JPS6124049B2 - - Google Patents

Info

Publication number
JPS6124049B2
JPS6124049B2 JP55086573A JP8657380A JPS6124049B2 JP S6124049 B2 JPS6124049 B2 JP S6124049B2 JP 55086573 A JP55086573 A JP 55086573A JP 8657380 A JP8657380 A JP 8657380A JP S6124049 B2 JPS6124049 B2 JP S6124049B2
Authority
JP
Japan
Prior art keywords
adsorption
cylindrical
fiber
fiber filler
filler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55086573A
Other languages
Japanese (ja)
Other versions
JPS5712833A (en
Inventor
Toshio Yoshioka
Kazuo Teramoto
Seiji Shimamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP8657380A priority Critical patent/JPS5712833A/en
Publication of JPS5712833A publication Critical patent/JPS5712833A/en
Publication of JPS6124049B2 publication Critical patent/JPS6124049B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は吸着用繊維充填材、さらに詳しくは低
分子イオンの交換、中高分子物質の吸脱着、生理
活性物質の固定化のための吸着用繊維充填材に関
する。 従来、活性炭やゼオライト又はイオン交換樹脂
に代わる吸着材として、各種のイオン交換能を有
する重合体からなる繊維が注目され、多くの提案
が為されている。たとえば、特開昭51−136590号
公報には、長さが3〜15mmの繊維状イオン交換体
について開示されており、同公報にはこの繊維状
イオン交換体はイオン交換樹脂のように球状形状
のものは、イオン交換速度が遅く、イオン交換−
再生時の浸透圧の急激な変化などで破壊され易
く、均一な充填が乱されやすいのに対して、繊維
状形態のものは、上記欠点がなく、寿命も比較的
長くなることが記載されている。 しかしながら、繊維状イオン交換体は、短繊維
としてカラムに充填すると、その嵩高性のために
単位容積当りの機能容量が低下し、また充填後の
カラムに通液すると繊維がカラムの下部で圧縮シ
ート化し、急激に圧損が増大し、イオン交換、吸
着などの機能が低下する。一方、これを避けるた
めに、たとえば、特開昭53−137889号公報に記載
されているように、イオン交換繊維を相互に融着
させた顆粒状形状のイオン交換繊維は、繊維状吸
着材の特徴であるその大きな表面積の減少をもた
らすのみならず、カラムに充填した場合、このカ
ラムを通過する液が偏流し易く、カラムに充填さ
れた繊維表面に液が均一かつ完全に接触し難くな
るという欠点がある。また、特開昭53−43676号
公報には、繊維の連続した束を、らせん状にに移
動させて形成した1個の大きな筒形を有する液
体、基体の反応処理装置が開示されている。しか
し、このような構造のものは、圧力損失が低く、
目ずれを起しにくいという特徴を有するが、反面
逆に濾過面積が大きく、筒状の円周部と中心部の
間を放射状に通液されるので、均一な流れが得に
くく、シヨートパスを起し易い。このため、繊維
の吸着容量を十分に発揮することができないとい
う欠点がある。 本発明の目的は、表面積が大きく、すぐれたイ
オン交換能、吸着能などを有するイオン交換繊維
の特徴を損うことがなく、上記カラムに充填した
後の流体の偏流、圧密化による圧損又は目づまり
の増大などを解消したイオン交換繊維からなる吸
着材を提供するにあり、他の目的は低分子無機イ
オンを含有する低粘性溶液のみならず、上記偏流
や圧密化などが著しく生じ易い高粘性液の処理を
必要とする糖液の脱色およびグルコースの異性
化、シヨ糖の転化などに利用される酵素などの固
定化に有用な吸着用繊維充填材を提供するにあ
る。 すなわち、本発明の吸着用繊維充填材の基本的
特徴は、単糸繊度が0.01〜50デニール(d)のイ
オン交換基を有する連続フイラメント糸条からな
る筒状の編成物であつて、該編成物の筒状方向の
長さが3〜30mmである点にある。 本発明の吸着用繊維充填材を構成するフイラメ
ント糸条は公知の各種イオン交換基を有する重合
体からなる繊維、たとえば、水素イオン、金属カ
チオン、水酸イオン、無機アニオン、酸性ガスや
塩基性ガス、中・高分子量の有機酸や有機塩基、
色素物質、グルコースイソメラーゼ、β−ガラク
トシダーゼ、、クルコアミラーゼ、ウレアーゼ、
アスパラギナーゼのような酵素等のタンパク質、
菌体および細胞等をイオン交換、吸着もしくは固
定化可能なスルホン酸基、ホスホン酸基、カルボ
ン酸基等のカチオン交換基、各種アミノ基、アン
モニウム基等のアニオン交換基もしくはキレート
形成可能なイミノジ酢酸基やイミノジプロピオン
酸基等を有する各種の重合体からなる繊維、ある
いはイオン交換基以外にアルデヒド基のように酵
素などのタンパク質を共有結合的に固定化する基
を有する重合体からなる繊維であり、特に酵素等
のタンパク質、菌体および細胞などの生理活性物
質を固定化する基を有する重合体からなる繊維が
よい。 さらに、具体的には本発明の吸着用繊維充填材
を構成するフイラメント糸条としては、良好な耐
薬品性、耐熱性を有し、各種のイオン交換基を導
入することができるポリビニル芳香族化合物、す
なわち、ポリスチレン、ポリα−メチルスチレ
ン、ポリメチルスチレン、ポリキシレン、ポリク
ロルメチルスチレンまたそれらの共重合体などと
ポリオレフイン、ポリアミド、ポリエステル、ポ
リアクリロニトリル、ポリビニルアルコールなど
の繊維形成能を有する重合体とからなる2成分系
の重合体繊維が好ましい。これらの2成分系重合
体繊維は公知の混合紡糸、複合紡糸技術により容
易に得られるが、特に本発明の吸着用繊維充填材
としては、繊維形成性を有する上記重合体を島成
分とし、イオン交換基導入用重合体を海成分とす
る多芯型の海島型複合繊維が好ましい。 すなわち、このような海島型複合繊維を用いる
ことにより、後述する筒状形成の吸着用繊維充填
材に容易に編成できるだけでなく、吸着用繊維充
填材として、たとえばイオン交換−再生における
繊維の寸法変化が小さく、形態の安定化した吸着
用繊維充填材とすることができる。 上記フイラメント糸条の単糸繊度としては約
0.01〜50デニール(d)、好ましくは0.1〜10d、
特に表面積の格段に大きい吸着用繊維充填材とす
るためには約0.1〜1dの範囲のものがよい。繊度
が0.01デニールより小さいと機械的強度が弱くな
り糸切れしやすく、50デニールをこえると機能速
度、容量が低下する。 次に、本発明になる吸着用繊維充填材は前記フ
イラメント糸条からなる編成物であつて、その形
状が筒状形状であることが重要である。 ここで編成物とは、衣料として広く用いられて
いる編物のみならず編まれた組みヒモのような編
成物をも包含する。 編物の具体例としては、たとえば編組織がシン
グルジヤージー、シングル経編みなど表裏の編組
織の異なるものが好ましく用いられる。 日付は約20〜500g/m2、好ましくは50〜300g/
m2であり、巾が5〜100mm、好ましくは10〜50mm
の範囲内のものを挙げることができる。 また組みヒモとしては、通常の製紐機で得られ
る組みヒモが用いられ、総繊度Dとしては約1000
〜50000D、好ましくは2500〜20000Dのものがよ
い。 しかしながら、上記編成物、特に編物は単なる
編物ではなく、その形状が筒状形状であることが
重要であり、このような筒状編成物のなかで
も、、その長さが約3〜30mmのものが好ましく、
更には4〜15mmであるものが好ましく適用され
る。すなわち、該編成物が筒状形状ではないとき
はカラム充填時に吸着用繊維充填材の腰が弱く、
反発力が小さくなるため取り扱いがたく、均一な
充填がむつかしくなる傾向がある。また前記長さ
になつていないと、形状の保持性が悪くなつた
り、通液抵抗が大きくなつたり、取り扱いが面倒
になつたり、均一に充填しにくくなる。 このような筒状形状を有する編物の1例を第1
〜5図により、さらに具体的に説明する。すなわ
ち第1〜5図はそれぞれ本発明の吸着用繊維充填
材である筒状形状の編物の1態様を示す断面図で
あり、前記長さおよび巾を有する編物はその一端
(1)がカールし、筒状乃至円筒状の形状をとつてい
る。この編物は第1図に示すように両末端が閉環
していてもよいし、第2図に示すように分離し、
ズレていてもよい。また第3図のように一端のみ
が渦巻状にカールしていても、第4〜5図のよう
に両末端が渦巻状にカールしていてもよいが、特
に第3図のように一端が渦巻状にカールしたもの
が好ましい。 また、編成物が組みヒモの場合には、第1図に
示すように円筒状断面を有し、末端がなく、耐久
性の点ですぐれているので有利である。 さらに該編成物を構成するフイラメンはその繊
維軸方向に沿つて相互に融着していてもよく、こ
の融着によつて、本発明の吸着用繊維充填材の形
態又は寸法安定性、機械的強度が向上する。しか
しながら、融着の程度は吸着用繊維充填材の機能
速度、容量を実質的に低下させない範囲で行わせ
るべきである。 本発明の吸着用繊維充填材の製造法としては、
特に限定されるものではなく、各種の方法がある
が、好ましくは、前記ポリビニル芳香族化合物を
海成分とし、繊維形成性重合体、好ましくはポリ
オレフインを島成分として多芯海島型複合紡糸に
よつて得られたフイラメント糸条を合糸し、編成
したのち、前記所定の寸法に裁断して編紐状物を
作成する。次いで、その長手方向に引張して、そ
の少くとも一端をカールせしめるか、または製紐
機を用いて組ヒモを作成し、これらをそのまま、
あるいは前記長さにカツトし、各種の化学的処理
を行なつてイオン交換基を導入することによりえ
られる。 本発明の吸着用繊維充填材はその形状が筒状で
あるので腰が強く、反撥力に富んでいるために、
取扱い易く、カラムなどへの均一な充填が容易で
あり、カラムを通過する流体が偏流することがな
い。 さらに繊維が有する大きな表面積を失うことな
く、編成されており、繊維形態としての機能速度
および容量を実質的に保有しており、実用上の効
果が大きい。特に酵素を固定化したものは充填密
度を十分に大きくしても、高粘性流体の通液抵抗
が小さく、吸着用繊維充填材が経済的に圧密化す
ることがないから、所定性能を長時間保持する。 しかしながら、本発明の吸着用繊維充填材のカ
ラム等への充填密度は0.15〜0.35g/cm3の範囲に
することにより、その性能が著しく向上する。 以下、実施例により本発明をさらに具体的に説
明する。 実施例 1 ポリスチレン80部とポリプロピレン20部からな
るチツプブレンド体を海成分、ポリプロピレンを
島成分として、海島比が50:50になるように250
℃で溶融複合紡糸(島成分16)した後、5倍に延
伸することによつて、多芯海島型複合繊維を得た
(単糸繊度4.3デニール、強度2.8g/d)。延伸糸
(総繊度70デニール)を直径9cmの筒編機を用い
て筒編状とし、5cm幅に裁断して裁断面と平行方
向に張力をかけることによつて両端より互に渦巻
状にカールしたリンク形態の筒状の編紐状物を得
た。この編紐状物をパラホルムアルデヒド5部、
酸25部、濃硫酸70部からなる架橋液に浸して90℃
で2時間架橋反応を行ない、海成分のポリスチレ
ンを架橋不溶化した。次に公知の方法でクロルメ
チル化、トリメチルアンモニウム化して乾燥し
た。この編紐状物をさらに8mmに切断することに
よつて、渦巻状にカールした筒状の吸着用繊維充
填材を得た(アニオン交換容量2.4ミリ当量/
g、目付け100g/m2)。これらの筒状編紐状物
(切断前後の編紐状物)からなる二つの吸着用繊
維充填材は、共に水中で撹拌しても形状に変化は
認められなかつた。 実施例 2 実施例1で得た延伸糸を総繊度が210デニール
になるように合糸し、16個のボビンに巻きつけ、
製紐機を用いて中空の組みヒモを作製した。次に
実施例1の方法で反応処理して乾燥した。この組
みヒモ状物を8mmに切断することによつて、筒状
の吸着用繊維充填材を得た(アニオン交換容量
2.3ミリ当量/g、総繊度7000デニール)。この吸
着用繊維充填材は、水中で撹拌しても形状に変化
は認められなかつた。 実施例 3 実施例1、実施例2で得た編物および組みヒモ
からなる吸着用繊維充填材を塩素型にし、それぞ
れ上に入口、下に出口を備えた円筒状の中空容器
に0.24g/mlの密度で同容積に充填することによ
つて糖液脱色用のアニオン交換反応カラムを得
た。このカラムに、60ブリツクスの甘蔗糖液
(410mμの吸光度値7.5、10cmのセルを使用)を
70℃、SV10の流速で流し、流出液の吸光度値を
測定して、脱色率の変化を調べた結果および通液
抵抗を表1に示す。 比較例として実施例1で得た延伸糸を実施例1
と同じ反応処理し風乾した後、8mmに切断した糸
を0.24g/mlおよび0.12g/mlの密度で充填した装
置を用いて、上記方法で脱色率の変化を調べた結
果および通液抵抗を表1に示してある。本発明の
吸着用繊維充填材からなるカラムはカツトフアイ
バー(糸)からなるカラムに近い脱色性能を有
し、しかも通液抵抗が小さい。糸からなるカラム
は通液抵抗が非常に大きく実用上、使用困難であ
り、充填密度を低くすると通液性は良くなるが、
機能容量が小さくなり脱色率の低下が非常に大き
くなる。
The present invention relates to an adsorption fibrous filler, and more particularly to an adsorption fibrous filler for exchange of low-molecular ions, adsorption/desorption of medium- and high-molecular substances, and immobilization of physiologically active substances. BACKGROUND ART Conventionally, fibers made of polymers having various ion exchange abilities have attracted attention as adsorbents in place of activated carbon, zeolite, or ion exchange resins, and many proposals have been made. For example, JP-A-51-136590 discloses a fibrous ion exchanger with a length of 3 to 15 mm, and the publication describes that this fibrous ion exchanger has a spherical shape like an ion exchange resin. The ion exchange rate is slow and the ion exchange rate is low.
It has been stated that fibrous materials do not have the above drawbacks and have a relatively long lifespan, whereas they are easily destroyed due to sudden changes in osmotic pressure during regeneration, and their uniform filling is easily disrupted. There is. However, when fibrous ion exchangers are packed into a column as short fibers, the functional capacity per unit volume decreases due to their bulk, and when liquid is passed through the column after filling, the fibers are compressed into a sheet at the bottom of the column. , pressure loss increases rapidly, and functions such as ion exchange and adsorption deteriorate. On the other hand, in order to avoid this, for example, as described in JP-A-53-137889, ion exchange fibers in the form of granules in which ion exchange fibers are fused together are used as fibrous adsorbents. Not only does it reduce the characteristic large surface area, but when it is packed in a column, the liquid that passes through the column tends to drift, making it difficult for the liquid to come into uniform and complete contact with the surface of the fibers packed in the column. There are drawbacks. Furthermore, Japanese Patent Application Laid-Open No. 53-43676 discloses a reaction treatment apparatus for a liquid and a substrate, which has one large cylindrical shape formed by moving a continuous bundle of fibers in a spiral manner. However, this type of structure has low pressure loss,
It has the characteristic of not easily causing eye misalignment, but on the other hand, the filtration area is large and the liquid is passed radially between the cylindrical circumference and the center, making it difficult to obtain a uniform flow and causing short passes. Easy to do. For this reason, there is a drawback that the adsorption capacity of the fibers cannot be fully utilized. The purpose of the present invention is to prevent the uneven flow of the fluid after filling the column, the pressure loss due to compaction, and the like, without impairing the characteristics of the ion exchange fiber, which has a large surface area and excellent ion exchange ability and adsorption ability. The purpose is to provide an adsorbent made of ion-exchange fibers that eliminates clogging, etc., and the other purpose is to provide an adsorbent made of ion-exchange fibers that eliminates the problem of clogging.The other purpose is to provide an adsorbent that can be used not only for low-viscosity solutions containing low-molecular-weight inorganic ions, but also for high-viscosity liquids that are extremely prone to the above-mentioned drifting and compaction. An object of the present invention is to provide a fiber filler for adsorption that is useful for immobilizing enzymes used in decolorizing sugar solutions, isomerizing glucose, converting sucrose, etc., which require treatment. That is, the basic feature of the adsorption fiber filler of the present invention is that it is a cylindrical knitted article made of continuous filament yarns having an ion exchange group and a single filament fineness of 0.01 to 50 deniers (d); The length of the object in the cylindrical direction is 3 to 30 mm. The filament yarns constituting the fiber filler for adsorption of the present invention are fibers made of polymers having various known ion exchange groups, such as hydrogen ions, metal cations, hydroxide ions, inorganic anions, acidic gases and basic gases. , medium- and high-molecular-weight organic acids and organic bases,
Pigment substances, glucose isomerase, β-galactosidase, curcoamylase, urease,
proteins such as enzymes such as asparaginase,
Cation exchange groups such as sulfonic acid groups, phosphonic acid groups, and carboxylic acid groups that can ion exchange, adsorb, or immobilize bacterial bodies and cells, anion exchange groups such as various amino groups and ammonium groups, or iminodiacetic acid that can form chelates. or iminodipropionic acid groups, or fibers made of polymers that have groups such as aldehyde groups that covalently immobilize proteins such as enzymes in addition to ion exchange groups. In particular, fibers made of polymers having groups that immobilize proteins such as enzymes, physiologically active substances such as bacterial cells and cells are preferable. Furthermore, specifically, the filament yarn constituting the adsorption fiber filler of the present invention is a polyvinyl aromatic compound that has good chemical resistance and heat resistance, and into which various ion exchange groups can be introduced. That is, polystyrene, polyα-methylstyrene, polymethylstyrene, polyxylene, polychloromethylstyrene, or copolymers thereof, and polymers having fiber-forming ability such as polyolefin, polyamide, polyester, polyacrylonitrile, polyvinyl alcohol, etc. A two-component polymer fiber consisting of is preferred. These two-component polymer fibers can be easily obtained by known mixed spinning and composite spinning techniques, but in particular, as the adsorption fiber filler of the present invention, the above-mentioned polymer having fiber-forming properties is used as an island component, and ion A multifilamentary sea-island type composite fiber in which the exchange group-introducing polymer is a sea component is preferred. In other words, by using such sea-island composite fibers, not only can they be easily organized into a cylindrical adsorption fiber filler, which will be described later, but they can also be used as adsorption fiber fillers to reduce the dimensional change of fibers during ion exchange and regeneration, for example. It can be used as an adsorption fiber filler with a small size and a stable shape. The single yarn fineness of the above filament yarn is approximately
0.01-50 denier (d), preferably 0.1-10d,
In particular, in order to obtain a fiber filler for adsorption with a significantly large surface area, it is preferably in the range of about 0.1 to 1 d. If the fineness is less than 0.01 denier, the mechanical strength will be weak and the yarn will break easily, and if it exceeds 50 denier, the functional speed and capacity will decrease. Next, it is important that the adsorption fiber filler according to the present invention is a knitted material made of the filament yarns, and that the shape thereof is cylindrical. Here, the term "knitted fabric" includes not only knitted fabrics widely used as clothing, but also knitted fabrics such as braided strings. As specific examples of knitted fabrics, those with different knitting structures on the front and back sides, such as single jersey knitting or single warp knitting, are preferably used. Date is about 20-500g/ m2 , preferably 50-300g/m2
m 2 and the width is 5-100mm, preferably 10-50mm
Those within the range of can be mentioned. In addition, as the braided string, braided string obtained with a normal string making machine is used, and the total fineness D is about 1000.
-50000D, preferably 2500-20000D. However, the above-mentioned knitted fabrics, especially knitted fabrics, are not just knitted fabrics, but it is important that they have a cylindrical shape, and among such cylindrical knitted fabrics, those with a length of about 3 to 30 mm are is preferable,
Furthermore, those having a diameter of 4 to 15 mm are preferably applied. In other words, when the knitted material does not have a cylindrical shape, the adsorption fiber filler is weak during column filling;
Because the repulsive force is small, it tends to be difficult to handle and uniform filling becomes difficult. Moreover, if the length is not as described above, shape retention will be poor, liquid passage resistance will be large, handling will be troublesome, and it will be difficult to fill uniformly. An example of a knitted fabric having such a cylindrical shape is shown in the first example.
This will be explained in more detail with reference to FIGS. That is, FIGS. 1 to 5 are cross-sectional views showing one embodiment of the cylindrical knitted fabric which is the adsorption fiber filler of the present invention, and the knitted fabric having the above-mentioned length and width has one end thereof.
(1) is curled and has a cylindrical or cylindrical shape. This knitted fabric may have both ends closed as shown in Figure 1, or it may be separated as shown in Figure 2.
It's okay if it's off. Also, only one end may be curled in a spiral shape as shown in Figure 3, or both ends may be curled in a spiral shape as shown in Figures 4 and 5. A spirally curled one is preferable. Furthermore, when the knitted material is a braided string, it has a cylindrical cross section as shown in FIG. 1, has no ends, and is advantageous in terms of durability. Further, the filaments constituting the knitted fabric may be fused to each other along the fiber axis direction, and this fusion improves the morphology, dimensional stability, and mechanical stability of the adsorption fiber filler of the present invention. Strength is improved. However, the degree of fusion should be within a range that does not substantially reduce the functional speed and capacity of the adsorbent fibrous filler. The method for producing the adsorption fiber filler of the present invention includes:
Although there are various methods without particular limitation, it is preferable to use multicore sea-island type composite spinning using the polyvinyl aromatic compound as a sea component and a fiber-forming polymer, preferably polyolefin, as an island component. The obtained filament yarns are doubled and knitted, and then cut into the predetermined dimensions to create a knitted string-like article. Next, pull it in the longitudinal direction to curl at least one end, or use a string making machine to create a braided string, and use these as they are.
Alternatively, it can be obtained by cutting the length to the above length, performing various chemical treatments, and introducing an ion exchange group. The adsorption fiber filler of the present invention has a cylindrical shape, so it is strong and has high repulsion.
It is easy to handle and uniformly fill columns, etc., and the fluid passing through the column does not drift. Furthermore, it is knitted without losing the large surface area of fibers, and substantially retains the functional speed and capacity of a fiber form, which is highly effective in practical use. In particular, even if the packing density is sufficiently high for enzyme-immobilized products, the flow resistance of high viscosity fluids is small, and the adsorption fiber filler does not become economically compacted, so it can maintain the specified performance for a long time. Hold. However, by setting the packing density of the adsorption fiber packing material of the present invention into a column or the like in the range of 0.15 to 0.35 g/cm 3 , the performance is significantly improved. Hereinafter, the present invention will be explained in more detail with reference to Examples. Example 1 A chip blend consisting of 80 parts of polystyrene and 20 parts of polypropylene was used as a sea component and polypropylene was used as an island component, so that the sea-island ratio was 50:50.
A multicore sea-island type composite fiber was obtained by melt-composite spinning (island component: 16) at ℃ and then drawing 5 times (single fiber fineness: 4.3 denier, strength: 2.8 g/d). The drawn yarn (total fineness 70 denier) is knitted into a tube using a tube knitting machine with a diameter of 9cm, cut into 5cm widths, and curled from both ends in a spiral shape by applying tension in a direction parallel to the cut surface. A cylindrical knitted string-like article in the form of links was obtained. 5 parts of paraformaldehyde,
Immerse in a crosslinking solution consisting of 25 parts of acid and 70 parts of concentrated sulfuric acid at 90°C.
A crosslinking reaction was carried out for 2 hours to insolubilize the polystyrene as a sea component. Next, it was chloromethylated and trimethylammoniumated using a known method and dried. By further cutting this braided material into 8 mm pieces, a spirally curled cylindrical adsorption fiber filler was obtained (anion exchange capacity: 2.4 milliequivalents/
g, basis weight 100g/m 2 ). No change in shape was observed in the two adsorption fiber fillers made of these cylindrical braided materials (the braided material before and after cutting) even when both were stirred in water. Example 2 The drawn yarn obtained in Example 1 was combined so that the total fineness was 210 denier, and wound around 16 bobbins.
A hollow braided string was produced using a string making machine. Next, it was subjected to reaction treatment according to the method of Example 1 and dried. By cutting this braided string to 8 mm, a cylindrical adsorption fiber filler was obtained (anion exchange capacity
2.3 meq/g, total fineness 7000 denier). This fiber filler for adsorption showed no change in shape even when stirred in water. Example 3 The adsorption fiber filler consisting of the knitted fabric and braided string obtained in Example 1 and Example 2 was made into a chlorine type, and 0.24 g/ml was placed in a cylindrical hollow container with an inlet at the top and an outlet at the bottom. An anion exchange reaction column for decolorizing a sugar solution was obtained by packing the same volume at a density of . Add 60 brix of cane sugar solution (absorbance value 7.5 at 410 mμ, using a 10 cm cell) to this column.
The absorbance value of the effluent was measured by flowing at a flow rate of 70° C. and SV10, and the change in decolorization rate was investigated. Table 1 shows the results and liquid flow resistance. As a comparative example, the drawn yarn obtained in Example 1 was used as Example 1.
After performing the same reaction treatment and air-drying, using a device filled with yarn cut into 8 mm pieces at a density of 0.24 g/ml and 0.12 g/ml, the results of examining the change in decolorization rate and liquid flow resistance using the above method are as follows. It is shown in Table 1. The column made of the adsorption fiber packing material of the present invention has a decolorizing performance close to that of a column made of cut fiber (thread), and has low liquid flow resistance. Columns made of threads have extremely high resistance to liquid passage, making them difficult to use in practice; lowering the packing density improves liquid permeability, but
The functional capacity becomes smaller and the decolorization rate decreases significantly.

【表】 実施例 4 ポリプロピレンを島成分とし、ポリスチレン53
部とポリプロピレン6部の混合物を海成分とし
て、海島比が41:59になるように250℃で溶融複
合紡糸(島数18)した後、、5倍に延伸すること
によつて多芯海島型複合繊維を得た(単糸繊度
1.9デニール、強度2.4g/d)。総繊度が240デニー
ルになるように合糸し、16個のボビンに巻きつ
け、製紐機を用いて中空の組みヒモを作製した。
組みヒモを、硫酸22部、ニトロベンゼン104部、
パラホルムアルデヒド0.3部の架橋液に浸して室
温で6時間反応した。蒸留水、メタノールで水洗
乾燥後、硫酸に浸して90℃で2時間反応してスル
ホン化した。この組みヒモ状物を10mmに切断する
ことによつて、筒状のカチオン交換性吸着用繊維
充填材を得た(カチオン交換容量3.0ミリ当量/
g、総繊度6000デニール)。 実施例 5 実施例4で得た組みヒモ1.0部にメチロルアク
リルアミド0.7部、パラホルムアルデヒド0.02
部、硫酸10部、ニトロベンゼン10部からなる液を
加え室温で2時間反応してアクリルアミドメチル
化した後、20%ジメチルアミン−メタノール中還
流下で2時間処理してβ−ジメチルアミノプロピ
オンアミドメチル化した。反応処理した組みヒモ
1g当りに、グルコースイソメラーゼを抽出した
菌体破片を含むけん濁液50ml(活性力価
13500U、PH7.5)を加え、50℃で6時間撹拌した
後、組みヒモを取り出し、0.1%グルタルアルデ
ヒド2.5ml(PH8.0)に加え室温で30分処理した。
次に、60℃で1hr熱風乾燥した後、切断すること
によつて筒状のグルコース異性化吸着用繊維充填
材1.25gを得た(総繊度10000デニール)。酵素活
性力価は8000U/gであつた。なお、酵素の活性
力価は、基質溶液として0.6Mグルコース、0.01M
Mgcl2(PH8.2)を用い、60℃、1時間の反応で1
mgのフラクトースを生成する酵素量を1Uとし
た。次に、各種の長さに切断した上記グルコース
異性化吸着用繊維充填材を、円筒状の中空容器に
0.20g/mlの密度に充填した時の取り扱い性、充
填の均一性および通液性を調べた結果を表2に示
す。切断の長さが3mm未満になると取り扱い性
(形状の保持性)、通液性が悪くなり、30mmをこえ
ると取り扱い性、充填の均一性が悪くなつた。
[Table] Example 4 Polypropylene is used as the island component, polystyrene 53
After melt-spinning at 250°C (number of islands: 18) using a mixture of 5 parts of polypropylene and 6 parts of polypropylene as the sea component at a sea-island ratio of 41:59, a multicore sea-island type was created by stretching 5 times. Obtained composite fiber (single fineness
1.9 denier, strength 2.4 g/d). The threads were combined to have a total fineness of 240 denier, wound around 16 bobbins, and a hollow braided string was produced using a string making machine.
Braided string, 22 parts of sulfuric acid, 104 parts of nitrobenzene,
It was immersed in a crosslinking solution containing 0.3 parts of paraformaldehyde and reacted at room temperature for 6 hours. After washing with distilled water and methanol and drying, it was immersed in sulfuric acid and reacted at 90°C for 2 hours to sulfonate it. By cutting this braided string into 10 mm pieces, a cylindrical cation-exchangeable adsorption fiber filler was obtained (cation exchange capacity: 3.0 meq./
g, total fineness 6000 denier). Example 5 0.7 part of methylolacrylamide and 0.02 part of paraformaldehyde were added to 1.0 part of the braided string obtained in Example 4.
After adding a solution consisting of 1 part, 10 parts of sulfuric acid, and 10 parts of nitrobenzene and reacting at room temperature for 2 hours to produce acrylamide methylation, the mixture was treated with 20% dimethylamine-methanol under reflux for 2 hours to produce β-dimethylaminopropionamide methylation. did. 50 ml of suspension containing bacterial cell fragments from which glucose isomerase has been extracted (activity titer) per 1 g of reaction-treated braided string
After stirring at 50° C. for 6 hours, the braided string was taken out, added to 2.5 ml of 0.1% glutaraldehyde (PH 8.0), and treated at room temperature for 30 minutes.
Next, after drying with hot air at 60° C. for 1 hour, the material was cut to obtain 1.25 g of a cylindrical fiber filler for glucose isomerization and adsorption (total fineness of 10,000 denier). The enzyme activity titer was 8000 U/g. In addition, the activity titer of the enzyme is 0.6M glucose and 0.01M glucose as substrate solution.
Using Mgcl 2 (PH8.2), 1 hour reaction at 60℃
The amount of enzyme that produces mg of fructose was defined as 1U. Next, the fiber filler for glucose isomerization adsorption cut into various lengths was placed in a cylindrical hollow container.
Table 2 shows the results of examining handleability, uniformity of filling, and liquid permeability when packed to a density of 0.20 g/ml. When the cut length was less than 3 mm, the handleability (shape retention) and liquid permeability deteriorated, and when it exceeded 30 mm, the handleability and filling uniformity deteriorated.

【表】 実施例 6 実施例5で得たグルコース異性化吸着用繊維充
填材(切断長8mm)を上に入口、下に出口を備え
た円筒状の中空容器に充填することによつてグル
コース異性化用の酵素反応カラムを得た。各種密
度で充填した時の充填の均一性、通液性および異
性化率を調べた結果を表3に示す。充填密度が
0.15g/ml未満になると機能容量が低下するだけ
でなく、充填の均一性が悪くなり異性化率が低下
し、0.35g/mlをこえると通液抵抗が非常に大き
くなり通液性が悪く、充填の均一性も悪かつた。
異性化率は0.005Mの硫酸マグネシウムを含む3M
グルコース(PH8.0)を60℃、18ml/g(吸着
剤)・hrの流速で通液した時のグルコースからフ
ラクトースへの転換率を示す。
[Table] Example 6 Glucose isomerization was achieved by filling a cylindrical hollow container with an inlet at the top and an outlet at the bottom with the fiber filler for glucose isomerization and adsorption (cutting length 8 mm) obtained in Example 5. An enzyme reaction column for chemical reaction was obtained. Table 3 shows the results of examining the uniformity of filling, liquid permeability, and isomerization rate when packed at various densities. packing density
If it is less than 0.15g/ml, not only will the functional capacity decrease, but the uniformity of filling will deteriorate and the isomerization rate will decrease, and if it exceeds 0.35g/ml, the resistance to liquid passage will be very large and the liquid permeability will be poor. The uniformity of filling was also poor.
Isomerization rate is 3M with 0.005M magnesium sulfate
The conversion rate from glucose to fructose is shown when glucose (PH8.0) is passed through at 60°C at a flow rate of 18 ml/g (adsorbent)/hr.

【表】【table】

【表】 ** 通液抵抗の相対値
実施例 7 実施例4で得た多芯海島型複合繊維(総繊度80
デニール)を編機を用いて筒編状とし、5cm幅に
裁断して長手方向に張力をかけることによつて両
端より互に渦巻状にカールした編紐状物を得た。
これをメチロールアクリルアミド1.0部、パラホ
ルムアルデヒド0.03部、硫酸10部、ニトロベンゼ
ン1.0部からなる液を用いる以外は実施例5の方
法で化学処理、生物処理を行なつた。次に、60℃
で1時間熱風乾燥した後、編紐状物を長手方向に
中央部で裁断し、さらに短手方向に切断すること
によつて筒状のグルコース異性化吸着用繊維充填
材1.3gを得た。酵素活性力価は8400U/gであつ
た(目付け120g/m2)。切断長と取り扱い性、充
填の均一性および通液性について実施例5の方法
で調べた結果を表4に示す。比較例として、編状
物を裁断しないで上記と同様の化学処理、生物処
理をほどこした後、8mm平方に裁断した、すくな
くとも一つの閉環を形成してカールしていない吸
着用繊維充填材の結果も表4に示してある。切断
が3mm未満になると取り扱い性(形状の保持
性)、通液性が悪くなり、30mmをこえると取り扱
い性、充填の均一性が悪くなつた。また、すくな
くとも一つの閉環を形成してカールしていない編
状物からなる吸着用繊維充填材は取り扱い性、充
填の均一性が悪く、また通液性も良くなかつた。
[Table] ** Relative value of liquid resistance Example 7 Multicore sea-island composite fiber obtained in Example 4 (total fineness 80
Denier) was knitted into a tubular shape using a knitting machine, cut to a width of 5 cm, and tension was applied in the longitudinal direction to obtain a knitted string-like product that curled spirally from both ends.
This was subjected to chemical and biological treatment in the same manner as in Example 5, except that a solution consisting of 1.0 part of methylol acrylamide, 0.03 part of paraformaldehyde, 10 parts of sulfuric acid, and 1.0 part of nitrobenzene was used. Next, 60℃
After drying with hot air for 1 hour, the braided material was cut in the longitudinal direction at the center and further cut in the transverse direction to obtain 1.3 g of a cylindrical fiber filler for glucose isomerization and adsorption. The enzyme activity titer was 8400 U/g (basis weight 120 g/m 2 ). Table 4 shows the results of examining the cutting length, handling properties, uniformity of filling, and liquid permeability using the method of Example 5. As a comparative example, the result of an adsorption fiber filler that was cut into 8 mm squares after being subjected to the same chemical and biological treatments as above without cutting the knitted material, forming at least one closed ring and not curling. are also shown in Table 4. When the cut length was less than 3 mm, the handleability (shape retention) and liquid permeability deteriorated, and when the cut length exceeded 30 mm, the handleability and filling uniformity deteriorated. In addition, the adsorption fiber filler made of a knitted material that forms at least one closed ring and is not curled has poor handling properties, poor filling uniformity, and poor liquid permeability.

【表】【table】

【表】 * 比較例
実施例 8 実施例7で得た筒状のグルコース異性化吸着用
繊維充填材(切断長8mm)を実施例6と同じ中空
容器に充填することによつてグルコース異性化用
の酵素反応カラムを得た。各種密度で充填した時
の充填の均一性、通液性および異性化率を調べた
結果を表5に示す。0.15g/ml未満となると機能
容量が低下するだけでなく、充填の均一性が悪く
なり異性化率が低下し、0.35g/mlをこえると通
液抵抗が非常に大きくなり通液性が悪く、充填の
均一性も悪かつた。異性化率は実施例5の方法
で、20ml/g(吸着材)・hrの流速で通液したと
きのグルコースからフラクトースへの転換率を示
す。
[Table] * Comparative Example Example 8 The cylindrical fiber filler for glucose isomerization and adsorption obtained in Example 7 (cutting length: 8 mm) was filled in the same hollow container as in Example 6 to prepare a material for glucose isomerization. An enzyme reaction column was obtained. Table 5 shows the results of examining the uniformity of filling, liquid permeability, and isomerization rate when packed at various densities. If it is less than 0.15g/ml, not only will the functional capacity decrease, but the uniformity of filling will deteriorate and the isomerization rate will decrease, and if it exceeds 0.35g/ml, the resistance to liquid passage will be extremely large and the liquid permeability will be poor. The uniformity of filling was also poor. The isomerization rate indicates the conversion rate from glucose to fructose when the method of Example 5 was used and the liquid was passed at a flow rate of 20 ml/g (adsorbent)/hr.

【表】 ** 通液抵抗の相対値
[Table] ** Relative value of liquid flow resistance

【図面の簡単な説明】[Brief explanation of the drawing]

第1〜5図はそれぞれ本発明の吸着用繊維充填
材の1態様を示す断面図であり、図において1は
該吸着用繊維充填材を構成する編成物の端部を示
す。
1 to 5 are sectional views showing one embodiment of the adsorption fiber filler of the present invention, and in the figures, 1 indicates the end of the knitted material constituting the adsorption fiber filler.

Claims (1)

【特許請求の範囲】 1 単糸繊度が0.01〜50デニール(d)のイオン
交換基を有する連続フイラメント糸条からなる筒
状の編成物であつて、該編成物の筒状方向の長さ
が3〜30mmであることを特徴とする吸着用繊維充
填材。 2 吸着用繊維充填材が生理活性物質固定化のた
めの充填材である特許請求の範囲第1項記載の吸
着用繊維充填材。
[Scope of Claims] 1. A cylindrical knitted fabric made of continuous filament yarn having an ion exchange group with a single yarn fineness of 0.01 to 50 deniers (d), wherein the length of the knitted fabric in the cylindrical direction is An adsorption fiber filler characterized by having a diameter of 3 to 30 mm. 2. The fibrous filler for adsorption according to claim 1, wherein the fibrous filler for adsorption is a filler for immobilizing a physiologically active substance.
JP8657380A 1980-06-27 1980-06-27 Fibrous adsorbent Granted JPS5712833A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8657380A JPS5712833A (en) 1980-06-27 1980-06-27 Fibrous adsorbent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8657380A JPS5712833A (en) 1980-06-27 1980-06-27 Fibrous adsorbent

Publications (2)

Publication Number Publication Date
JPS5712833A JPS5712833A (en) 1982-01-22
JPS6124049B2 true JPS6124049B2 (en) 1986-06-09

Family

ID=13890746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8657380A Granted JPS5712833A (en) 1980-06-27 1980-06-27 Fibrous adsorbent

Country Status (1)

Country Link
JP (1) JPS5712833A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61176000U (en) * 1985-04-24 1986-11-01

Also Published As

Publication number Publication date
JPS5712833A (en) 1982-01-22

Similar Documents

Publication Publication Date Title
USRE42282E1 (en) Dehumidifying element and manufacturing method for the same
US4414111A (en) Shaped composite adsorbent and a process for preparing the same
KR100318981B1 (en) Manufacturing method of sorption article
US5498409A (en) Material for adsorbing pyrogen
US4307151A (en) Enzyme-active fibrous materials and method for preparing same
JPS6124049B2 (en)
US4925803A (en) Fibrous roll of tubular braid for immobilization of cells and enzymes
EP0183180B1 (en) Method for fibrillating carbonaceous fibers
JPS58122039A (en) Adsorbing material made of fiber
JPS581611B2 (en) dehumidification element
US5217701A (en) Process for producing carbon materials
US4107384A (en) Method for producing porous fibers
JPH0679268A (en) Production of ultra-pure water
JPS607654B2 (en) Ion-exchangeable fibrous material and its manufacturing method
JPS5923852B2 (en) Adsorption methods for ionic and polar substances
Novoselova et al. Polyolefinic fibrous ion-exchange materials: Properties and applications
JPS6147827A (en) Hollow activated carbon fiber
JPS62152533A (en) Base material for removing trihalomethane
JPH06296859A (en) Coated carrier
JPS58197311A (en) Hollow fiber having many continuous ultrafine pores, its bundle and preparation thereof
JPS62247820A (en) Method for filtering gas
JP3756586B2 (en) Adsorbent
JPH0220024Y2 (en)
Gordon et al. Polyethylene Fibrids: Preparation and Properties
Masaharu et al. Polystyrene-Based Functional Fibers