., it is introduced into the base of the third duct C3 in the A-3 system. The temperature of the hot gas is 480 from the inlet of the first duct) C+.
The air enters at a temperature of 350°C and is discharged from the exhaust gas outlet duct 2 at a temperature of 350°C, and the remaining raw material is transferred to the third duct in the A-3 system (C3).
will be put into the

即ち、この系内では前述したように原料の加熱。That is, in this system, the raw material is heated as described above.

昇温のみが行なわれる。Only the temperature is increased.

A−3系内には、前記のサイクロン捕集器と同一構造の
第3サイクロン捕集器B3を設け、その頂部には、第2
ダク)C2の基部を接続し、胴部には第3ダク)C3を
接続し、底部には第3原料輸送管D3を接続し、その先
端は第4ダクトC4の基部内に開口させる。この系内は
前記の第3段階通過径路(バス)系内に相当し、A−2
系内と同様に、原料の全量は、それぞれの系内の第3サ
イクロン捕集器B3によって熱ガス中から分離。
A third cyclone collector B3 having the same structure as the above-mentioned cyclone collector is installed in the A-3 system, and a second cyclone collector B3 is installed at the top of the third cyclone collector B3.
A third duct C3 is connected to the body, a third raw material transport pipe D3 is connected to the bottom, and its tip opens into the base of the fourth duct C4. This system corresponds to the third stage passage route (bus) system described above, and is A-2.
As in the system, the entire amount of raw material is separated from the hot gas by the third cyclone collector B3 in each system.

捕集され次の工程へと投入される。It is collected and sent to the next process.

A−4系内には、前記と同様に第4サイクロン捕集器B
4を設け、その頂部には第3ダク)C3の基部を接続し
、胴部には第4ダク)C4を接続−4系内も前記第4段
階通過径路(バス)系内に相当する。この系内では前記
同様に原料の加熱。
In the A-4 system, the fourth cyclone collector B is installed as described above.
The base of the third duct (C3) is connected to the top, and the fourth duct (C4) is connected to the body of the -4 system, which also corresponds to the fourth stage passage (bus) system. In this system, raw materials are heated in the same way as above.

昇温が行なわれ、投入される原料の全量は、この系内の
第1イクロン捕集器B4によって、熱ガス中から分離、
捕集された後に次の工程へ投入される。
The temperature is raised, and the total amount of the input raw material is separated from the hot gas by the first Ikron collector B4 in this system.
After being collected, it is fed into the next process.

従って、これらの系内では、既に述べたように原料は品
温340℃−4470℃−590℃となってA−5系内
の第5ダクトC5の基部に投入され、熱ガスは、A−5
系内から温度770℃−600℃−480℃となってA
−2系内へと導入される。夫々の流れを前記のように熱
ガス時、原料−9で図示すると、各連絡通路ダクトをC
5−C4−C3−C2の方向に流れA−2系内へ導入さ
れる。
Therefore, in these systems, the raw material has a temperature of 340°C - 4470°C - 590°C and is introduced into the base of the fifth duct C5 in the A-5 system, and the hot gas is transferred to the A-5 system. 5
The temperature from inside the system is 770℃-600℃-480℃ and A
-2 is introduced into the system. If the respective flows are illustrated as raw material-9 during hot gas as described above, each communication passage duct is connected to C.
It flows in the direction of 5-C4-C3-C2 and is introduced into the A-2 system.

A−5系内は、前記の第5段階通過径路(パス)系内に
相当する。此の系内にも前記同様に、第5サイクロン捕
集器Bsを設け、その頂部に第4ダク)C4の基部を接
続し、胴部には第5ダクトc5を接続し、底部には昇温
原料の払出ダクト口4を接続する。尚前記第5ダクトC
5の基部には、前記したように第4原料輸送管D4が開
口され、その基部の先端は熱ガスの入気ダクト口1を形
成する。
The A-5 system corresponds to the fifth stage passage system. Similarly to the above, a fifth cyclone collector Bs is provided in this system, the base of the fourth duct C4 is connected to the top, the fifth duct C5 is connected to the body, and the elevator Connect the hot raw material discharge duct port 4. Furthermore, the fifth duct C
5, the fourth raw material transport pipe D4 is opened as described above, and the tip of the base forms the hot gas intake duct opening 1.

このようなA−5系内では、原料中の結晶水が分解、放
出される反応現象と共に、原料の加熱。
In such an A-5 system, there is a reaction phenomenon in which water of crystallization in the raw material is decomposed and released, as well as heating of the raw material.

昇温現象が発生することを基本とし、原料は品温590
℃で第5ダクトC5の基部に投入され、このダクト内を
通過している間に加熱され昇温し2品温600℃に達し
た時点で、結晶水の分解、放出を開始し、完了するもの
とした。但し、理論的には原料を品温450℃〜600
℃で結晶水の分離、放出と云われるが、此の場合計算上
の容易さを考慮して最高品温600℃でこの反応が開始
され且つ完了するものとした。その後、更に加熱され、
昇温し。
Basically, the temperature rise phenomenon occurs, and the raw material temperature is 590℃.
℃ into the base of the fifth duct C5, and while passing through this duct, it is heated and the temperature rises, and when the temperature of the two products reaches 600℃, the decomposition and release of crystal water starts and is completed. I took it as a thing. However, theoretically, the raw material temperature should be 450℃~600℃.
It is said that water of crystallization is separated and released at a temperature of 600°C, but in this case, in consideration of ease of calculation, this reaction was assumed to start and complete at a maximum product temperature of 600°C. After that, it is further heated,
The temperature rises.

既に述べたように最終目的の適正は品温750℃で第5
サイクロン捕集器BSによって原料の全量は。
As already mentioned, the suitability for the final purpose is 5th when the product temperature is 750℃.
The total amount of raw material is determined by the cyclone collector BS.

熱ガス中から分離、捕集されて払出され、仮焼反応炉(
図示せず)へ投入される。また熱源入気熱ガスは900
℃の温度で仮焼反応炉から、この系内の第5ダクトC5
内へ導入され、原料に対して目的の処理を合理的且つ適
正に完行した後に、第5サイクロン捕集器BSから温度
770℃となり、原料からの結晶水の水分を含んで払出
され、A−4系内の第4ダク)C4へ導入される。尚、
原料投入ダクト口3を第1ダクトCIの基部内に開口さ
せる。
It is separated from the hot gas, collected and discharged, and then sent to the calcining reactor (
(not shown). Also, the heat source input hot gas is 900
The fifth duct C5 in this system from the calcination reactor at a temperature of °C
After completing the intended treatment on the raw material in a rational and appropriate manner, it is discharged from the fifth cyclone collector BS at a temperature of 770°C, containing the water content of the crystallized water from the raw material, and 4th duct in the -4 system) is introduced into C4. still,
The raw material input duct port 3 is opened into the base of the first duct CI.

〔発明の効果〕〔Effect of the invention〕

以上述べたように9本発明は、単独装置として。 As described above, the present invention can be used as a stand-alone device.

従来のNSPキルン方式に適用するならば、燃料消費量
を更に一段と減小1節約し、得ると共に、前記したよう
に本発明の機構、構成並びに性能などに関して2本発明
との一連の関係に於て、理論的且つ9合理的に新規な改
良を加えたセメント製造に関する総合装置プラントによ
るならば、燃料消費量原単位は、従来のNSPキルン方
式による75〜80xlO’  (kcal/l−クリ
ンカー〕に対して65  X 10’  (kcal 
/ t−クリンカー〕のように減小節約することができ
、その効果は、関連装置の容量の小型による運転に関す
る省エネルギー化をも含めて極めて顕著且つ大である。
If applied to the conventional NSP kiln system, the fuel consumption will be further reduced (1) and saved, and as described above, the mechanism, structure, performance, etc. of the present invention will be improved (2) in a series of relationships with the present invention. Therefore, theoretically and based on a comprehensive equipment plant for cement manufacturing with new and rational improvements, the unit fuel consumption would be 75 to 80xlO' (kcal/l-clinker) compared to the conventional NSP kiln system. 65 x 10' (kcal
/ T-clinker], and the effects are extremely significant and significant, including energy savings in operation due to the smaller capacity of related equipment.

更に本発明の採用により、セメント焼成用回転炉の燃料
消費量は、従来に比較して、更に低減することができて
、その結果、NOxの発生量を減少し得ることによって
環境衛生保全上の効果も昇天である。
Furthermore, by adopting the present invention, the fuel consumption of the rotary furnace for cement firing can be further reduced compared to the conventional method, and as a result, the amount of NOx generated can be reduced, which improves environmental hygiene. The effect is also ascension.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は1本発明の詳細な説明図である。 A・・・原料予熱装置本体相当部、A−1・・・第1段
階構造部、A−2・・・第2段階構造部、A−3・・・
第3段階構造部、A−4・・・第4段階構造部、A−5
・・・第5段階構造部、1・・・熱ガスの入気ダクト口
、2・・・排ガスの排出ダクト口、3・・・原料投入ダ
クト口。 4・・・昇温原料の払出ダクト口、BI・・・第1サイ
クロン捕集器+82・・・第2サイクロン捕集器、B3
・・・第3サイクロン捕集器+84・・・第4サイクロ
ン捕集器、BS・・・第5サイクロン捕簗器+CI・・
・第1ダクト、C2・・・第2ダクト、C3・・・第3
ダクト。 C4・・・第4ダクF*Cs・・・第5ダクト+DI・
・・第1原料輸送管、D2・・・第2原料輸送管+03
・・・第3原料輸送管、D4・・・第4原料輸送管、=
6・・・熱ガスの流れ方向、−・・・原料の流れ方向。 出願人 株式会社 宇部実業エンジニャーリングコンサ
ルタント
FIG. 1 is a detailed explanatory diagram of the present invention. A... Part corresponding to the raw material preheating device main body, A-1... First stage structure part, A-2... Second stage structure part, A-3...
Third stage structure part, A-4...Fourth stage structure part, A-5
...Fifth stage structure part, 1... Hot gas intake duct opening, 2... Exhaust gas discharge duct opening, 3... Raw material input duct opening. 4... Discharge duct opening for heated raw material, BI... First cyclone collector +82... Second cyclone collector, B3
...Third cyclone collector +84...Fourth cyclone collector, BS...Fifth cyclone collector +CI...
・First duct, C2...second duct, C3...third
duct. C4... 4th duct F*Cs... 5th duct + DI.
...First raw material transport pipe, D2...Second raw material transport pipe +03
...Third raw material transport pipe, D4...Fourth raw material transport pipe, =
6... Direction of flow of hot gas, - Direction of flow of raw material. Applicant Ube Jitsugyo Engineering Consultant Co., Ltd.

Claims (1)

【特許請求の範囲】 セメント原料の予熱装置として、上部構造から、下部構
造に向って5段階の構造部からなり、第1段階構造部に
は、円筒形状の胴部と、逆円錐形状の漏斗状の底部とか
ら成る第1サイクロン捕集器を設置し、この頂部には排
ガスダクト口を上方に向って設け、胴部には第1ダクト
を接続し、この第1ダクトの基部内に原料投入ダクト口
を開口させ、底部には第1原料輸送管を接続し、第2段
階構造部には、前記第1サイクロン捕集器と同様な構造
をもった第2サイクロン捕集器を設け、この頂部には、
前記第1ダクトの基部先端部を接続し、胴部には第2ダ
クトを接続し、この基部内には前記第1原料輸送管の先
端部を開口させ、底部には第2原料輸送管を接続し、 第3段階構造部には、前記のサイクロン捕集器と同構造
の第3サイクロン捕集器を設け、その頂部には、前記第
2ダクトの基部先端部を接続し、胴部には、第3ダクト
を接続し、その基部内には前記第2原料輸送管の先端部
を開口し、底部には第3原料輸送管を接続し、 第4段階構造部には、前記と同構造の第4サイクロン捕
集器を設け、その頂部には前記第3ダクトの基部先端部
を接続し、また胴部には第4ダクトを接続し、この基部
内には前記第3原料輸送管の先端部を開口させ、また底
部には第4原料輸送管を接続し、 第5段階構造部には、前記と同構造の第5サイクロン捕
集器を設け、その頂部には前記第4ダクトの基部先端部
を接続し、また胴部には第5ダクトを接続し、この基部
内には前記第4原料輸送管の先端部を開口させ、更に基
部先端部には、熱ガスの入気ダクト口を設け、なお底部
には、昇温原料の払出ダクト口を形成して成るセメント
原料の多段階予熱装置。
[Claims] As a preheating device for cement raw materials, it consists of five stages of structure from an upper structure to a lower structure, and the first stage structure includes a cylindrical body and an inverted conical funnel. A first cyclone collector consisting of a shaped bottom part is installed, an exhaust gas duct opening is provided at the top part facing upward, a first duct is connected to the body part, and the raw material is placed in the base part of the first duct. The input duct opening is opened, the first raw material transport pipe is connected to the bottom, and the second stage structure section is provided with a second cyclone collector having the same structure as the first cyclone collector, At the top of this
A base tip of the first duct is connected, a second duct is connected to the body, the tip of the first raw material transport pipe is opened in the base, and a second raw material transport pipe is connected to the bottom of the base. The third stage structure is provided with a third cyclone collector having the same structure as the above-mentioned cyclone collector, the top of which is connected to the base end of the second duct, and the body is connected to the third cyclone collector. A third duct is connected, the tip of the second raw material transport pipe is opened in the base, the third raw material transport pipe is connected to the bottom, and the fourth stage structure has the same as above. A fourth cyclone collector having a structure is provided, the top of which is connected to the base tip of the third duct, the body of which is connected to a fourth duct, and the third raw material transport pipe is connected to the base of the fourth cyclone collector. A fourth raw material transport pipe is connected to the bottom, and a fifth cyclone collector having the same structure as above is provided in the fifth stage structure, and the fourth duct is connected to the top of the fifth cyclone collector. A fifth duct is connected to the body, and the tip of the fourth raw material transport pipe is opened in the base, and a hot gas inlet is connected to the base. A multi-stage preheating device for cement raw materials, which is provided with a duct opening, and a duct opening for discharging the heated raw material at the bottom.
JP7987785A 1985-04-15 1985-04-15 Multistage preheating apparatus for cement raw material Pending JPS61242936A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7987785A JPS61242936A (en) 1985-04-15 1985-04-15 Multistage preheating apparatus for cement raw material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7987785A JPS61242936A (en) 1985-04-15 1985-04-15 Multistage preheating apparatus for cement raw material

Publications (1)

Publication Number Publication Date
JPS61242936A true JPS61242936A (en) 1986-10-29

Family

ID=13702458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7987785A Pending JPS61242936A (en) 1985-04-15 1985-04-15 Multistage preheating apparatus for cement raw material

Country Status (1)

Country Link
JP (1) JPS61242936A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03123462A (en) * 1989-10-05 1991-05-27 Takahashi Shoten:Kk Tofu refuse dryer
JP2007063079A (en) * 2005-08-31 2007-03-15 Ube Ind Ltd Method and apparatus for treating exhaust gas extracted from cement kiln
JP2007511455A (en) * 2003-10-29 2007-05-10 エフ. エル. スミス エー/エス Method and equipment for preheating particles or powder raw material

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56145141A (en) * 1980-04-10 1981-11-11 Mitsubishi Heavy Ind Ltd Cement raw material preheating method
JPS59107951A (en) * 1982-11-30 1984-06-22 クルツプ・ポリシユウス・アクチエンゲゼルシヤフト Manufacture of cement from raw material containing noxious substances
JPS5940798B2 (en) * 1979-10-12 1984-10-02 チッソ株式会社 Slow-release organic fertilizer and its manufacturing method
JPS61197452A (en) * 1985-02-26 1986-09-01 三菱マテリアル株式会社 Suspension preheater
JPS61232252A (en) * 1985-04-09 1986-10-16 三菱重工業株式会社 Suspension preheater

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5940798B2 (en) * 1979-10-12 1984-10-02 チッソ株式会社 Slow-release organic fertilizer and its manufacturing method
JPS56145141A (en) * 1980-04-10 1981-11-11 Mitsubishi Heavy Ind Ltd Cement raw material preheating method
JPS59107951A (en) * 1982-11-30 1984-06-22 クルツプ・ポリシユウス・アクチエンゲゼルシヤフト Manufacture of cement from raw material containing noxious substances
JPS61197452A (en) * 1985-02-26 1986-09-01 三菱マテリアル株式会社 Suspension preheater
JPS61232252A (en) * 1985-04-09 1986-10-16 三菱重工業株式会社 Suspension preheater

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03123462A (en) * 1989-10-05 1991-05-27 Takahashi Shoten:Kk Tofu refuse dryer
JP2007511455A (en) * 2003-10-29 2007-05-10 エフ. エル. スミス エー/エス Method and equipment for preheating particles or powder raw material
JP4689618B2 (en) * 2003-10-29 2011-05-25 エフ. エル. スミス エー/エス Method and equipment for preheating particles or powder raw material
JP2007063079A (en) * 2005-08-31 2007-03-15 Ube Ind Ltd Method and apparatus for treating exhaust gas extracted from cement kiln

Similar Documents

Publication Publication Date Title
CN105441687B (en) Dust of Iron And Steel Works recycles technique and system
CN109772144A (en) Cement industry self-loopa dry method desulfuration system and method
CN108149006B (en) Molybdenite concentrate self-heating eddy flow roasting technique and equipment
WO2021068499A1 (en) Anhydrite preparation system
CN110803876B (en) II type anhydrous gypsum thermal coupling production device and method
US5704780A (en) Apparatus for thermal processing of raw materials in dust form
CN102219411A (en) External circulating decomposition reactor of high sold-gas ratio using horizontal cyclone
JPS61242936A (en) Multistage preheating apparatus for cement raw material
CN201892433U (en) Cement kiln end exhaust heat utilization system
CN216838132U (en) Zinc leaching slag treatment system
CN1011408B (en) Calcination apparatus for use in fluidized bed burning installation for powdery raw material
CN102021006B (en) Process for removing water content from coking coal
CN213924953U (en) Dry flue gas of concentrate system of recycling
CN210473593U (en) Cement plant kiln tail flue gas cooling desulfurization increase system
CN212390395U (en) Continuous preparation device of coal powder for iron making
CN205023854U (en) Gypsum relieving haperacidity thermal technology device
CN212025417U (en) Environment-friendly and energy-saving rare earth concentrate sectional roasting system
CN108955277A (en) A kind of system for realizing inexpensive denitration using sinter waste-heat sintered discharge gas
CN107265488B (en) A kind of process unit and method of two step method production γ type aluminium oxide
CN112179156A (en) Bypass air-bleeding energy-saving emission-reduction utilization system and process for cooperatively treating waste in cement kiln
CN217519862U (en) Sludge incineration experimental furnace
CN110980806A (en) Equipment and method for producing vanadium pentoxide powder through cyclic calcination
CN216770218U (en) Magnesium ore processing system for drying wet magnesium ore by using rotary kiln waste heat
US4026672A (en) Plant for fluidized bed heat treatment of powdered alunite
CN107216894A (en) The system and method for handling low-order coal