JPS61242683A - Method and device for deaerating feed water - Google Patents

Method and device for deaerating feed water

Info

Publication number
JPS61242683A
JPS61242683A JP8268185A JP8268185A JPS61242683A JP S61242683 A JPS61242683 A JP S61242683A JP 8268185 A JP8268185 A JP 8268185A JP 8268185 A JP8268185 A JP 8268185A JP S61242683 A JPS61242683 A JP S61242683A
Authority
JP
Japan
Prior art keywords
water
pipe
storage tank
steam
water storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8268185A
Other languages
Japanese (ja)
Other versions
JPH024352B2 (en
Inventor
Yasuaki Nakamura
中村 泰昭
Katsumi Ura
浦 勝己
Yoshikuni Oshima
大島 義邦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Engineering Co Ltd
Priority to JP8268185A priority Critical patent/JPS61242683A/en
Publication of JPS61242683A publication Critical patent/JPS61242683A/en
Publication of JPH024352B2 publication Critical patent/JPH024352B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Degasification And Air Bubble Elimination (AREA)
  • Physical Water Treatments (AREA)

Abstract

PURPOSE:To reduce effectively oxygen dissolved in feed water by effectively warming the feed water to be sent to a daerator with auxiliary steam and evacuating the inside of the deaerator with a deaerator vent system. CONSTITUTION:The lower end part of a feed water communicative pipe 10 for communicating a deaeration chamber 1 with a water storage tank 12 is led below the water surface in the water storage tank 12, (a) a vent pipe 14 provided with an orifice 14a and a stop valve 15 for the vent pipe and (b) a start-up vent pipe 16 furnished with a stop valve 17 for the vent pipe are arranged in parallel between the deaeration chamber 1 and a condenser and a pipe 18 for supplying heated steam to the deaeration chamber 1 is provided. The feed water deaeration device is used for heating the feed water to a boiler. When the boiler is started, the valve 17 is opened and a part of heated steam is introduced into the water storage tank 12. Consequently, time necessary for deaeration and cleanup at startup can be reduced, the amt. of auxiliary steam is saved and the cost of in-plant boiler equipment can be reduced.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、火力発電プラントに於いて給水中に溶存する
酸素等の非凝縮ガスを除去する脱気技術に係り、特にプ
ラント起動時の給水中の溶存酸素を短時間で低減させる
に好適な給水脱気方法、及び給水脱気装置に関するもの
である。
Detailed Description of the Invention [Field of Application of the Invention] The present invention relates to a deaeration technology for removing non-condensable gases such as oxygen dissolved in the water supply in a thermal power plant, and in particular, The present invention relates to a feed water deaeration method and a feed water deaeration device suitable for reducing dissolved oxygen in a short period of time.

〔発明の背景〕[Background of the invention]

従来、火力発電プラントに於いては、タービン抽気また
はボイラ蒸気によりボイラへ供給する給水を加熱及び脱
気し、プラント全体の腐食防出を図るとともに熱効率を
向」:させる目的で脱気器が設けられている。脱気方法
及び脱気装置に関する最新の公知技術については米国文
献[物理的脱気の理論的展望J  (Theoreii
ca] aspects ofpkysjcal da
−aeratjon)ストーク社発行に詳しい。
Conventionally, in thermal power plants, deaerators have been installed to heat and deaerate feed water supplied to the boiler using turbine extraction air or boiler steam to prevent corrosion of the entire plant and improve thermal efficiency. It is being The latest known technology regarding degassing methods and devices can be found in the US literature [Theoretical Perspectives on Physical Degassing J (Theoreii
ca] aspects of pkysjcal da
-aeratjon) Familiar with Stoke Publishing.

脱気方法及び脱気装置に関する従来技術を第3図につい
て次に述べる。
The prior art regarding the degassing method and degassing device will now be described with reference to FIG.

脱気装置は脱気室1.及び貯水タンク12を備えており
、脱気室1は給水の加熱、脱気を行い、貯水タンク12
は脱気された給水を貯える。
The degassing device is a degassing chamber 1. and a water storage tank 12, the deaeration chamber 1 heats and deaerates the supplied water, and the water storage tank 12
stores the deaerated water supply.

給水は、給水配管6によった脱気室1に導かれ、脱気室
1−1一部のスプレーパルプ8により噴射され微粒化す
る。微粒化されて表面積が急激に増大した給水は、蒸気
雰囲気中を高速にて飛流する間に蒸気と直接接触による
熱交換を行ない脱気器の運転圧力の飽和温度まで上昇し
、この急速な熱交換により拡散脱気(第1段脱気)が行
なわれ、この第1段脱気により相当星の非凝縮ガスが脱
気される。
The supplied water is guided to the deaeration chamber 1 by a water supply pipe 6, and is sprayed and atomized by the spray pulp 8 in a part of the deaeration chamber 1-1. Feed water, which has been atomized and has a rapidly increased surface area, exchanges heat with the steam through direct contact while flowing through the steam atmosphere at high speed, rising to the saturation temperature of the deaerator operating pressure. Diffusion degassing (first stage degassing) is performed by heat exchange, and the non-condensable gas of the corresponding star is degassed by this first stage degassing.

更に給水は、分配トレイ4により脱気トレイ5」二に分
配されて蛇行流下し、トレイ内を上昇する加熱蒸気と攪
拌され第2段脱気が行なわれる。トレイを通り抜けて脱
気を完了した給水は脱気室1下部に一度溜まり、給水連
絡管10を流下して貯水タンクJ2に貯蔵される。
Furthermore, the feed water is distributed by the distribution tray 4 to the degassing tray 5'', flows down in a meandering manner, and is mixed with the heated steam rising inside the tray to perform second stage degassing. The supplied water that has passed through the tray and completed deaeration once accumulates in the lower part of the deaeration chamber 1, flows down the water supply communication pipe 10, and is stored in the water storage tank J2.

一方、加熱蒸気は蒸気人口9より脱気室1内に流入し、
トレイ室を回って給水を加熱しなからトレイ室下部の蒸
気流入路よりトレイ室に流入し、トレイの間を上昇する
。上記の−1−昇蒸気は、流下してくる給水から非凝縮
ガスを奪い去る。トレイの間を」ユ昇した蒸気は分配箱
3の脇を通ってスプレー室2に入り噴射微粒化された給
水と熱交換して、自らは復水となって給水と共に流下す
る。ここで復水にならなかった非凝縮ガスはスプレーパ
ルプ8の座に設けられたベント管7より排出される。
On the other hand, heated steam flows into the degassing chamber 1 from the steam population 9,
The water goes around the tray chamber to heat the feed water, then flows into the tray chamber through the steam inflow path at the bottom of the tray chamber and rises between the trays. -1- The rising steam removes non-condensable gases from the flowing feed water. The steam that has risen between the trays passes through the side of the distribution box 3 and enters the spray chamber 2, where it exchanges heat with the sprayed atomized feed water, becomes condensate, and flows down together with the feed water. The non-condensable gas that has not become condensed water is discharged from a vent pipe 7 provided at the seat of the spray pulp 8.

ボイラ装置を設けたプラントが定常的に運転されている
場合は、タービン油気、又はボイラ蒸気を充分に脱気器
へ供給することができるので、給水を脱気して溶存酸m
1度を規定値以下に保つことに関【ッて別設の困難が無
い。
When a plant equipped with a boiler equipment is operated regularly, sufficient turbine oil gas or boiler steam can be supplied to the deaerator, so the feed water can be degassed and dissolved acid m
There is no difficulty in installing a separate device to keep the temperature below the specified value.

ところが、プラン1へ起動時のクリーンアップ運転に於
いては、多量の脱気されていない補給水が復水器を介し
て系統内に導入される。
However, in the cleanup operation when starting up to Plan 1, a large amount of makeup water that has not been degassed is introduced into the system via the condenser.

この場合の脱気器及びその廻りの配管系統の作動を第4
図について説明する。
In this case, the operation of the deaerator and the piping system around it is
The diagram will be explained.

クリーンアップ時には、加熱蒸気はボイラ点大前でもあ
りタービン抽気またはボイラ蒸気はとれず、催告または
所内ボイラからの補助蒸気が、加熱蒸気管18より脱気
器に導入される。19は止弁である。
At the time of cleanup, the heating steam is still before boiler temperature, so turbine extraction or boiler steam cannot be taken, and auxiliary steam from the boiler or the in-house boiler is introduced into the deaerator through the heating steam pipe 18. 19 is a stop valve.

また脱気器のベント系統の運用も、給水と補助蒸気との
熱交換を有効にする為、ベント管14の止弁15は開と
するが、起動用ベント管]6の止弁17は閉としていた
In addition, regarding the operation of the vent system of the deaerator, in order to effectively exchange heat between the feed water and auxiliary steam, the stop valve 15 of the vent pipe 14 is open, but the stop valve 17 of the start vent pipe 6 is closed. It was.

しかし、プラント起動時のクリーンアップ運転に際して
は、諸種の事情(例えば発電所全体としての運用上の問
題)により、脱気器に対して補助蒸気を充分に供給でき
ない事例が少なくない。
However, during clean-up operation at plant start-up, there are many cases in which auxiliary steam cannot be sufficiently supplied to the deaerator due to various circumstances (for example, operational problems of the power plant as a whole).

この場合、補助蒸気と給水との熱交換が充分に行われず
、あるいは脱気室1内に補助蒸気が不足気味となって、
給水の溶存酸素濃度を規定値まで低下させるのに長時間
を要する。
In this case, sufficient heat exchange between the auxiliary steam and the feed water may not take place, or there may be a shortage of auxiliary steam in the degassing chamber 1.
It takes a long time to reduce the dissolved oxygen concentration in the water supply to the specified value.

また、最近中間負荷運用としてプラント起動停止の頻繁
なり S S CDaily 5tart&5top)
 ・W S 5(Week]y 5tart&5top
)等のプラントに於いては、短時間でクリーンアップを
完了させるという発電所のニーズよりプラント起動時の
脱気器溶存酸素を少量の補助蒸気で、しかも短時間で低
減させる′ 必要がある。
In addition, recently, the plant has started and stopped frequently due to intermediate load operation.
・WS 5(Week)y 5tart & 5top
), it is necessary to reduce the dissolved oxygen in the deaerator at the time of plant start-up with a small amount of auxiliary steam and in a short time due to the power plant's need to complete cleanup in a short time.

以上に述べた如く、従来技術による給水の脱気について
は次のような問題があり、早急な解決が要望されている
As described above, there are the following problems with the conventional technology for deaeration of feed water, and an immediate solution is desired.

(1)脱気/クリーンアップに長時間かかる。→起動時
量大/起動損失大 (2)補助蒸気が大量に必要で所内ボイラの容量が大ぎ
くなり設備費も大きくなっていた。
(1) Deaeration/cleanup takes a long time. →Large start-up time/Large start-up loss (2) A large amount of auxiliary steam was required, which increased the capacity of the in-house boiler and increased equipment costs.

〔発明の目的〕[Purpose of the invention]

本発明は1−述の要望に応えるべく為されたものであっ
て、 (1)起動時の脱気及びクリーンアップ時間の短縮化、
および、 (ii )補助蒸気量の節約及び所内ボイラの設備費低
減を図り得る脱気方法及び脱気装置を提供し、以って給
水の水質向−Lによるプラントの信頼性。
The present invention has been made to meet the needs mentioned in 1-1 above.
and (ii) providing a deaeration method and a deaeration device that can save the amount of auxiliary steam and reduce equipment costs for an in-house boiler, thereby improving the reliability of the plant by improving the quality of the water supply.

耐久性向−1−に貢献することを目的とする。The purpose is to contribute to durability -1-.

〔発明の概要〕[Summary of the invention]

」ユ記の[1的を達成する為に創作した本発明方法の基
本的*理を次に略述する。
The basic principles of the method of the present invention, which was created to achieve objective 1 of the Book of Yu, are summarized below.

本発明の要点は、給水中の酸素溶解度は圧力が低いほど
、温度が高いほど低減される点に着目し、脱気器へ送水
される給水を補助蒸気により有効に加温し、かつ、脱気
器ベント系統により脱気器内を真空にし給水中の溶存酸
素を効果的に低減させることにある。
The main point of the present invention is to focus on the fact that the lower the pressure and the higher the temperature, the lower the oxygen solubility in feed water, and to effectively heat the feed water sent to the deaerator with auxiliary steam and desorb the water. The goal is to create a vacuum inside the deaerator using the air vent system and effectively reduce dissolved oxygen in the water supply.

一1ユ記の原理に基づいて前述の目標を達成する為、本
発明に係る給水の脱気方法は、脱気室の下方に貯水タン
クを設けると共に上記脱気室と貯水タンクとを給水連絡
管で連通し、上記の給水連絡管の下端部は貯水タンク内
の水面下に達するものとし、かつ、前記の脱気室と復水
器との間に、(、)オリフィス及びベント管止弁を設け
たペンj〜管、並びに、(b)起動用ベント管止弁を設
けた起動用ペン1〜管を並列に介装接続すると共に、前
記の脱気室に加熱蒸気を供給する加熱蒸気管を設けた結
水脱気装置を用いてボイラ用の給水を加熱する方法にお
いて、該ボイラを起動する際前記の起動用ベント管止弁
を開弁するとともに、前記加熱蒸気の1部を貯水タンク
内に導入することを特徴とする。
In order to achieve the above-mentioned goal based on the principle of Section 11, the method for deaeration of feed water according to the present invention includes providing a water storage tank below the deaeration chamber and connecting the deaeration chamber and the water storage tank with water supply. The lower end of the water supply connecting pipe shall reach below the water surface in the water storage tank, and between the deaeration chamber and the condenser there shall be an orifice and a vent pipe stop valve. and (b) the starting pen 1 - pipe provided with the starting vent pipe stop valve are connected in parallel, and heating steam is supplied to the degassing chamber. In a method of heating feed water for a boiler using a condensation deaerator equipped with a pipe, when starting the boiler, the starting vent pipe stop valve is opened and a part of the heated steam is stored in water. It is characterized by being introduced into a tank.

また、上記の方法を容易に実施して、その効果を充分に
発揮させるように創作した本発明の装置は、脱気室の下
方に貯水タンクを設けると共に上記脱気室と貯水タンク
とを給水連絡管で連通し、上記の給水連絡管の下端部は
貯水タンク内の水面下に達するものとし、かつ、前記の
脱気室と復水器とのu)1に、(a)オリフィス及びベ
ント管止弁を設けたペン1〜管、並びに(b)起動用ベ
ント管止弁を設けた起動用ベン1−管を並列に介装接続
すると共に、前記の脱気室に加熱蒸気を供給する加熱蒸
気管を設けた給水脱気装置において、前記脱気器用貯水
タンクの水面下に蒸気噴射ノズルを設けるとともに、前
記加熱蒸気の一部を上記蒸気噴射ノズルに供給する管路
に設けたことを特徴とする。
In addition, the device of the present invention, which was created so that the above-mentioned method can be easily carried out and fully exhibit its effects, has a water storage tank provided below the deaeration chamber, and a water supply tank that connects the deaeration chamber and the water storage tank. The lower end of the above-mentioned water supply communication pipe shall reach below the water surface in the water storage tank, and the deaeration chamber and condenser shall be connected in u)1 with (a) an orifice and a vent. The pen 1 pipe provided with a pipe stop valve and (b) the starting vent pipe 1 provided with a starting vent pipe stop valve are connected in parallel, and heated steam is supplied to the deaeration chamber. In the feed water deaerator equipped with a heated steam pipe, a steam injection nozzle is provided below the water surface of the deaerator water storage tank, and a part of the heated steam is provided in a pipe line that supplies the steam injection nozzle. Features.

〔発明の実施例〕[Embodiments of the invention]

第1図は、本発明の脱気方法を実施する為に、前述の公
知の給水脱気装置(第4図)に本発明の給水脱気装置を
適用して改良した一実施例を示す。
FIG. 1 shows an embodiment in which the feed water deaerator of the present invention is applied and improved to the above-mentioned known feed water deaerator (FIG. 4) in order to carry out the deaeration method of the present invention.

公知例の装置(第4図)と異なる点は次の如くである。The difference from the known device (FIG. 4) is as follows.

脱気室1.と貯水タンク12を連絡する給水連絡管10
を貯水タンク12内の水面」一方で分割する。また、脱
気室1への加熱蒸気管18から起動用加熱蒸気管20を
分岐し、止弁21を介し貯水タンク12の下部(分配管
]3よりも下方)へ導入し、に方へ吹き出すスプレーノ
ズル22を貯水タンク12の底部付近に設置する。
Deaeration chamber 1. and a water supply connecting pipe 10 that connects the water storage tank 12.
The water surface in the water storage tank 12 is divided on one side. In addition, a starting heating steam pipe 20 is branched from the heating steam pipe 18 to the deaeration chamber 1, and is introduced into the lower part of the water storage tank 12 (below the distribution pipe 3) through the stop valve 21, and is blown out in the direction. A spray nozzle 22 is installed near the bottom of the water storage tank 12.

本実施例の装置(第1図)を用いて本発明の脱気方法を
実施する場合、起動用加熱蒸気の導入時に於いて脱気器
ベン1〜系統であるペン1へ管14に設置の止弁15及
び起動用ベント管16に設置の止弁17を開して運用す
る。
When carrying out the degassing method of the present invention using the device of this embodiment (Fig. 1), when introducing heating steam for startup, the deaerator installed in the pipe 14 to the pen 1 which is the system from the deaerator vent 1 to It is operated by opening the stop valve 15 and the stop valve 17 installed in the startup vent pipe 16.

次に動作と脱気作用を説明する。Next, the operation and deaeration effect will be explained.

プラン1〜起動時、脱気器への加熱蒸気導入時にベント
管14の止弁15と起動用ペン1〜管J6の止弁17は
全開しておく。止弁17を全開する効果は次の如くであ
る。
When starting Plan 1, the stop valve 15 of the vent pipe 14 and the stop valve 17 of the starting pen 1 to pipe J6 are fully opened when heating steam is introduced into the deaerator. The effect of fully opening the stop valve 17 is as follows.

ベント管14はオリフィス14aを設けであるので、止
弁15を全開するだけでは、脱気室1内の真空度が復水
器の真空度には到らないが、配管口径も大きい起動用ベ
ント管16の止弁17を全開することにより、脱気室1
内の真空度を復水器の真空度と略等しくさせ、給水の溶
存酸素の真空脱気効果と加熱蒸気量の低減を可能とする
(この原理については後述する。)、。
Since the vent pipe 14 is provided with an orifice 14a, the degree of vacuum in the deaeration chamber 1 will not reach the vacuum degree of the condenser just by fully opening the stop valve 15, but the starting vent with a large pipe diameter By fully opening the stop valve 17 of the pipe 16, the degassing chamber 1
The degree of vacuum inside the condenser is made approximately equal to the degree of vacuum of the condenser, thereby making it possible to achieve a vacuum deaeration effect of dissolved oxygen in the feed water and to reduce the amount of heating steam (this principle will be described later).

上記状態にて加熱蒸気を起動用加熱蒸気管20より導入
し、スプレーノズル22から上方の分配管13側に吹き
出す。吹き出された蒸気は気泡となり貯水タンク12内
の給水と直接熱交換して温度上昇させながら水面上に到
る。水面上の圧力は真空となっており蒸気の気泡は比容
積を著しく増大され、]一方に高速にて飛流しながら均
圧連絡管11及び給水連絡管10を上昇し脱気室1に導
入される。ここで、給水連絡管10を貯水タンク12内
で分割した効果としては、貯水タンク12水面上で」一
方に飛流する蒸気を均一に脱気室1に導入でき、しかも
脱気室1と貯水タンク12との圧力差により貯水タンク
12内の給水が給水連絡管10を通り脱気室1側に逆流
するのを防止することを可能どする(尚、−に記逆流防
1F−は通常運転時においても有効であり、また、FC
B時や負荷減少時においても同様の効果が得られる)。
In the above state, heated steam is introduced from the starting heating steam pipe 20 and is blown out from the spray nozzle 22 toward the upper distribution pipe 13 side. The blown steam becomes bubbles and reaches the water surface while directly exchanging heat with the water supplied in the water storage tank 12 and increasing the temperature. The pressure on the water surface is a vacuum, and the specific volume of the steam bubbles is significantly increased, and the steam bubbles flow in one direction at high speed, ascending the pressure equalization pipe 11 and the water supply pipe 10, and are introduced into the degassing chamber 1. Ru. Here, the effect of dividing the water supply pipe 10 in the water storage tank 12 is that the steam flowing in one direction on the water surface of the water storage tank 12 can be uniformly introduced into the deaeration chamber 1, and the It is possible to prevent the water supply in the water storage tank 12 from flowing back to the degassing chamber 1 side through the water supply connection pipe 10 due to the pressure difference with the tank 12 (note that the backflow prevention 1F- indicated in - is not operated normally). FC
A similar effect can be obtained at time B or when the load is reduced).

脱気室1に均一に導入された蒸気は、脱気トレイ52分
配置・レイ4を上昇しながら、微粒化されて流下してく
る給水と熱交換し給水中の非凝縮ガスを析出させること
により脱気し、自らは復水となって給水と共に流下する
。ここで復水とならなかった非凝縮ガスは、ベント管1
4及び起動用ベント管16より復水器に排出される。
The steam uniformly introduced into the degassing chamber 1 exchanges heat with the atomized feed water flowing down while ascending the degassing tray 4, which is arranged in 52 sections, to precipitate non-condensable gas in the feed water. The water is deaerated, and it becomes condensate and flows down with the water supply. The non-condensed gas that did not become condensed water is stored in the vent pipe 1.
4 and the starting vent pipe 16 to the condenser.

次に本発明の基本的な原理である給水中の溶存酸素量の
真空度と温度との関係の一例を第2図により説明する。
Next, an example of the relationship between the amount of dissolved oxygen in the water supply and the degree of vacuum and temperature, which is the basic principle of the present invention, will be explained with reference to FIG.

本図より給水中の溶存酸素量は、真空度及び温度が高い
ほど減少されることが解る。
From this figure, it can be seen that the amount of dissolved oxygen in the water supply decreases as the degree of vacuum and temperature increase.

例えば、従来技術である前記第4図の真空脱気状態では
脱気器ベント管]4の止弁]5は開、起動用ベント管1
6の止弁17は閉となっている為、脱気器内圧はオリフ
ィス作用により復水器内圧よりも高くなる。この状態で
溶存酸素量は、第2図において給水温度15℃、大気圧
で約10ppm(■点)より、脱気器内圧が700飾H
gVacでは、■点の状態となるが、この段階では溶存
酸素量は500ppm以−トある。さらに脱気器加熱蒸
気導入により給水温度を15℃より40℃の温度上昇(
ΔT=25℃)にて0点の状態となり溶存酸素量も起動
時の規定値である50ppb以下に達する。
For example, in the vacuum degassing state shown in FIG.
Since the stop valve 17 of No. 6 is closed, the internal pressure of the deaerator becomes higher than the internal pressure of the condenser due to the orifice action. In this state, the amount of dissolved oxygen is approximately 10 ppm (point ■) at the feed water temperature of 15°C and atmospheric pressure in Figure 2, and the deaerator internal pressure is 700 H.
At gVac, the state is at point 2, but at this stage the amount of dissolved oxygen is 500 ppm or more. Furthermore, by introducing heated steam to the deaerator, the temperature of the feed water was increased from 15℃ to 40℃ (
At ΔT=25°C), the system reaches a zero point state, and the amount of dissolved oxygen also reaches 50 ppb or less, which is the specified value at startup.

ところが、本発明である第19図の真空脱気状態では、
従来技術に対して起動用ベント管16の止弁7を開する
ことにより、脱気器内圧はオリフィスバイパスされる為
、低下して復水器の内圧と略等しくなり、比容積が増大
して脱気効率も向上する。この状態での溶存酸素量は、
給水温度15℃脱気器内圧730 un ’F(g V
 a cでは、第2図の■点から0点となり、この段階
で溶存酸素量は約220ppbに低減される。この段階
@点から更に加熱蒸気によって給水を加熱して、規定の
溶存酸素濃度50ppbとするに必要な温度上昇幅は、
(作意から(百1点まで、すなわち給水温度15℃から
26℃までの約11℃で足りる。
However, in the vacuum degassing state of FIG. 19, which is the present invention,
In contrast to the prior art, by opening the stop valve 7 of the startup vent pipe 16, the deaerator internal pressure is bypassed through the orifice, so it decreases and becomes approximately equal to the condenser internal pressure, increasing the specific volume. Deaeration efficiency is also improved. The amount of dissolved oxygen in this state is
Feed water temperature 15℃ Deaerator internal pressure 730 un'F (g V
In a c, the point becomes 0 from point ■ in FIG. 2, and the amount of dissolved oxygen is reduced to about 220 ppb at this stage. The range of temperature increase necessary to further heat the feed water from this stage @ point using heated steam to reach the specified dissolved oxygen concentration of 50 ppb is:
(From the point of view of design, up to 101 points, that is, a water supply temperature of approximately 11°C from 15°C to 26°C is sufficient.

さらに、寒冷地においては海水温度も低く、タービン熱
負荷も無い起動時、脱気器内圧は一層低下し740 m
n Hg V a c、程度となる為、真空上昇により
約00ppb(■点)となり、脱気器加熱蒸気導入によ
る規定溶存酸素量50ppb達成に必要な温度−1−昇
は、■)点から0点まで、すなわち給水温度15℃から
約18℃の温度上昇(!1TJ−3℃)で溶存酸素濃度
の規定値を確保でき、さらに補助蒸気量の低減が可能と
なる。
Furthermore, in cold regions, when the seawater temperature is low and there is no turbine heat load at startup, the deaerator internal pressure drops even further to 740 m
n Hg V a c, so the vacuum rises to about 00 ppb (point ■), and the -1-rise in temperature required to achieve the specified dissolved oxygen amount of 50 ppb by introducing heated steam to the deaerator is 0 from point ■). In other words, by increasing the temperature from the feed water temperature of 15° C. to about 18° C. (!1 TJ-3° C.), the prescribed value of the dissolved oxygen concentration can be ensured, and the amount of auxiliary steam can be further reduced.

ここで、必要な補助蒸気量Ga  (T/H)は次の(
1)式によって求められる。
Here, the required auxiliary steam amount Ga (T/H) is as follows (
1) It is determined by the formula.

ただし、 G、=給水量(500T/Hとする。)H1=補助蒸気
エンタルピ(700Kcafl/Hとする。) H2=脱気器出口給水エンタルピ H3=脱気器入口給水エンタルピ 次に、600MW級発電プラントにおけるボイラ装置に
ついて、前述の第2図における■点からC)点までの温
度上昇に必要な補助蒸気量(従来例)は、 :18T/H また、従来例における加圧脱気時に、脱気器内圧力を1
゜5 at;a 、貯水温度を111℃に保持するもの
とすると、 キ70T/I( 次に、本発明の実施例における[有]点から(L・点ま
での温度」二昇に必要な補助蒸気量は、中8T/H 同じく、本発明の実施例(寒冷地)における(′¥r)
点から((71点までの温度上昇については、牛2 T
 / H 以上に示す如く、給水脱気時に必要な補助蒸気量は、従
来の真空脱気時には約18T/H1従来の加圧脱気時に
は約70T/H必要であったが、本発明による真空脱気
時には約8T/H1さらに寒冷地プラントでは約2 T
 / I(と大幅な補助蒸気量の低減が可能どなる。
However, G, = Water supply amount (500T/H) H1 = Auxiliary steam enthalpy (700Kcafl/H) H2 = Deaerator outlet water supply enthalpy H3 = Deaerator inlet water supply enthalpy Next, 600MW class power generation Regarding the boiler equipment in the plant, the amount of auxiliary steam required to raise the temperature from point ■ to point C in Figure 2 (conventional example) is: 18T/H. The pressure inside the air chamber is 1
゜5at;a, assuming that the storage water temperature is maintained at 111℃, then the temperature required to raise the temperature from point [Yes] to point (L) in the embodiment of the present invention is The amount of auxiliary steam is medium 8T/H Similarly, ('\r) in the embodiment of the present invention (cold region)
(For temperature increase from point to point ((71 point, cow 2 T
/ H As shown above, the amount of auxiliary steam required for degassing feed water is approximately 18 T/H for conventional vacuum degassing and approximately 70 T/H for conventional pressurized degassing. Approximately 8 T/H1 at high temperatures, and approximately 2 T in cold region plants.
/ I (This makes it possible to significantly reduce the amount of auxiliary steam.

このようにして、本実施例においては、(イ)起動時脱
気器での脱気運転において、脱気器の真空上昇を図るこ
とができるので、従来の必要補助蒸気量に対し50%以
上の節約及び所内ボイラ容量が低減可能となり、600
MW級ブラン1−で真空脱気時従来約18T/Hの補助
蒸気が必要であったが、本発明により2〜8T/Hに低
減できた。
In this way, in this embodiment, it is possible to increase the vacuum of the deaerator during (a) deaeration operation with the deaerator at startup, so it is possible to increase the vacuum of the deaerator by more than 50% compared to the conventional required amount of auxiliary steam. It is possible to save 600 yen and reduce the in-house boiler capacity.
Conventionally, approximately 18 T/H of auxiliary steam was required during vacuum degassing with a MW class bran 1-, but this can be reduced to 2 to 8 T/H with the present invention.

(ロ)本発明によれば、効率のよい給水蒸気運転が可能
となるので、従来初期のプレボイラクリーンアップは、
約]−〇日間要していたが、3〜4日のクリーンアップ
時間の短縮ができ、起動時間及び起動損失が低減可能と
なった。
(b) According to the present invention, efficient feed steam operation is possible, so the conventional preboiler cleanup at the initial stage is
The cleanup time used to take approximately 1-0 days, but the cleanup time has been shortened by 3 to 4 days, and the startup time and startup loss can now be reduced.

(ハ)上記1,2に関し、効率よく給水中の溶存酸素量
を低減できるので、水質向上によるプラントの信頼性が
確保できた。
(c) Regarding items 1 and 2 above, since the amount of dissolved oxygen in the water supply could be efficiently reduced, the reliability of the plant could be ensured by improving the water quality.

という実用的な効果を奏した。This had a practical effect.

第5図は本発明に係る脱気方法の部分的応用例を示す。FIG. 5 shows a partial application of the degassing method according to the invention.

本応用例は第4図に示した従来形の脱気装置を用いて行
ったもので、起動操作時に起動用ベント管]6の止弁1
7を開く。これにより、脱気器1−内の圧力を低下させ
て蒸気の比容積を増大させ、蒸気効率の向」二、及び補
助蒸気所要量の節減ができる。
This application example was carried out using the conventional deaerator shown in Fig. 4, and when the start-up operation is performed, the stop valve 1 of the start-up vent pipe ] 6
Open 7. This reduces the pressure inside the deaerator 1 and increases the specific volume of steam, thereby improving steam efficiency and reducing the amount of auxiliary steam required.

第6図は、第1図と異なる実施例の装置を示す。FIG. 6 shows a different embodiment of the apparatus from FIG.

原理的には、第1図の実施例と同じであるが、給水連絡
管10′に開口を設けていない。起動用ヘン1−管16
の止弁17を開し、補助蒸気を貯水タンク12下部に導
入することで、効果的な貯水の温度−1−昇及び、脱気
作用により脱気時間の短縮。
The principle is the same as the embodiment shown in FIG. 1, but no opening is provided in the water supply pipe 10'. Starting Hen 1-Pipe 16
By opening the stop valve 17 and introducing auxiliary steam into the lower part of the water storage tank 12, the temperature of the stored water can be effectively raised by -1-, and the deaeration time can be shortened by the deaeration effect.

補助蒸気量の低減を図ることができる。The amount of auxiliary steam can be reduced.

第7図は更に異なる実施例の装置を示す。本例が第1図
と異なるところは、水面下の蒸気ノズル22の他に、水
面−ヒの蒸気ノズル22′も併設しである点である。こ
のように構成すると、貯水タンク12内の水面の変動に
対応し易いという効果が有る。
FIG. 7 shows a further different embodiment of the apparatus. This example differs from FIG. 1 in that in addition to the steam nozzle 22 below the water surface, a steam nozzle 22' above the water surface is also provided. This configuration has the effect of easily responding to fluctuations in the water level within the water storage tank 12.

〔発明の効果〕〔Effect of the invention〕

以上に述べたように、本発明の脱気方法によれば、 (i)起動時の脱気及びクリーンアップ時間の短縮化、
および、 (ii)補助蒸気量の節約及び所内ボイラの設備費低減
を図ることができ、給水の水質向上によってプラントの
信頼性向上および耐久性向上に貢献するところ多大であ
る。
As described above, according to the deaeration method of the present invention, (i) reduction of deaeration and cleanup time at startup;
and (ii) it is possible to save the amount of auxiliary steam and reduce the equipment cost of the in-house boiler, which greatly contributes to improving the reliability and durability of the plant by improving the quality of the water supply.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一実施例の説明図、第2図は、溶存
酸素量及び真空度と温度との関係を示す図表、第3図は
、脱気器の構造及び脱気作用を示す為の断面図、第4図
は、従来の起動時の脱気状態の説明図、第5図は、本発
明の詳細な説明図である。第6図及び第7図はそれぞれ
前記と異なる実施例の説明図である。 1・・・脱気室、2・・・スプレー室、3・・・分配箱
、4・・・分配トレイ、5・・・脱気トレイ、6・・・
給水入口管、7・・・ベント管、8・・・スプレーパル
プ、9・・・蒸気入口、10.10’・・・給水連絡管
、11・・・均圧連絡管、12・・・貯水タンク、13
・・・分配管、14・・・ベント管、1.4 a・・・
オリフィス、15・・・ベント管止弁、16・・・起動
用ベント管、17・・・起動用ベント管止弁、18・・
・加熱蒸気管、19・・・止弁、20・・・起動用加熱
蒸気管、21.21’・・・止弁、22゜22′・・・
蒸気ノズル。
Fig. 1 is an explanatory diagram of one embodiment of the present invention, Fig. 2 is a chart showing the relationship between the amount of dissolved oxygen and the degree of vacuum, and temperature, and Fig. 3 is a diagram showing the structure of the deaerator and the degassing action. FIG. 4 is an explanatory diagram of a conventional degassing state at startup, and FIG. 5 is a detailed explanatory diagram of the present invention. FIGS. 6 and 7 are explanatory diagrams of embodiments different from those described above, respectively. 1... Deaeration chamber, 2... Spray room, 3... Distribution box, 4... Distribution tray, 5... Deaeration tray, 6...
Water supply inlet pipe, 7... Vent pipe, 8... Spray pulp, 9... Steam inlet, 10.10'... Water supply connecting pipe, 11... Equalizing pressure connecting pipe, 12... Water storage tank, 13
...Distribution pipe, 14...Vent pipe, 1.4 a...
Orifice, 15... Vent pipe stop valve, 16... Starting vent pipe, 17... Starting vent pipe stop valve, 18...
・Heating steam pipe, 19... Stop valve, 20... Heating steam pipe for starting, 21.21'... Stop valve, 22° 22'...
steam nozzle.

Claims (1)

【特許請求の範囲】 1、脱気室の下方に貯水タンクを設けると共に、上記脱
気室と貯水タンクとの給水連絡管で連通し、上記の給水
連絡管の下端部は貯水タンク内の水面下に達するものと
し、かつ、前記の脱気室と復水器との間に、(a)オリ
フィス及びベント管止弁を設けたベント管、並びに、(
b)起動用ベント管止弁を設けた起動用ベント管を並列
に介装接続すると共に、前記の脱気室に加熱蒸気を供給
する加熱蒸気管を設けた給水脱気装置を用いてボイラ用
の給水を加熱する方法において、該ボイラを起動する際
、前記の起動用ベント管止弁を開弁するとともに、前記
加熱蒸気の1部を貯水タンク内に導入することを特徴と
する給水脱気方法。 2、脱気室の下方に貯水タンクを設けると共に上記脱気
室と貯水タンクとを給水連絡管で連通し、上記の給水連
絡管の下端部は貯水タンク内の水面下に達するものとし
、かつ、前記の脱気室と復水器との間に、(a)オリフ
ィス及びベント管止弁を設けたベント管、並びに、(b
)起動用ベント管止弁を設けた起動用ベント管を並列に
介装接続すると共に、前記の脱気室に加熱蒸気を供給す
る加熱蒸気管を設けた給水脱気装置において、前記脱気
器用貯水タンクの水面下に蒸気噴射ノズルを設けるとと
もに、前記加熱蒸気の一部を上記蒸気噴射ノズルに供給
する管路を設けたことを特徴とする給水脱気装置。 3、前記の給水連絡管は、貯水タンク内の水面上の空間
に連通する開口を設けたものであることを特徴とする特
許請求の範囲第2項に記載の給水脱気装置。
[Claims] 1. A water storage tank is provided below the deaeration chamber, and the deaeration chamber and the water storage tank communicate with each other through a water supply connection pipe, and the lower end of the water supply connection pipe is connected to the water level in the water storage tank. (a) a vent pipe provided with an orifice and a vent stop valve;
b) For a boiler using a feed water deaerator equipped with a starting vent pipe equipped with a starting vent pipe stop valve connected in parallel and a heating steam pipe that supplies heated steam to the deaeration chamber. In the method for heating feed water, when starting the boiler, the start-up vent pipe stop valve is opened and a part of the heated steam is introduced into a water storage tank. Method. 2. A water storage tank is provided below the deaeration chamber, and the deaeration chamber and the water storage tank are connected through a water supply connection pipe, and the lower end of the water supply connection pipe reaches below the water surface in the water storage tank, and , between the degassing chamber and the condenser, (a) a vent pipe provided with an orifice and a vent pipe stop valve; and (b)
) In a feed water deaerator, in which a starting vent pipe provided with a starting vent pipe stop valve is interposed and connected in parallel, and a heating steam pipe for supplying heated steam to the deaeration chamber is provided, A water supply deaerator characterized in that a steam injection nozzle is provided below the water surface of a water storage tank, and a pipe line is provided for supplying a portion of the heated steam to the steam injection nozzle. 3. The water supply deaerator according to claim 2, wherein the water supply communication pipe is provided with an opening that communicates with a space above the water surface in the water storage tank.
JP8268185A 1985-04-19 1985-04-19 Method and device for deaerating feed water Granted JPS61242683A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8268185A JPS61242683A (en) 1985-04-19 1985-04-19 Method and device for deaerating feed water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8268185A JPS61242683A (en) 1985-04-19 1985-04-19 Method and device for deaerating feed water

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP11473193A Division JPH07102349B2 (en) 1993-05-17 1993-05-17 Water supply deaerator

Publications (2)

Publication Number Publication Date
JPS61242683A true JPS61242683A (en) 1986-10-28
JPH024352B2 JPH024352B2 (en) 1990-01-26

Family

ID=13781163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8268185A Granted JPS61242683A (en) 1985-04-19 1985-04-19 Method and device for deaerating feed water

Country Status (1)

Country Link
JP (1) JPS61242683A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4978373A (en) * 1988-05-06 1990-12-18 Endacott John Alick Fluid separation apparatus
JP2012513358A (en) * 2008-12-22 2012-06-14 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Utilization of a degassing gas mixture from a degasser associated with a syngas production unit and plant for its implementation

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4978373A (en) * 1988-05-06 1990-12-18 Endacott John Alick Fluid separation apparatus
AU621354B2 (en) * 1988-05-06 1992-03-12 John Alick Endacott Fluid separation apparatus
JP2012513358A (en) * 2008-12-22 2012-06-14 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Utilization of a degassing gas mixture from a degasser associated with a syngas production unit and plant for its implementation

Also Published As

Publication number Publication date
JPH024352B2 (en) 1990-01-26

Similar Documents

Publication Publication Date Title
CA2060094C (en) Method and apparatus for maintaining a required temperature differential in vacuum deaerators
US2078288A (en) Method and apparatus for heating and deaerating boiler feed water
JP2001514368A (en) Boiler, especially waste heat boiler and its operation method
JPH0555761B2 (en)
RU2631182C2 (en) Process of fresh water preliminary heating in steam-turbine power plants with process steam vent
JPS61242683A (en) Method and device for deaerating feed water
JP4738140B2 (en) Steam turbine plant and steam turbine ship equipped with the same
US3151461A (en) Means for removing non-condensible gases from boiler feedwater in a power plant
US1750035A (en) Deaerator
JPH07102349B2 (en) Water supply deaerator
Gavin Edible oil deodorizing systems
US1804616A (en) Multistage feed water heating
US4279126A (en) Method of utilizing residual heat in the production of cellulose and an installation for carrying out the method
SU1052823A1 (en) Hot well of deaeration condenser
CN211470843U (en) Ash water spray thermal deaerator
JPS5835353Y2 (en) water generator
WO2023180588A2 (en) Deaerator systems and methods of servicing of deaerator
JPS63210503A (en) Condensate reheat deaerator
JP3874523B2 (en) Deaerator
JPS5842777Y2 (en) Condensate pressurization equipment for power generation plants
SU985336A1 (en) Steam turbine plant
RU2002992C1 (en) Degasification plant
JPS5847987A (en) Condenser
JPH08135407A (en) Combined refuse incinerating power plant capable of feedwater temperature control
RU2002993C1 (en) Degasification plant

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term