JPS61240291A - Power source circuit for driving liquid crystal - Google Patents
Power source circuit for driving liquid crystalInfo
- Publication number
- JPS61240291A JPS61240291A JP2663386A JP2663386A JPS61240291A JP S61240291 A JPS61240291 A JP S61240291A JP 2663386 A JP2663386 A JP 2663386A JP 2663386 A JP2663386 A JP 2663386A JP S61240291 A JPS61240291 A JP S61240291A
- Authority
- JP
- Japan
- Prior art keywords
- power supply
- liquid crystal
- voltage
- driving
- supply voltage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Liquid Crystal (AREA)
- Liquid Crystal Display Device Control (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
く技術分野〉
本発明は比較的高いデユーティ(duty)で時分割的
に駆動する方式を採択できる液晶駆動用電源回路に関す
るものである。DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to a power supply circuit for driving a liquid crystal that can adopt a time-divisional driving method with a relatively high duty.
〈従来技術〉
従来、液晶駆動方式としては、スタティック駆動とダイ
ナミック駆動があるが、前者は液晶電極パターンが複雑
となり、駆動用LSIの端子数が増加する等、総合的な
価格が高くなることから、現状では比較的桁数の少ない
時計等に限って採用される以外は、ダイナミック駆動が
主流を占めている。<Prior art> Conventionally, there are static drive and dynamic drive as liquid crystal drive methods, but the former requires a complicated liquid crystal electrode pattern and increases the number of terminals of the drive LSI, which increases the overall price. Currently, dynamic drives are the mainstream, except for those that are used only in watches with a relatively small number of digits.
特に駆動用信号の数を低減して簡単化するために開発さ
れたダイナミック駆動方式は液晶表示等に採用され、液
晶表示の場合はスレショルド電圧特性を利用して時分割
選択を行っている。In particular, a dynamic drive method developed to reduce and simplify the number of drive signals is used in liquid crystal displays, etc., and in the case of liquid crystal displays, time-division selection is performed using threshold voltage characteristics.
このスレショルド電圧は温度、周波数等に依存している
為、時分割の度合(duty ratio)を高く取る
事が困難である。Since this threshold voltage depends on temperature, frequency, etc., it is difficult to obtain a high degree of time division (duty ratio).
斯かるダイナミック駆動方式はこのスレショルド特性の
利用の方法にエリ、2種類、つまり電圧平均化法と2周
波法の駆動方式が採られる。Such a dynamic drive method utilizes this threshold characteristic in two ways, ie, a voltage averaging method and a two-frequency method.
前者の電圧平均化法はスレショルド電圧特性を直接利用
した方法で、選択された電極にはスレショルド電圧(v
th)以上の駆動パルスを加え、半選択電極はvth以
下のパルスしか加わらない様な駆動力式である。The former voltage averaging method is a method that directly utilizes the threshold voltage characteristics, and the threshold voltage (v
The driving force type is such that a driving pulse of 100% or more is applied, and only a pulse of less than 100% vth is applied to the half-selective electrode.
また、後者の2周波法はスレショルド電圧特性が周波数
に依存している点を利用し、スレショルド電圧が急激に
高くなる周波数、即ち一種のカットオフ周波数(fc)
より大きな周波数を駆動の一部に使用し、選択電極には
fcより低い周波数、半選択電極にはfcより高い周波
数を加えることにより時分割選択を行う方式である。The latter two-frequency method utilizes the fact that the threshold voltage characteristic depends on frequency, and uses the frequency at which the threshold voltage suddenly increases, that is, a kind of cut-off frequency (fc).
This method uses a larger frequency for part of the drive, and performs time division selection by applying a frequency lower than fc to the selection electrode and a frequency higher than fc to the half selection electrode.
本発明は特に前者の駆動方式を採用する場合に適してい
る。The present invention is particularly suitable for adopting the former driving method.
電圧平均化法に於て、スレショルド電圧は諸要素により
かなり変化する為、電子式卓上計算機等として要求され
る環境条件等の範囲内で安定な特性を得る為に種々の工
夫がなされている。In the voltage averaging method, since the threshold voltage varies considerably depending on various factors, various measures have been taken to obtain stable characteristics within the range of environmental conditions required for electronic desktop calculators and the like.
一般的にはパルス高さ■の駆動パルスを用いてこれらの
両電極への印加方法により選択電極にはづ
2V、半選択電極には■のパルスが印加される様に構成
し、2V>Vth>Vと言う条件に合う様に■を設定す
る方法が用いられる。しかしこれでは環境条件の変化に
よるスレショルド電圧の変動に対して追随する事が出来
ない。In general, a driving pulse with a pulse height of ■ is applied to both electrodes so that a pulse of 2V is applied to the selective electrode and a pulse of ■ is applied to the half-selective electrode, and 2V>Vth. A method of setting ■ to meet the condition of >V is used. However, this method cannot keep up with fluctuations in the threshold voltage due to changes in environmental conditions.
この間層を解決する方法として、従来半選択に対するい
わゆるバイアスの掛は方を考慮し、選択電極の172,
1/3に設定する1/2バイアス方式、1/3バイアス
方式が良く用いられている。一方、時分割の度合い(D
uty)の選定については、スレショルド電圧特定との
関係により安定性を満足すべき範囲内に限定される。As a method to solve this interlayer, we considered the so-called bias applied to the conventional half-select, and the selection electrode 172,
A 1/2 bias method and a 1/3 bias method are often used. On the other hand, the degree of time division (D
The selection of uty) is limited to a range that satisfies stability due to the relationship with the specified threshold voltage.
従って、主な方式として1/2duty−1/2bia
s、1/3duty(/3bias、1/4duty−
1/3biasなどが一般的に良く用いられている。Therefore, the main method is 1/2 duty-1/2 bias.
s, 1/3 duty (/3 bias, 1/4 duty-
1/3 bias etc. are commonly used.
以上の事から分かる様に、液晶駆動用端子数から考察す
れば、出来るだけdutyを高くすることが望ましい。As can be seen from the above, considering the number of liquid crystal driving terminals, it is desirable to make the duty as high as possible.
しかし、液晶側の種々の駆動電圧余裕度から電源電圧の
精度が厳しく要求される。However, the accuracy of the power supply voltage is strictly required due to various driving voltage margins on the liquid crystal side.
第1図は各dutyに於ける周囲温度に対する電源電圧
余裕度(マージン)の特性を比較して示す図であり、(
a)=(b)−(e)はそれぞれ1/3,1/4,1/
7dutyの場合を示しでいる。FIG. 1 is a diagram showing a comparison of characteristics of power supply voltage margin (margin) with respect to ambient temperature at each duty.
a) = (b) - (e) are 1/3, 1/4, 1/ respectively
The case of 7 duty is shown.
図に於いてAII域は点灯セグメントのコントラスト不
足頭載、Bix域は非点灯セグメントが点灯してしまう
、所謂誤動作領域であり、斜線部の領域は液晶駆動に適
した電源電圧の駆動マージン領域である。In the figure, the AII region is the so-called malfunction region where the contrast of the lit segment is insufficient, the Bix region is the so-called malfunction region where the non-lighted segment is lit, and the shaded region is the drive margin region of the power supply voltage suitable for driving the liquid crystal. be.
図から分かる事は、電源電圧マージン領域はdutyが
高くなる程狭(なり、又温度特性を有し、温度に対して
負の勾配となることである。又駆動電圧を定電圧とする
と、1/3dutytl/4dutyではマージン領域
内の設計が可能であるが、例えば1/7dutyでは電
源電圧(駆動電圧)が斜線部以外の範囲にはみ出てしま
うという、いわゆるマージン割れを起す。つまりdut
yが高くなると、液晶の応答特性によりマージン領域が
狭くなり、電源電圧が固定であれば、ある温度では電源
電圧(駆動電圧)がはみ出し、逆に電圧が固定で温度補
償をしなけらば液晶表示装置の使用可能な温度範囲が狭
(なる傾向を呈する。ここで、温度範囲Ta=O〜40
℃としている。What can be seen from the figure is that the power supply voltage margin region becomes narrower as the duty becomes higher, and also has temperature characteristics and has a negative slope with respect to temperature.Also, if the drive voltage is a constant voltage, 1 /3duty/4duty allows design within the margin area, but for example, at 1/7 duty, the power supply voltage (drive voltage) protrudes outside the shaded area, which causes so-called margin cracking.In other words, dut
As y increases, the margin area becomes narrower due to the response characteristics of the liquid crystal, and if the power supply voltage is fixed, the power supply voltage (drive voltage) will exceed at a certain temperature, and conversely, if the voltage is fixed and temperature compensation is not performed, the liquid crystal The usable temperature range of the display device tends to be narrow.Here, the temperature range Ta=O~40
℃.
この様に、dutyの高い駆動を行う場合、定電圧電源
は特に低温又は高温に於て、マーノン割れを起す為使用
が困難である。As described above, when performing high-duty driving, it is difficult to use a constant voltage power supply because it causes Marnon cracking, especially at low or high temperatures.
かかる欠点を除去するため、駆動電圧に温度補正を行っ
た回路を使用する必要があり、出願人は先に実願昭53
−119576号の電源回路を提案した。しかし、この
温度補正回路はサーミスタ等の温度センサーを使用して
実現可能であるが、マージン範囲が狭い為、温度補正回
路は電圧の±5%以下の精度を必要とし、さらに液晶駆
動方式は低消費電力化を目脂したものであり、温度補正
回路での電力消費を極力抑える回路を要求される。In order to eliminate such drawbacks, it is necessary to use a circuit in which the drive voltage is temperature-compensated, and the applicant previously filed the Utility Model Application No. 53
-Proposed the power supply circuit of No. 119576. However, although this temperature compensation circuit can be implemented using a temperature sensor such as a thermistor, the margin range is narrow, so the temperature compensation circuit requires an accuracy of ±5% of the voltage or less, and the liquid crystal drive method has low accuracy. This is aimed at increasing power consumption, and a circuit that minimizes power consumption in the temperature correction circuit is required.
即ち、高い電圧精度と低電力損失を兼ね備えた回路はコ
スト的に高いウェイトを占め、システム全体から見てコ
スト的に大幅に増大するという欠点がある。That is, a circuit that has both high voltage accuracy and low power loss has a disadvantage in that it occupies a high cost in terms of cost, and the cost of the entire system increases significantly.
〈発明の目的〉
本発明は上述の欠点を除去するためになされたもので、
電源電圧マージン領域内に複数の電源電圧を設定し、単
一の切換え用キーによ一部、当該複数の電源電圧を順次
切換えようにした液晶駆動用電源回路を提供せんとする
ものである。<Object of the invention> The present invention has been made in order to eliminate the above-mentioned drawbacks.
It is an object of the present invention to provide a power supply circuit for driving a liquid crystal, in which a plurality of power supply voltages are set within a power supply voltage margin region, and the plurality of power supply voltages are sequentially switched using a single switching key.
〈実施例〉 以下、本発明の一実施例を図面に従って説明する。<Example> An embodiment of the present invention will be described below with reference to the drawings.
第2図はその一実施例を示す回路構成図で、Eは直流電
圧、S、−S、はスイッチ、R2−R9は抵抗、RLは
負荷抵抗(液晶負荷を含む。)、V LCDは液晶駆動
電圧である。上記スイッチ81〜S、はいずれか1つが
ONし、他はすべてOFFになるものと仮定する。Fig. 2 is a circuit configuration diagram showing one embodiment of the same, where E is a DC voltage, S, -S are switches, R2-R9 are resistors, RL is a load resistance (including a liquid crystal load), and V LCD is a liquid crystal. This is the driving voltage. It is assumed that one of the switches 81 to S is turned on and all the others are turned off.
今、Ri<Ri+1(i=1〜4)とすると、スイッチ
5i(i=1〜5)がONのとき、vt、an(i)=
ExRL/ (Ri+ RL) ト’t ルア’l’
ラ、VLCD(i)> VLCD(i+1)(i=1〜
4)の関係が成立する。従って、一定の負荷抵抗RLに
対し、Riの値を適当に定めることにより、第3図の如
く電源電圧マージン領域内にVLCD(i)を定めるこ
とが出来る様に構成する。Now, if Ri<Ri+1 (i=1 to 4), when switch 5i (i=1 to 5) is ON, vt, an(i)=
ExRL/ (Ri+RL) To't Lua'l'
La, VLCD(i) > VLCD(i+1) (i=1~
The relationship 4) holds true. Therefore, by appropriately determining the value of Ri for a constant load resistance RL, the configuration is such that VLCD(i) can be determined within the power supply voltage margin region as shown in FIG.
即ち、n個の電圧Ei(i=1−m)(Ei≦E)を負
荷抵抗RLに選択的に供給できる様にする為、n個の抵
抗Riとn個のスイッチSi及び負荷抵抗RLを設け、
スイッチSiの一方を電源Eに接続し、他方を対応する
Riに接続し、又各抵抗Riの一方を抵抗RLに接続し
、他方を選択的にON10 F Fされるスイッチを介
して電源に接続し、抵抗Riと負荷抵抗RLの接続点よ
り出力電圧を得る様にし、スイッチSiの任意の1つを
ON、他をすべてOFFにすることによりn種類の出力
電圧Ei(i=1〜n)を得ることが出来る様にしたも
のである。That is, in order to selectively supply n voltages Ei (i=1-m) (Ei≦E) to the load resistor RL, n resistors Ri, n switches Si, and the load resistor RL are connected. established,
One of the switches Si is connected to the power supply E, the other to the corresponding Ri, one of each resistor Ri is connected to the resistor RL, and the other is connected to the power supply via a switch that is selectively turned on. Then, the output voltage is obtained from the connection point between the resistor Ri and the load resistor RL, and n types of output voltages Ei (i = 1 to n) are obtained by turning on any one of the switches Si and turning off all others. It is designed so that it can be obtained.
この様に本発明の回路は数個のスイッチSと抵抗Rの簡
単な構成で実現でき、又、負荷電流以外の電流損失がな
い為、低価格で、低電力特性を有することを得ることが
出来る。As described above, the circuit of the present invention can be realized with a simple configuration of several switches S and resistors R, and since there is no current loss other than the load current, it is possible to obtain low cost and low power characteristics. I can do it.
又、上記スイッチはMOSトランジスタ等の半導体素子
で構成できるからLSIに内蔵することが可能で電卓等
に採用できる。しかも、スイッチ、抵抗の数を任意に選
択できることはもちろんである。Further, since the above-mentioned switch can be constructed from a semiconductor element such as a MOS transistor, it can be built into an LSI and can be used in a calculator or the like. Moreover, it goes without saying that the number of switches and resistors can be selected arbitrarily.
第4図は他の実施例を示し、スイッチの切換を電卓等の
外部よりスライドスイッチ等により自在に選択切換えで
きる様にしたものである。FIG. 4 shows another embodiment in which the switch can be freely selected and changed from outside the calculator or the like using a slide switch or the like.
第5図はさらに他の実施例を示し、リングカウンタRC
を用いて実現するものである。ここでKは切換え用キー
、ASはアナログスイッチであり、キーにの押圧毎にア
ナログスイッチAsのON位置が移動し、オペレータが
、その時の環境(周囲)温度に最も適したLCDの駆動
電圧を容易に選択出来る様にしたものである。FIG. 5 shows still another embodiment, in which a ring counter RC
This is achieved using Here, K is a switching key, and AS is an analog switch. Each time the key is pressed, the ON position of the analog switch As moves, allowing the operator to select the LCD drive voltage most suitable for the environment (ambient) temperature at that time. This allows for easy selection.
例えば、bがLoIllレベル、他がHighレベルの
とき、キーKを押すと、CがL1他がHとなり、再度に
キーを押すと、dがり、他がHとなり、これを繰返すと
、Lレベルの位置は6−e a→l)−+ c→d→e
→B−41)→・・伽となる。ここでMOSFET)ラ
ンシスタはPチャンネル形が用いられ、デートがL+、
:なれ1rONL、VLCDImはMOSFETのドレ
インに接続されている抵抗Rと負荷抵抗RLの抵抗比に
よりE X RL/ (Ri+ RL)の電圧が発生す
る。For example, when b is at LoIll level and others are at High level, if you press key K, C becomes L1 and others become H. If you press the key again, d becomes low and others become H, and if you repeat this, it goes to L level. The position of is 6-e a→l)-+ c→d→e
→B-41) →... becomes a fairy tale. Here, a P-channel type MOSFET is used as the run transistor, and the date is L+,
: 1r ONL, VLCDIm generates a voltage of Ex RL/(Ri+RL) due to the resistance ratio of the resistor R connected to the drain of the MOSFET and the load resistor RL.
〈効果〉
以上の様に本発明の液晶駆動用電源回路によれば、電源
電圧マージン領域内に設定された複数の電源電圧(駆動
電圧)を単一の切換え用キーにより順次切換えることが
でき、揉作者は、簡単な操作によって、表示コントラス
トを変更できる。<Effects> As described above, according to the liquid crystal drive power supply circuit of the present invention, a plurality of power supply voltages (drive voltages) set within the power supply voltage margin area can be sequentially switched using a single switching key. The author can change the display contrast with a simple operation.
第1図は各dutyに於ける周囲温度に対する電源電圧
マージンの特性を比較して示す図、第2図は本発明によ
る液晶駆動用電源回路の一実施例を示す回路構成図、第
3図は同回路の周囲温度に対する、電源電圧マージン特
性図、第4図及び第5図は本発明の他の実施例を示す回
路構成図である。
図中、E:直流電源、Si:スイッチ、Ri:抵抗。
RL:負荷抵抗、VLCD:液晶駆動電圧、SSニスラ
イドスイッチ、に:切換キー、RC:リングカウンター
。
AS:アナログスイッチ。
代理人 弁理士 杉山 毅至(他1名)手続補正書
(方式)
昭和61年≠月aθ日Fig. 1 is a diagram showing a comparison of the characteristics of the power supply voltage margin with respect to the ambient temperature at each duty, Fig. 2 is a circuit configuration diagram showing an embodiment of the liquid crystal driving power supply circuit according to the present invention, and Fig. 3 is 4 and 5 are circuit configuration diagrams showing other embodiments of the present invention. In the figure, E: DC power supply, Si: switch, Ri: resistor. RL: load resistance, VLCD: liquid crystal drive voltage, SS Nislide switch, NI: switching key, RC: ring counter. AS: Analog switch. Agent Patent attorney Takeshi Sugiyama (and 1 other person) Procedural amendment (method) 1985 ≠ month aθ day
Claims (1)
周囲温度特性に対して電源電圧マージン領域が狭い特性
を呈する液晶駆動方式にあって、前記電源電圧マージン
領域内に複数の電源電圧を設定する設定手段と、電源電
圧を切換えるための単一の切換え用キーと、前記単一の
切換え用キーの押圧に応答して、前記設定された電源電
圧を順次切換える切換手段とを具備すること特徴とする
液晶駆動用電源回路。1. When driving in a time division manner with relatively high duty,
In a liquid crystal drive system in which a power supply voltage margin region is narrow with respect to ambient temperature characteristics, a setting means for setting a plurality of power supply voltages within the power supply voltage margin region and a single switch for switching the power supply voltage are provided. 1. A power supply circuit for driving a liquid crystal, comprising: a switch key, and switching means for sequentially switching the set power supply voltage in response to pressing of the single switch key.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2663386A JPS61240291A (en) | 1986-02-07 | 1986-02-07 | Power source circuit for driving liquid crystal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2663386A JPS61240291A (en) | 1986-02-07 | 1986-02-07 | Power source circuit for driving liquid crystal |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61240291A true JPS61240291A (en) | 1986-10-25 |
Family
ID=12198852
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2663386A Pending JPS61240291A (en) | 1986-02-07 | 1986-02-07 | Power source circuit for driving liquid crystal |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61240291A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006251764A (en) * | 2005-03-07 | 2006-09-21 | Lg Phillips Lcd Co Ltd | Apparatus and method for driving liquid crystal display device |
-
1986
- 1986-02-07 JP JP2663386A patent/JPS61240291A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006251764A (en) * | 2005-03-07 | 2006-09-21 | Lg Phillips Lcd Co Ltd | Apparatus and method for driving liquid crystal display device |
US8259052B2 (en) | 2005-03-07 | 2012-09-04 | Lg Display Co., Ltd. | Apparatus and method for driving liquid crystal display with a modulated data voltage for an accelerated response speed of the liquid crystal |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4242679A (en) | Liquid crystal display mechanism | |
TW573290B (en) | Driving method of image display apparatus, driving apparatus of image display apparatus, and image display apparatus | |
KR0147249B1 (en) | Power supply circuit for driving the liquid crystal | |
US4298971A (en) | Electronic timpiece | |
KR960018693A (en) | LCD Display | |
GB1567474A (en) | Electronic timepieces | |
KR19990006574A (en) | Digital-to-analog converters, circuit boards, electronic devices and liquid crystal displays | |
US4168498A (en) | Digital display drive and voltage divider circuit | |
US3903518A (en) | Driving system for liquid crystal display device | |
US4069659A (en) | Electronic switch activated by current flow through the human body | |
JPS61240291A (en) | Power source circuit for driving liquid crystal | |
US4322639A (en) | Voltage detection circuit | |
US4037931A (en) | Liquid crystal display cell driving circuit | |
TW298642B (en) | Systems and methods for operating a liquid crystal display device | |
US4205518A (en) | Voltage conversion system for electronic timepiece | |
US3932860A (en) | Electro-optical display with circuitry for applying predetermined potentials to all display segments to effect activation of a selected segment only | |
JPS58198084A (en) | Display element | |
JP2000134047A (en) | Signal level conversion circuit | |
JPS604619B2 (en) | Insulated gate field effect transistor complementary circuit | |
JPH0237048Y2 (en) | ||
JPH0228153B2 (en) | DENGENKAIROSOCHI | |
JPH1117546A (en) | Voltage divider circuit, d/a converter, circuit board, electronic equipment and liquid crystal display device | |
JPS61140990A (en) | Temperature compensation circuit for liquid crystal display element | |
JPH01302409A (en) | Power source circuit | |
JP3215836B2 (en) | Driving circuit for liquid crystal display device and portable device using the same |