JPS61242622A - Oxygen-coexistent exhaust gas purifying apparatus - Google Patents

Oxygen-coexistent exhaust gas purifying apparatus

Info

Publication number
JPS61242622A
JPS61242622A JP60082641A JP8264185A JPS61242622A JP S61242622 A JPS61242622 A JP S61242622A JP 60082641 A JP60082641 A JP 60082641A JP 8264185 A JP8264185 A JP 8264185A JP S61242622 A JPS61242622 A JP S61242622A
Authority
JP
Japan
Prior art keywords
oxygen
exhaust gas
catalyst
oxygen ion
ion conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60082641A
Other languages
Japanese (ja)
Inventor
Shinichi Takeshima
伸一 竹島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP60082641A priority Critical patent/JPS61242622A/en
Publication of JPS61242622A publication Critical patent/JPS61242622A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PURPOSE:To enable the removal of NOX without using a special reducing agent and to carry out the reaction even if in the presence of O2 by removing electrochemically O2<-> or O<-> adsorbed onto the catalytic cracking catalyst for NOX. CONSTITUTION:Pd electrodes 2a, 2b hard to adsorb O2 are formed on both upper and lower surfaces of an oxygen ion conductor 1 which are in contact with exhaust gas and air respectively and further a composite oxide 3 which can dissociate and adsorb NOX at an oxygen ion conductor-actuating temperature is supported on the Pd electrode 2a for exhaust gas. NO is dissociated into an N atom and an O atom on the catalyst, which are adsorbed onto the catalyst. The O2<-> and O<-> are removed by vacuum suction into the atmosphere due to the superficial oxygen ion concentration gradient or the outside electric potential gradient of the oxygen ion conductor and the surface of the catalyst is enabled to continuously adsorb NO.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は酸素共存(Jト気浄化装置に係り、特に多足の
酸素共存下における内燃機関の酸素共存排気浄化装置に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an oxygen coexistence purification device, and more particularly to an oxygen coexistence exhaust gas purification device for an internal combustion engine in the coexistence of a large amount of oxygen.

〔従来の枝(11と問題点〕 内燃機関から排出される排気ガス中の窒素酸化物(以下
NO,と記す)は例えばPL、Rh。
[Conventional branch (11 and problems)] Nitrogen oxides (hereinafter referred to as NO) in exhaust gas discharged from internal combustion engines include, for example, PL and Rh.

Pdの元素からなる三元触媒と排気ガス中にh“Oxと
同時に存在するC(’1.II2.IC等の還元剤にJ
゛って除去されていた。しかしながら、ディーゼル車あ
るいはリーン炉、焼ガソリン車等における酸素が共存す
る排気ガス中のN OXの除去の場合上記三元触媒を使
用しても排ガス中の上記ぶ元剤は雰囲気中の酸素と反応
して本来の触媒の作用を低下さセNoう浄化活性をほと
んど示さなくなる問題を生しる。
The three-way catalyst consisting of the Pd element and the C ('1.
It had been removed. However, when removing NOx from exhaust gas in which oxygen coexists in diesel cars, lean furnaces, burnt gasoline cars, etc., even if the above three-way catalyst is used, the above-mentioned propellant in the exhaust gas will react with oxygen in the atmosphere. This causes a problem in that the original catalytic action is reduced and the purifying activity is hardly exhibited.

このような酸素共存下の排気ガス中のNO8を除去する
ため従来は酸化触媒によってNo、、を全でNO□にし
てアルカリに吸収する方法やN 83等NOつと選択的
に反応する還元剤を用いる方法等が知られている。
In order to remove NO8 from such exhaust gas in the coexistence of oxygen, conventional methods include converting all of the NO to NO□ using an oxidation catalyst and absorbing it into an alkali, or using a reducing agent such as N83 that selectively reacts with NO. Methods of using this method are known.

しかしながら、これらの力C去はその実施装置が非常に
人がかりなものとなり車に搭載するには有効でない。
However, the implementation equipment for these force C removals is very labor intensive and is not effective when installed in a vehicle.

本発明1:l: N O8(ワ)接触分解触侍1に吸7
1シた酸素・イコ(ン+’: ”*’q ’A化′;二
的CL ¥、’r:去゛4−ることC二よってNo、の
接触分解の反応速度をN(1Xの接触還元と同性にしし
かも酸素共存t−でも反応か進行するようにするごとを
1]的とする。
Invention 1: L: N O8 (wa) catalytic cracking catalyst 1 to 7
The reaction rate of the catalytic cracking of 1 ci oxygen, ico (n+': ``*'q 'A conversion'; dual CL ¥, 'r: 4- is C2, so No, is N (1X) The objective is to make the reaction proceed in the same manner as the catalytic reduction and also in the presence of oxygen.

(問題点を解決するだめの手段〕 −1−記問題点は本イこ明に、1−れば、酸素イオン伝
導体と、該酸素イAン伝勇体の十F両表面にそれぞれ配
設さt′また酸素をM? t%1吸看しにくい金属層と
、該両表面のうち1方の面の該金属層表面に担持され月
′つ窒素酸化物を解萬1(吸着し7易い金属とを具備し
、前記1方の面側をI)F気ガスに、Uつ他の1方の面
を大気に接触セU7め、fJ、−J前記酸素を解^II
吸着しにくい金属層を前記酸素イオン(云9i体を介し
て導通セしめたことを特徴とする酸素共存排気浄化装置
によって解決される。
(Means to solve the problem) The problem described in -1- is explained below. In addition, the metal layer which is difficult to absorb oxygen and the nitrogen oxides supported on the surface of the metal layer on one of the two surfaces are dissolved (adsorbed). It is equipped with a flexible metal, and one surface is in contact with the gas and the other surface is in contact with the atmosphere.
This problem is solved by an oxygen coexistence exhaust gas purification device characterized in that the metal layer, which is difficult to adsorb, is made conductive through the oxygen ions.

〔実施例〕〔Example〕

本発明の実施例を図面に裁づいて説明する。 Embodiments of the present invention will be described with reference to the drawings.

第1図は本発明に係る酸素共/fII気浄化装置を説明
するための概略断面図である・ 第1図によれば排気ガスと人気にそ拍それ接触する例え
ばカルシアトープ1酸化セリウムや安定化ジルコニア等
の酸素イAン伝勇体(固体電解質)1の上下両表面に酸
素を吸着しにくい(例えばパラジウム(P d )を約
0.05〜0.1Cれ…の厚さにコーティングされてな
る多孔質pd電極(2a。
FIG. 1 is a schematic cross-sectional view for explaining the oxygen/fII gas purification device according to the present invention. According to FIG. Both the upper and lower surfaces of the oxygen ion conductor (solid electrolyte) 1, such as oxidized zirconia, are coated with palladium (P d ) to a thickness of about 0.05 to 0.1 C, which makes it difficult to adsorb oxygen. A porous PD electrode (2a.

2b)が形成されている。さらに排気ガスI) d電極
2 a )−、に、酸素イオン伝導体作動温度(例えば
カルンアトープト酸化セリう)、の場合400〜800
°C)でNO8を解離吸着し得るCu、V。
2b) is formed. In addition, the exhaust gas I)d electrode 2a)-, the operating temperature of the oxygen ion conductor (e.g. carbon atom oxidation cell), in the case of 400 to 800
Cu, V which can dissociatively adsorb NO8 at temperatures (°C).

Mn、  Ni、Pr、Pt、Pd等の金属を14ff
i頻1メ上含右する複合酸化物3が担持されている。
14ff of metals such as Mn, Ni, Pr, Pt, Pd, etc.
The composite oxide 3 containing the upper and lower parts is supported.

以下本発明に係る装置を用いてiJ)気ガス中のNOX
、−例としてNoの除去についての動作原理を第1図を
模式化した第2図に基づいて説明する。
Hereinafter, using the apparatus according to the present invention, iJ) NOX in air gas
, - As an example, the operating principle for removing No. will be explained based on FIG. 2, which is a schematic representation of FIG. 1.

本発明に係る装置ではN Oを解離吸着する触媒をPd
電極層2a上に担持しているのでNOは酸素原Yと窒素
原子ζこ解^■して触媒十に吸着される。
In the device according to the present invention, the catalyst for dissociating and adsorbing N O is Pd.
Since NO is supported on the electrode layer 2a, NO is adsorbed on the catalyst 1 by decomposition between the oxygen source Y and the nitrogen atom ζ.

吸着された窒素尻I了は窒素分子となり触媒かり脱離す
るが酸素は吸着されたイオン状態02−あるいはO−ま
まとなる。そのため触媒は酸化された状態となる。酸素
共存では還元剤となる未燃焼の炭化水素あるいはCO,
II。等とごの吸着酸素が反応し触媒のし]ノクスが完
了する。
The adsorbed nitrogen residue becomes nitrogen molecules and is desorbed by the catalyst, but the oxygen remains in the adsorbed ionic state 02- or O-. Therefore, the catalyst is in an oxidized state. In the coexistence of oxygen, unburned hydrocarbons or CO become reducing agents,
II. The adsorbed oxygen reacts with the catalyst and completes the process.

一方酸素共存下では触媒表面が酸化されておりNoが解
離吸着できる活性点は吸着酸素により被覆されている。
On the other hand, in the coexistence of oxygen, the catalyst surface is oxidized and the active sites where No can be dissociated and adsorbed are covered with adsorbed oxygen.

そのためNOが活性点へ吸着することができず触媒の活
性は見かけトまったくない。
Therefore, NO cannot be adsorbed to the active sites, and there is no apparent activity of the catalyst.

本発明に係る酸素共存排気浄化装置ではこの吸着酸素を
電気化学的に取除いて寸ノることにより触媒自身のNO
,の分解能を引きだすことを意図している。
In the oxygen coexistence exhaust gas purification device according to the present invention, this adsorbed oxygen is electrochemically removed and the NO of the catalyst itself is removed.
, is intended to bring out the resolution of .

すなわら、触媒表面上に吸着した02−あるいはO−を
酸素イオン伝導体(固体電解¥r)の表面の酸素イオン
濃度の勾配あるいは外部の電位勾配により大気へ吸引し
除去することによって触媒表面をNOが連続して吸着で
きる状!さとしている。
In other words, the 02- or O- adsorbed on the catalyst surface is removed by being drawn into the atmosphere by the oxygen ion concentration gradient on the surface of the oxygen ion conductor (solid electrolyte) or the external potential gradient. A state where NO can be adsorbed continuously! It's sato.

ここで両電極間を開放したときに生ずる起電力を考える
Now consider the electromotive force generated when the two electrodes are opened.

第2図において排気ガス側にはNOと02が存在し、大
気側には02が存在している。すなわち(ノド気ガス側
の触媒上では燃焼により大気側よりは小さい濃度の酸素
と燃焼により生成した少量のNOが存在している。触媒
が持つ解離吸着能により酸素およびNoの吸着率が決定
され排気ガス側の電位が決定される。一方例えば1気圧
の大気側では約0.21 atomの酸素が存在してい
るが、本発明に係る装置では作動温度で酸素の解離吸着
能の小さな金属を使用しているため、酸素4度の111
合からすると低い電位すなわち吸着量が少ない状態にな
っている。第2図には両極間の起電力は第2図に示すよ
うにそれぞれの/震度と解離吸着平衡係数によって決定
され次のようになる。
In FIG. 2, NO and 02 exist on the exhaust gas side, and 02 exists on the atmospheric side. In other words, (on the catalyst on the throat gas side, there is a smaller concentration of oxygen due to combustion than on the atmospheric side and a small amount of NO generated by combustion. The adsorption rate of oxygen and NO is determined by the dissociative adsorption capacity of the catalyst. The potential on the exhaust gas side is determined.On the other hand, for example, on the atmospheric side at 1 atm, approximately 0.21 atoms of oxygen exist, but in the device according to the present invention, a metal with a small dissociative adsorption capacity for oxygen is used at the operating temperature. Because it is used, 111 with 4 degrees of oxygen
In other words, the potential is low, that is, the amount of adsorption is small. As shown in FIG. 2, the electromotive force between the two poles is determined by the respective seismic intensities and dissociation/adsorption equilibrium coefficients as shown in FIG. 2.

両極に電圧をかけない場合の両極に起こる起電力E0は ただしF:ファラテ一定数 lイ:ガス定数 ′■゛;絶月温度 PO,−又はair排気ガス又は外の酸素分圧’N0i
n:排気ガスのN0分圧 γ〉β〉〉αようなものを用いる。
The electromotive force E0 generated at both poles when no voltage is applied to both poles is: F: Farate constant l A: Gas constant '■゛; Moon temperature PO, - or air Exhaust gas or outside oxygen partial pressure 'N0i
n: N0 partial pressure of exhaust gas γ〉β〉〉α.

ただり、 N O−・NO8とするとPNOいにががっ
ている乗数は1/′2より小さくなる。
However, if N O-·NO8 is used, the multiplier that PNO has is smaller than 1/'2.

これらの1度を解離吸着定数により(分母分子の大きさ
により)両極にかかる起電力は変化するが、第2図では
排気ガス側の吸着量が大気側より大きい場合を考えてい
る。両極間をショー1すると両極間の電位は同しになる
。吸着酸素イオンは排気ガス側が多く固体電解内を酸素
・イオンが図の矢印のめ向へ流れ、ショートシた導線内
を電子が流れる。このような排気ガス側の吸着量が多い
状態が隼時続くのであれば固体電解質は酸素イオンのみ
を伝導するものではなく電子と酸素イオンを同等に伝導
Jる混合伝導の固体電解質を用いれば常にNOの除去が
進行することになる。もしそのような状態が続かないと
しても夕(部から両電極間に(4F気ガス側が負にすな
わIし電子を排気ガス側へ補給するように電位をかIJ
ればN Oの除去が連続しで続けられ、排気ガス側へN
7大気側−・0□が排出される。
Although the electromotive force applied to both poles varies depending on the dissociation adsorption constant (depending on the size of the denominator molecule), FIG. 2 considers the case where the amount of adsorption on the exhaust gas side is larger than on the atmospheric side. When a show 1 is applied between the two electrodes, the potentials between the two electrodes become the same. Most of the adsorbed oxygen ions are on the exhaust gas side, and oxygen and ions flow in the solid electrolyte in the direction of the arrow in the figure, while electrons flow in the shorted conductor. If such a state with a large amount of adsorption on the exhaust gas side continues for a long time, a solid electrolyte that conducts not only oxygen ions, but a mixed conduction system that conducts electrons and oxygen ions equally, will always be used. The removal of NO will proceed. Even if such a state does not continue, apply a potential between the two electrodes (4F) so that the gas side is negative and replenishes electrons to the exhaust gas side.
If so, the removal of NO will continue, and the N
7 Atmospheric side - 0□ is discharged.

第3Mは本発明に係る酸素共存排気浄化2置の排気ガス
流に対して垂直な断面図を示す。ケース6内の排気ガス
と大気は固体電解質1によって仕切られ固体電解質lの
排気ガス側にはPd電極2aおよび触媒、大気側にはP
d電極2bが設けられている。両電極2a、2b間には
NO,Iの分解を促進するツノ向ですなわちJJF気側
マイナス、大気側プラスの電位を印加し7ている。固体
電解質がU字に曲げらねた火気側には固体電解質をその
作V」温度に加熱するヒータ4が取りつけられリート線
5を介してバッテリー電圧12〜7を供給している。次
に排気ガス流を横から見た図を第4図に示す。排気ガス
は排気管]0、コーン部11を逓りヒータ4を有する酸
素共存排気浄化装置に入る(排気ガス流9)。そこでN
Oxは解踊吸着され排気側へN2ガスが、大気側へ0□
ガスが排出される。
3M shows a sectional view perpendicular to the exhaust gas flow of the two-position oxygen coexistence exhaust gas purification according to the present invention. The exhaust gas and the atmosphere in the case 6 are separated by a solid electrolyte 1, with a Pd electrode 2a and a catalyst on the exhaust gas side of the solid electrolyte 1, and a Pd electrode on the atmosphere side.
A d electrode 2b is provided. A potential is applied between the electrodes 2a and 2b in the horn direction to promote the decomposition of NO and I, that is, a negative potential on the JJF air side and a positive potential on the atmospheric side. A heater 4 for heating the solid electrolyte to its operating temperature is attached to the fire side where the solid electrolyte is bent into a U-shape, and supplies battery voltages 12 to 7 through a wire 5. Next, FIG. 4 shows a side view of the exhaust gas flow. The exhaust gas flows through the exhaust pipe] 0 and the cone portion 11 and enters the oxygen coexistence exhaust purification device having the heater 4 (exhaust gas flow 9). So N
Ox is decomposed and adsorbed, N2 gas goes to the exhaust side, and 0□ goes to the atmosphere side.
Gas is emitted.

〔発明の効果〕〔Effect of the invention〕

以ト説明したように本発明によれば、酸素が共存する排
気ガスからもNi!2などの特別の還元剤やあるいはア
ルカリなどの吸収剤を用いることなくNOXを除去する
ことができる。また酸素非共存の場合の触媒は未然のH
CやC01H2などの還元剤が存在しないと活性を示さ
なかったがこれらの還元剤がなくても本発明の酸素共存
1でもN08を除去することができる。
As explained above, according to the present invention, Ni can be removed even from exhaust gas in which oxygen coexists! NOx can be removed without using a special reducing agent such as No. 2 or an absorbent such as an alkali. In addition, in the absence of oxygen, the catalyst is
Although no activity was shown in the absence of reducing agents such as C and C01H2, N08 can be removed even in the absence of these reducing agents even in the presence of oxygen 1 of the present invention.

(Q)(Q)

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る酸素共存υF気気化化装置固体電
解質電極部部分標略断面図であり、第2図は上記装置の
動作原理を示す模式図であり、第3図(J上記装置の排
気ガス流に夕1して垂直な断面図であり、第4図は上記
装置を(〕[気管に取りつ(lた図である。 1・・・酸素イオン伝導体(固体電解質)、2a。 2b・・・Pd電極、3・・摺合酸化物、4・・・ヒー
タ、5・・・リート線、6・・・ケース、9・・・排気
ガス流、lO・・・IJr気ガス管、11・・・コーン
部。
FIG. 1 is a partial schematic sectional view of the solid electrolyte electrode part of the oxygen-coexisting υF vaporization device according to the present invention, FIG. 2 is a schematic diagram showing the operating principle of the device, and FIG. Fig. 4 is a cross-sectional view perpendicular to the exhaust gas flow, and Fig. 4 is a view of the above device attached to the trachea. 1... Oxygen ion conductor (solid electrolyte) 2a. 2b... Pd electrode, 3... Sliding oxide, 4... Heater, 5... Riet wire, 6... Case, 9... Exhaust gas flow, lO... IJr gas Pipe, 11... cone part.

Claims (1)

【特許請求の範囲】[Claims] 酸素イオン伝導体と、該酸素イオン伝導体の上下両表面
にそれぞれ配設された酸素を解離吸着しにくい金属層と
、該両表面のうち1方の面の該金属層表面に担持され且
つ窒素酸化物を解離吸着し易い金属とを具備し、前記1
方の面側を排気ガスに、且つ他の1方の面を大気に接触
せしめ、且つ前記酸素を解離吸着しにくい金属層を前記
酸素イオン伝導体を介して導通せしめたことを特徴とす
る酸素共存排気浄化装置。
an oxygen ion conductor, a metal layer disposed on both upper and lower surfaces of the oxygen ion conductor that is difficult to dissociate and adsorb oxygen; and a metal that easily dissociates and adsorbs oxides,
One surface is in contact with the exhaust gas and the other surface is in contact with the atmosphere, and the metal layer that is difficult to dissociate and adsorb oxygen is electrically connected through the oxygen ion conductor. Coexistence exhaust purification device.
JP60082641A 1985-04-19 1985-04-19 Oxygen-coexistent exhaust gas purifying apparatus Pending JPS61242622A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60082641A JPS61242622A (en) 1985-04-19 1985-04-19 Oxygen-coexistent exhaust gas purifying apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60082641A JPS61242622A (en) 1985-04-19 1985-04-19 Oxygen-coexistent exhaust gas purifying apparatus

Publications (1)

Publication Number Publication Date
JPS61242622A true JPS61242622A (en) 1986-10-28

Family

ID=13780052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60082641A Pending JPS61242622A (en) 1985-04-19 1985-04-19 Oxygen-coexistent exhaust gas purifying apparatus

Country Status (1)

Country Link
JP (1) JPS61242622A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0688940A1 (en) * 1994-05-24 1995-12-27 Daimler-Benz Aktiengesellschaft Otto engine with catalytic converter
US6017503A (en) * 1996-07-25 2000-01-25 Ngk Insulators, Ltd. Method of removing NOx from exhaust gases
WO2011025613A1 (en) * 2009-08-31 2011-03-03 Rudolf W. Gunnerman Non-fractionation process for production of low-boiling fuel from crude oil or fractions thereof
JP2012097351A (en) * 2010-10-29 2012-05-24 Univ Qinghua Electrochemical-catalytic converter for exhaust emission control
US8226817B2 (en) 2010-01-04 2012-07-24 Gunnerman Rudolf W Non-fractionation process for production of low-boiling fuel from crude oil

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0688940A1 (en) * 1994-05-24 1995-12-27 Daimler-Benz Aktiengesellschaft Otto engine with catalytic converter
US6017503A (en) * 1996-07-25 2000-01-25 Ngk Insulators, Ltd. Method of removing NOx from exhaust gases
US6455009B1 (en) 1996-07-25 2002-09-24 Ngk Insulators, Ltd. System for removing NOx from exhaust gases
WO2011025613A1 (en) * 2009-08-31 2011-03-03 Rudolf W. Gunnerman Non-fractionation process for production of low-boiling fuel from crude oil or fractions thereof
US8226817B2 (en) 2010-01-04 2012-07-24 Gunnerman Rudolf W Non-fractionation process for production of low-boiling fuel from crude oil
JP2012097351A (en) * 2010-10-29 2012-05-24 Univ Qinghua Electrochemical-catalytic converter for exhaust emission control

Similar Documents

Publication Publication Date Title
JP4758391B2 (en) Exhaust gas purification catalyst regeneration device and regeneration method
US6374595B1 (en) Plasma-assisted catalytic storage reduction system
JP2010540247A (en) Purification structure incorporating a bias electrochemical catalyst system
RU2108140C1 (en) Method of treating exhaust gases
JP2004141750A (en) Nitrogen oxide decomposing element and nitrogen oxide decomposing apparatus having the element
JP3657542B2 (en) Chemical reactor
JPS61242622A (en) Oxygen-coexistent exhaust gas purifying apparatus
US4379036A (en) Continuous electrochemical ammonia scrubber
JP2607682B2 (en) Purification device for hydrogen gas supplied to fuel cell
JP2019203487A (en) Fuel reforming device and control method therefor
JP4057823B2 (en) Nitrogen oxide purification chemical reactor and nitrogen oxide purification method
EP2835171A1 (en) Method and system for the purification of exhaust gas with an electrochemical cell
JP2000262899A (en) Co oxidizing catalyst for use in fuel cell system and co selectively removing method
JPH08138703A (en) Fuel cell power generating system
EP1479431A2 (en) An exhaust gas purifying apparatus and method of using the same
JP2636193B2 (en) Exhaust gas treatment method
JP4201319B2 (en) Electrochemical cell type chemical reaction system
JP4193929B2 (en) Energy saving electrochemical reaction system and activation method thereof
JP2001146407A (en) Apparatus for purifying carbon monoxide, method for operating the same and method for stopping the same
JP4461273B2 (en) Exhaust gas nitrogen oxide removal method and exhaust gas nitrogen oxide removal apparatus
JP2535861B2 (en) Oxygen coexisting exhaust gas purification device
JP2003047827A (en) Waste gas cleaning element
JP4318281B2 (en) Nitrogen oxide removal system
Hibino et al. Electrochemical removal of NO and CH 4 in the presence of excess O 2, H 2 O and CO 2 using Sm 2 O 3-doped CeO 2 as a solid electrolyte
JP5640353B2 (en) Nitrogen oxide separation membrane, and nitrogen oxide separation device, nitrogen oxide separation method, nitrogen oxide purification device, and nitrogen oxide purification method using the same