JPS61242084A - Manufacture of field-effect transistor - Google Patents
Manufacture of field-effect transistorInfo
- Publication number
- JPS61242084A JPS61242084A JP8480485A JP8480485A JPS61242084A JP S61242084 A JPS61242084 A JP S61242084A JP 8480485 A JP8480485 A JP 8480485A JP 8480485 A JP8480485 A JP 8480485A JP S61242084 A JPS61242084 A JP S61242084A
- Authority
- JP
- Japan
- Prior art keywords
- etching
- insulating film
- source
- metal
- resistant material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Drying Of Semiconductors (AREA)
- Junction Field-Effect Transistors (AREA)
Abstract
Description
【発明の詳細な説明】
イ】 産業上の利用分野
本発明は化合物半導体を用いた超高周波用電界効果トラ
ンジスタの製造方法に関する。DETAILED DESCRIPTION OF THE INVENTION A] Field of Industrial Application The present invention relates to a method for manufacturing an ultra-high frequency field effect transistor using a compound semiconductor.
町 従来の技術
超高周波用電界効果トランジスタとしてGaASを用い
たショットキー接合ゲート型の電界効果トランジスタC
FET Jが代表的なものである。Town Conventional technology Schottky junction gate type field effect transistor C using GaAS as an ultra-high frequency field effect transistor
FET J is a typical example.
従来から高利得高出力でかつ高信頼度のGaASFET
を得るためにいろいろな提案がされている。Conventional high gain, high output, and highly reliable GaASFET
Various proposals have been made to obtain the .
櫛禦のソース電極およびドレイン電極を交互に配置し、
その間にゲート電極を配置して、最小面積で最大のゲー
ト幅を得ることで出力電力を増加させたり、ゲート電極
を配置するチャネル部を掘り込んだす1セス構造にする
ことでドレインの高耐圧化を図っている。The source and drain electrodes of the combs are arranged alternately,
By placing the gate electrode between them, the output power can be increased by obtaining the maximum gate width with the minimum area, and by creating a single-scess structure in which the channel part where the gate electrode is placed is dug, the drain can have a high withstand voltage. We are trying to
また特開昭56−131963号では、高いゲート逆耐
圧と低いソース抵抗を得るために、ゲート電極をソース
?!唖寄りに形成している。しかし二方向から斜めにゲ
ート電極を蒸着する必要があるので、その為の装はが必
要である。Furthermore, in JP-A No. 56-131963, in order to obtain high gate reverse breakdown voltage and low source resistance, the gate electrode is connected to the source electrode. ! It is formed in a biased manner. However, since it is necessary to deposit the gate electrode diagonally from two directions, a device for this purpose is required.
ゲート電極を配置するチャネル部のリセス領域をソース
電極帯りに形成する場合の手順は以下の通りである。第
6図LA)〜tD>はその要部工程断面図である。半絶
縁性GaAs基板iII上のエピタキシャル成長させた
n型動作# 121上に、例えば5i02の絶縁膜(8
;を形成する。該絶縁膜131更にホトレジスト(9)
を塗布し、所望領域に窓開けをして、R記絶縁模181
のエツチングを行う(第3図(A) J。該絶縁膜(8
)の開口部からn型動作層+21を所望深さにエツチン
グしてリセス領域を形成し、ショットキーゲート金属を
蒸着してゲート電極(G]を形成する(第3図(8)
)。ホトレジスト+91上に堆積したショットキーゲー
ト金属と前記ホトレジスト191及び前記絶縁膜(8)
をエツチング除去する。The procedure for forming the recessed region of the channel portion where the gate electrode is arranged in the source electrode band is as follows. FIGS. 6A) to 6D> are cross-sectional views of the main steps. For example, a 5i02 insulating film (8
form; The insulating film 131 is further coated with photoresist (9)
Coat the insulation pattern 181 and make a window in the desired area.
(Fig. 3 (A) J. The insulating film (8) is etched.
) to form a recess region by etching the n-type active layer +21 to a desired depth, and then depositing a Schottky gate metal to form a gate electrode (G) (Fig. 3 (8)).
). Schottky gate metal deposited on photoresist +91, the photoresist 191 and the insulating film (8)
Remove by etching.
そして再びホトレジストIllを塗布しテ、7−y、電
極及びドレイン電極部の窓開けをし、オーミック金属を
蒸着する(8g3図(C)J、最後に前記ホトレジスト
1)[1及びその上に堆積しているオーミqりft縞を
エツチング除去してF’ETがつくられる(第6図の)
)。この場合ゲート電極の蒸着は、1方向から表面に対
して垂直に行なわれるので、特別な装raを必要としな
い。しかし乍ら、此種超高周波用FETの場合、ソース
、ドレイン!極間距離1sdは3am以下であり、櫛型
のソース、ト°レイン電極が交互に配置されている為に
、ゲート電極とソース、ドレイン電極の位置合わせは至
難を極め、高度なアライメント技術、或いは高価なアラ
イメント装置が必要となる。Then, photoresist Ill is applied again, 7-y, windows are opened in the electrode and drain electrode parts, and ohmic metal is deposited (8g3 (C)J, finally the photoresist 1) [1 and deposited on it. F'ET is created by etching away the ohmic and ft stripes (as shown in Figure 6).
). In this case, the gate electrode is deposited from one direction perpendicular to the surface, so no special equipment is required. However, in the case of this type of ultra-high frequency FET, the source, drain! The interelectrode distance 1 sd is less than 3 am, and the comb-shaped source and train electrodes are arranged alternately, making it extremely difficult to align the gate electrode with the source and drain electrodes. Expensive alignment equipment is required.
ハ) 発明が解決しようとする問題点
用いずに、ソース電極帯りにゲート電極が配置される超
高周波用FET0製造方法を提供しようとするものであ
る。c) Problems to be Solved by the Invention The present invention aims to provide a method for manufacturing an ultra-high frequency FET0 in which a gate electrode is arranged in a source electrode band without using the problem.
二) 問題点を解決するための手段
本発明は動作層上に絶R@、金属膜及び耐エツチング材
を形成し、耐エツチング材のソース、ドレイン電僅にあ
たる部分以外を除去し、前記金萬模をドレイン側よりソ
ース側を多くエツチングする。そして前記絶縁膜をエツ
チングしてゲート電極幅だけ前記動作層を露出し、該動
作層にリセス領域を形成し、ショットキーゲート金属を
蒸着する。更に該ショットキーゲート金属が直接堆積し
ている以外の絶縁膜部分とその上の堆積膜を除去し、オ
ーミック金属を蒸着し、残りの絶縁膜とその上の堆積膜
を除去することを含む電界効果トランジスタの製造方法
である。2) Means for Solving the Problems The present invention forms a metal film and an etching-resistant material on the active layer, removes the portions of the etching-resistant material other than those that are exposed to the source and drain currents, and removes the metal film. Etch the source side more than the drain side. Then, the insulating film is etched to expose the active layer by the width of the gate electrode, a recess region is formed in the active layer, and a Schottky gate metal is deposited. Furthermore, an electric field including removing a part of the insulating film other than that on which the Schottky gate metal is directly deposited and the deposited film thereon, depositing an ohmic metal, and removing the remaining insulating film and the deposited film thereon. This is a method for manufacturing an effect transistor.
ホJ作 用
ソース側の金ll4pat−酎エッチング材で覆われて
いる部分深くまでエツチングすることにより、動作層に
掘り込まれるリセス領域は、ソース寄りに形成されるこ
とになる。By etching deep into the part covered with the gold etching material on the source side, a recessed region dug into the active layer is formed closer to the source.
へ」実施例 @1図(A)〜0は本発明実施例の要部工程断面図。Example @1 Figures (A) to 0 are cross-sectional views of main parts of the embodiment of the present invention.
第2図は本発明によるFETの電極配列を示す平面図で
ある。+1)は半絶縁性GaAs基板でn型GaAs動
作層+23エピタキクヤル収長されている。FIG. 2 is a plan view showing the electrode arrangement of the FET according to the present invention. +1) is a semi-insulating GaAs substrate with an n-type GaAs active layer +23 epitaxially grown.
ただし第2図に一点鎖線で囲んだ領域外は、該領域をホ
トレジストで覆い酒石酸系エツチング液に浸されエツチ
ングが行なわれて、動作層は除去されている。動作層1
2+上にポリイミドなどの絶縁膜131更に金属lI4
!、ここではA I II+41を形成する。該A l
[I41上にホトレジスト(51を塗布し、ソース−ド
レイン電極間隔1sd(3μm程度Jの窓開けを行う(
第1図(A))。次にドレイン側よシソース側でよシ多
く前記Al@(4)をエツチングする(M1図6))。However, outside the area surrounded by the dashed line in FIG. 2, the active layer is removed by covering the area with photoresist and immersing it in a tartaric acid-based etching solution to perform etching. Operating layer 1
Insulating film 131 such as polyimide on 2+ and metal lI4
! , here forming A I II+41. The A l
[Coat photoresist (51) on I41 and open a window with a distance of 1 sd (approximately 3 μm J) between the source and drain electrodes (
Figure 1 (A)). Next, more of the Al@(4) is etched on the drain side and the source side (M1 Fig. 6)).
これはA1よりもイオン化傾向の小さい導電物質、ここ
ではpt板とソース側のエツチングされないA l[1
41部分と導通状態をつくシ、その状態でpt板と基板
全部をリン酸系エツチング液に浸すことで実現される。This is a conductive material that has a smaller ionization tendency than A1, and in this case, the unetched A1 on the PT plate and source side.
41, and in that state, immerse the entire PT board and substrate in a phosphoric acid-based etching solution.
通常、窓開は部のみでA1のイオン化L A、 l −
Al”+3e Jと水素イオンと電子の結合(2+
H+ 2e =H2t )カ起コリA l ノ工?
f :/グが行なわれるが、pt板と導通状態にある
側では、該pt板表面でも水素イオンと電子の結合が起
こるため、Alの融解が促進され、結果、Pt板と導通
状態にある側のA1は導通状態にない側のA1よりも余
計にエツチングされる、。Normally, the window opening is only at the ionization part of A1.
The bond between Al”+3e J, hydrogen ion, and electron (2+ H+ 2e = H2t) causes the reaction A l no engineering?
f:/g is performed, but on the side that is in conduction with the PT plate, bonding of hydrogen ions and electrons also occurs on the surface of the PT plate, so melting of Al is promoted, and as a result, it is in conduction with the Pt plate. A1 on the side is etched more than A1 on the non-conducting side.
Al襖(4)のエツチングにより露出した前記絶縁膜1
31を、ヒドラジン系溶液に依ってエツチングしてゲー
ト電極嘔に相当する幅だけ前記動作層12】を露出する
。この露出した動作層(21を酒石酸−H2O2moz
フチング液を用いて僅かにエツチングしてリセス領域を
得た後、動作層12)とショットキー接合を形成するA
u−Pt−Tiを蒸着してゲート電極G)を形成する。The insulating film 1 exposed by etching the Al sliding door (4)
31 is etched using a hydrazine solution to expose the active layer 12 by a width corresponding to the gate electrode. This exposed working layer (21) was replaced with tartaric acid-H2O2moz
After slightly etching with a etchant to obtain a recessed area, a Schottky junction is formed with the active layer 12).
A gate electrode G) is formed by depositing u-Pt-Ti.
この蒸着工種に於いてホトレジスト151.絶縁膜13
+上にもAu−Pt−Tiが被着される(第1図0)。In this vapor deposition process, photoresist 151. Insulating film 13
Au-Pt-Ti is also deposited on the + (FIG. 10).
ホトレジスト(5)とその上に堆積しているAu−Pt
−Tiをホトレジストのエッチャントで除去し、さらに
A1俟(4)をリン酸系エフチンダ液で除去する。次に
露出した絶縁膜131を、Au−Pt−Tiをマスクと
して。Photoresist (5) and Au-Pt deposited on it
-Ti is removed using a photoresist etchant, and A1 (4) is further removed using a phosphoric acid-based eftinda solution. Next, the exposed insulating film 131 was masked with Au-Pt-Ti.
ドライエツチングする(第1図の)】。引き続いて。Dry etching (see Figure 1)]. Continuing.
動作層(21とオーミックコンタクトを形成する例えば
N1−(Au+Ge )を蒸着する事によってソース電
極(S)およびドレイン電極(DJを得る(l@1図@
)。最後に残った絶縁膜131をその上に堆積している
Au−Pt−Ti、!:N1−(Au+Ge)と共にヒ
ドラジン系溶液で除去することで超高周波用のFETが
完成される(1@1図の)。A source electrode (S) and a drain electrode (DJ are obtained by depositing, for example, N1-(Au+Ge), which forms an ohmic contact with the active layer (21).
). The last remaining insulating film 131 is deposited on top of Au-Pt-Ti! : By removing it together with N1-(Au+Ge) using a hydrazine solution, an ultra-high frequency FET is completed (1@Figure 1).
ト】 発明の効果
本発明は以上の説明から明らかな如く、高髪なアライメ
ント技術、N&価なアライメント装置を用いずとも、ゲ
ート電極を形成するリセス領域をソース寄りに精髪よく
配置でき、ゲート電極の蒸着も従来の方法で行うことが
できるのでコストアップを招くことなく、より性能の高
いFETが実現される。[Effects of the Invention] As is clear from the above description, the present invention enables the recessed region forming the gate electrode to be precisely placed close to the source without using an expensive alignment technique or an expensive alignment device. Since the electrodes can also be deposited by conventional methods, an FET with higher performance can be achieved without increasing costs.
第1図(A)〜0は本発明実施例の要部工程断面図、第
2図はFETの電極配列を示す平C図、第3図仏)〜の
)は従来の製造方法を示す要部工程断面図である。
巾・・・半絶縁性GfaAS基板、(2ト・・n型動作
層。
+3+・・・絶縁膜、141・・・A1嗅、◎・・・ソ
ース電極、 G)・・・ケート電極、■)・・・ドレイ
ン電極。Figures 1(A) to 0 are cross-sectional views of the main steps of the embodiment of the present invention, Figure 2 is a flat C diagram showing the electrode arrangement of the FET, and Figures 3) to 0) are main points showing the conventional manufacturing method. It is a sectional view of a part. Width...semi-insulating GfaAS substrate, (2T...n-type operating layer. +3+...insulating film, 141...A1 electrode, ◎...source electrode, G)...gate electrode, ■ )...Drain electrode.
Claims (1)
作層領域上にソース電極とドレイン電極が配置され、ソ
ース、ドレイン電極間に接合型のゲート電極を、ソース
電極寄りに有する電界効果トランジスタの製造方法にお
いて、 動作層上に絶縁膜、更に金属膜を形成する工程、該金属
膜を耐エッチング材で被覆し、選択的に該耐エッチング
材を開口する工程、ドレイン側よりソース側でより多く
前記金属膜をエッチングする工程、露出した前記絶縁膜
をエッチングしてゲート電極幅だけ前記動作層を露出す
る工程、露出した該動作層表面をエッチングして掘り込
む工程、前記耐エッチング材及び絶縁膜をマスクとして
、ショットキーゲート金属を蒸着しゲート電極を形成す
る工程、前記耐エッチング材上のショットキーゲート金
属、前記耐エッチング材、前記金属膜及び前記ショット
キーゲート金属に被覆されない絶縁膜部分を除去する工
程、オーミック金属を蒸着してソース、ドレイン電極を
形成する工程、残留絶縁膜とその上のショットキーゲー
ト金属及びオーミック金属を除去する工程、とを含むこ
とを特徴とする電界効果トランジスタの製造方法。(1) There is a semiconductor active layer region on a semi-insulating substrate, a source electrode and a drain electrode are arranged on the active layer region, and an electric field having a junction type gate electrode between the source and drain electrodes near the source electrode. In a method for manufacturing an effect transistor, a step of forming an insulating film and further a metal film on an active layer, a step of covering the metal film with an etching-resistant material and selectively opening the etching-resistant material, and a step of forming a source side from a drain side. etching more of the metal film, etching the exposed insulating film to expose the active layer by the width of the gate electrode, etching the exposed surface of the active layer, and etching the etching-resistant material. and a step of vapor depositing a Schottky gate metal using an insulating film as a mask to form a gate electrode, a Schottky gate metal on the etching-resistant material, an insulation not covered by the etching-resistant material, the metal film, and the Schottky gate metal. An electric field characterized by comprising the following steps: removing a film portion, depositing an ohmic metal to form source and drain electrodes, and removing the remaining insulating film and the Schottky gate metal and ohmic metal thereon. Method of manufacturing effect transistors.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8480485A JPS61242084A (en) | 1985-04-19 | 1985-04-19 | Manufacture of field-effect transistor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8480485A JPS61242084A (en) | 1985-04-19 | 1985-04-19 | Manufacture of field-effect transistor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61242084A true JPS61242084A (en) | 1986-10-28 |
Family
ID=13840897
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8480485A Pending JPS61242084A (en) | 1985-04-19 | 1985-04-19 | Manufacture of field-effect transistor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61242084A (en) |
-
1985
- 1985-04-19 JP JP8480485A patent/JPS61242084A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS5950567A (en) | Manufacture of field effect transistor | |
US4377899A (en) | Method of manufacturing Schottky field-effect transistors utilizing shadow masking | |
JPH08306708A (en) | Semiconductor device and its fabrication | |
US4216573A (en) | Three mask process for making field effect transistors | |
JPS61242084A (en) | Manufacture of field-effect transistor | |
JPS60251671A (en) | Field-effect type transistor and manufacture thereof | |
US6893923B2 (en) | Reduced mask count process for manufacture of mosgated device | |
JPS59165464A (en) | Manufacture of schottky junction type compound semiconductor field effect transistor | |
JP4972822B2 (en) | Method for manufacturing field effect semiconductor device | |
JPS61240684A (en) | Schottky-type field effect transistor and manufacture thereof | |
JPS60143674A (en) | Manufacture of semiconductor device | |
JPS6323667B2 (en) | ||
JPS6252957B2 (en) | ||
JPS5855668B2 (en) | Manufacturing method of semiconductor device | |
JPS61284969A (en) | Manufacture of field effect transistor | |
JPS6239834B2 (en) | ||
JP2002246589A (en) | Field effect semiconductor device | |
JPS5854512B2 (en) | Manufacturing method of semiconductor device | |
JPS61290777A (en) | Manufacture of schottky gate electrode | |
JPS5879767A (en) | Semiconductor device | |
JPS61144072A (en) | Manufacture of field-effect transistor | |
JPS61280671A (en) | Manufacture of compound semiconductor device | |
JPH0491439A (en) | Field-effect transistor and manufacture thereof | |
JPS61196581A (en) | Manufacture of field effect transistor | |
JPS60145669A (en) | Gaas fet |