JPS61240116A - Method for detecting angular velocity - Google Patents

Method for detecting angular velocity

Info

Publication number
JPS61240116A
JPS61240116A JP60080199A JP8019985A JPS61240116A JP S61240116 A JPS61240116 A JP S61240116A JP 60080199 A JP60080199 A JP 60080199A JP 8019985 A JP8019985 A JP 8019985A JP S61240116 A JPS61240116 A JP S61240116A
Authority
JP
Japan
Prior art keywords
photosensor
phase difference
angular velocity
optical fiber
deltatheta
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60080199A
Other languages
Japanese (ja)
Other versions
JPH0464411B2 (en
Inventor
Tatsuro Horie
堀江 竜郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60080199A priority Critical patent/JPS61240116A/en
Publication of JPS61240116A publication Critical patent/JPS61240116A/en
Publication of JPH0464411B2 publication Critical patent/JPH0464411B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To perform the detection of angular velocity with high accuracy, by introducing respective beams having received different phase values into the same photosensor and applying predetermined operation to the phase difference of two beams generated in said photosensor. CONSTITUTION:The beam generated from a beam generator 3 is divided into two parts by a beam coupler 2B and only the beam to be utilized is introduced into a beam coupler 2A through a polarizer 4 and the divided beams are projected to both terminals of an optical fiber 1 from said coupler 2A to form right rotary beam CW and left rotary beam CCW. When a loop shaped optical fiber is revolved in this state, phase difference DELTAtheta is generated between the right rotary beam CW and the left rotary beam CCW. This phase difference DELTAthetais introduced into a photosensor 7 to take out a K1 sin DELTAtheta component and a K1 cos DELTAtheta component (wherein K1 is a constant) and the change-over of sin and cos is performed by using the high sensitivity region of the beam phase difference DELTAtheta.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は角速度検出方法に係り、特にループ状の光ファ
イバを伝搬する光の位相変動を利用した角速度検出方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to an angular velocity detection method, and more particularly to an angular velocity detection method that utilizes phase fluctuations of light propagating through a loop-shaped optical fiber.

〔発明の背景〕[Background of the invention]

ループ状の光ファイバの両端から投入した逆向きの光の
位相差を検出して角速度を検出する方法の一例は第5図
に示すような装置によって行われる。即ち、ループ状に
巻回した光ファイバ1の両端を光結合器2A、2Bを介
してビーム発生器3に対向させ、前記光結合器2A、2
B間に偏光子4を介在させると共に、光結合器2Aと光
ファイバ1との間に一方側にデポラライザ5を、゛他方
側に位相変調器6を介在している。また、前記光結合器
2Bから分岐させてフォトセンサ7を接続し、ロックイ
ンアンプ8を介して出力E0を得るようにし、かつ発振
器9を前記位相変調器6及びロックインアンプ8に接続
している(1981年第1インターナショナル株式会社
発行パ光ファイバセンサ技術資料”)。
An example of a method for detecting angular velocity by detecting the phase difference between oppositely directed lights input from both ends of a loop-shaped optical fiber is performed by a device as shown in FIG. That is, both ends of the optical fiber 1 wound in a loop are opposed to the beam generator 3 via the optical couplers 2A, 2B, and the optical couplers 2A, 2
A polarizer 4 is interposed between the optical coupler 2A and the optical fiber 1, and a depolarizer 5 is interposed between the optical coupler 2A and the optical fiber 1 on one side, and a phase modulator 6 is interposed on the other side. Further, a photosensor 7 is connected to a branch from the optical coupler 2B to obtain an output E0 via a lock-in amplifier 8, and an oscillator 9 is connected to the phase modulator 6 and lock-in amplifier 8. (1981 "Popular Fiber Sensor Technical Data, Published by Daiichi International Co., Ltd.")

上記構成の装置において、フォトセンサ7の干渉光の成
分は、該フォトセンサ7の出力をE。とするとき、 E、=KJ、(η)sir+Jθ であられされる、ここではKは定数、J、は第1種ベッ
セル関数の一次項である。
In the device with the above configuration, the interference light component of the photosensor 7 is the output of the photosensor 7. When, E,=KJ, (η)sir+Jθ, where K is a constant and J is a linear term of the Bessel function of the first kind.

また、q = 2 m fsin2 πfaTであられ
される。
Further, it is calculated by q = 2 m fsin2 πfaT.

したがって、ηを最大にすると、sin lθ の係数
が最大となるために、η中1.8とすることが良いと云
うことがベッセル関数表から求められる。ここでfoは
変調周波数、Tは光ファイバの中の光の伝搬時間、m/
は変調指数である。
Therefore, when η is maximized, the coefficient of sin lθ is maximized, so it is determined from the Bessel function table that it is better to set η to 1.8. where fo is the modulation frequency, T is the propagation time of light in the optical fiber, m/
is the modulation index.

そして、η中1.8を得るために通常は変調指数mlを
操作する。しかしながら、変調指数mlは位相変調器6
に加える電圧値や、位相変調器6と光回路との結合係数
の変動、位相変調器6自身のドリフトがあり、また変調
周波数f、の安定性や光フアイバ1内の温度変化による
光の伝搬時間Tの変化などによりΔθ=0、即ち、逆向
きに投入した光の位相差がない場合のみ出力E、が安定
する。そして、Δθ≠Oの場合はηの不安定性のために
アナログ値として読出す出力E、の値の安定性がよくな
い、このため、Δθが零近傍での感度の高い位相差検出
方法であるにもかかわらず、スケールファクタの安定性
がよくないために、零回転センサとなっている。また、
第6図に示すようにΔθが90度近傍では出力E、の変
化が緩慢であり、このため広い範囲に一〇を検出するこ
とは困難である。
Then, the modulation index ml is usually manipulated to obtain 1.8 in η. However, the modulation index ml is the phase modulator 6
There are fluctuations in the voltage value applied to the optical fiber 1, fluctuations in the coupling coefficient between the phase modulator 6 and the optical circuit, and drift of the phase modulator 6 itself, as well as the stability of the modulation frequency f and the propagation of light due to temperature changes within the optical fiber 1. The output E is stabilized only when Δθ=0, that is, there is no phase difference between the lights incident in opposite directions, due to changes in time T, etc. When Δθ≠O, the stability of the output E read out as an analog value is poor due to the instability of η.Therefore, this is a highly sensitive phase difference detection method when Δθ is near zero. However, because the stability of the scale factor is not good, it is a zero rotation sensor. Also,
As shown in FIG. 6, when Δθ is around 90 degrees, the output E changes slowly, making it difficult to detect 10 over a wide range.

以上のように従来の角速度検出方法では不安定要素が存
在し、高精度の角速度検出は期待できなかった。
As described above, the conventional angular velocity detection methods have unstable factors, and highly accurate angular velocity detection cannot be expected.

〔発明の目的〕[Purpose of the invention]

本発明は上記の点に対処したもので、その目的とすると
ころは高精度を保持できる角速度検出方法を提供するこ
とにある。
The present invention addresses the above-mentioned problems, and its purpose is to provide an angular velocity detection method that can maintain high accuracy.

〔発明の概要〕[Summary of the invention]

本発明は光の位相に外部より変調を加えることにより高
次モードの出力が生ずることに注目し。
The present invention focuses on the fact that higher-order mode output is generated by externally modulating the phase of light.

その成分からgin Δθ酸成分cosΔθ成分を取出
してそれらの情報を常に高い感度を有する範囲で使用す
ることを可能とし、またsinΔθ成分とco!! Δ
θ酸成分相互に除することによりηの不安定性が検出々
力に影響しないようにしたのである。
It is possible to extract the gin Δθ acid component and the cos Δθ component from that component, and use that information within a range that always has high sensitivity, and also allows the sin Δθ component and co! ! Δ
By mutually dividing the θ acid components, the instability of η was prevented from affecting the detection power.

(発明の実施例〕 以下本発明による一実施例を第1図に沿って説明する。(Example of the invention) An embodiment according to the present invention will be described below with reference to FIG.

第1図中ループ状に巻回した光ファイバ1、光結合器2
A、2B、ビーム発生器3.偏光子4、デポライザ5、
位相変調器6.フォトセンサ7の関係は第S図と同じで
ある0本発明の実施例は上記構成において、発振器9及
び分局器10の出力を増巾器11を介して位相変調器6
に加え、またフォトセンサ7の出力を増巾・同期検波回
路12A、12Bを介してコンピュータ13に導入して
おり、かつ前記発振器9及び分局器の信号を夫々増巾・
同期検波回路12A、12Bに導入している。
In Fig. 1, optical fiber 1 wound into a loop, optical coupler 2
A, 2B, beam generator 3. polarizer 4, depolarizer 5,
Phase modulator 6. The relationship of the photosensor 7 is the same as that shown in FIG.
In addition, the output of the photosensor 7 is introduced into the computer 13 via amplifying and synchronous detection circuits 12A and 12B, and the signals from the oscillator 9 and the branching device are amplified and amplified, respectively.
It is introduced into the synchronous detection circuits 12A and 12B.

上記構成において、ビーム発生器3より発生したビーム
は、光結合器2Bにより2分され、利用すべき光のみを
偏光子4を介して光結合器2Aに導入し、この光をここ
から光ファイバ1の面端に投入して右廻光CWと左廻光
CCWを作る。この状態においてループ状の光ファイバ
1が回動すると、右廻光CWと左廻光CCWとの間に位
相差Δθが生じる0位相差Δθを有する両光CW。
In the above configuration, the beam generated by the beam generator 3 is split into two by the optical coupler 2B, and only the light to be used is introduced into the optical coupler 2A via the polarizer 4, and this light is transmitted from there to the optical fiber. Inject it into the edge of surface 1 to create a right-handed light CW and a left-handed light CCW. When the loop-shaped optical fiber 1 rotates in this state, a phase difference Δθ occurs between the right-handed light CW and the left-handed light CCW. Both lights CW have a zero phase difference Δθ.

CCWは位相変調器6で変調周波数f0の位相変調を受
け、光結合器2A、偏光子4.光結合器2Bを逆行して
フォトセンサ7に入る。
The CCW is subjected to phase modulation at a modulation frequency f0 by a phase modulator 6, and is connected to an optical coupler 2A, a polarizer 4. It goes backwards through the optical coupler 2B and enters the photosensor 7.

このときの位相差Δθと、変調周波数f0と、フォトセ
ンサ7の出力P7..との関係は、右廻光CWの電磁界
をsaw、左廻光CCWの電磁界をa saw とする
と。
At this time, the phase difference Δθ, the modulation frequency f0, and the output P7 of the photosensor 7. .. The relationship between them is, assuming that the electromagnetic field of the right-handed light CW is saw and the electromagnetic field of the left-handed light CCW is a saw.

e a、= K、5in(ωt+Δθ/ 2 )   
 −(6−1)a aaw= K、5in((11t−
Δθ/ 2 )   −(6−2)となる、上式からの
±Δθ/2はループ状の光ファイバ1を伝搬する光がザ
ブナック効果でΔθだけの相対位相差を発生したことを
意味する。
e a, = K, 5in (ωt+Δθ/2)
-(6-1)a aaw=K, 5in((11t-
±Δθ/2 from the above equation, which is Δθ/2) −(6-2), means that the light propagating through the loop-shaped optical fiber 1 has generated a relative phase difference of Δθ due to the Zabnak effect.

次に1位相変調器6で位相Δθを動かす状況は、e(、
、=に1sin(ωt+Δθ/2+mfsin(pt+
π/2)]・・・(]6−3 e、、、=Kisin(ωt−Δθ/2+mfgin(
pt−π/2))・・・(6−4) であられすことができる、ここでpt=2πf o t
 。
Next, the situation in which the phase Δθ is changed by the 1-phase modulator 6 is e(,
, = 1 sin(ωt+Δθ/2+mfsin(pt+
π/2)]...(]6-3 e,,,=Kisin(ωt-Δθ/2+mfgin(
pt-π/2))...(6-4) where pt=2πfot
.

π/2は固定位相で右廻光CWを左廻光CCWに変調周
波数に対してπだけ位相差をつけたものである・ 電磁界8゜□e0゜、は共にフォトセンサ7に導入され
、このときフォトセンサ7への入力光パワーp、、は、 =2πfである。
π/2 is a fixed phase, with a phase difference of π from the right-handed light CW to the left-handed light CCW with respect to the modulation frequency. Both electromagnetic fields 8°□e0° are introduced into the photosensor 7, At this time, the input optical power p to the photosensor 7 is =2πf.

いま、(s 、/hf)”xK”=に、とじて上記(6
−5)式を解けば、 P FD = Ko (1+ J @ (2m f s
inπf oT )cosΔθ−2J、 (2m f 
sin x f 、 T )sinΔθ5in2zfa
+ 2J、 (2m f sin x f 、 T )
cosΔθ5in4 x f a−2J、 (2m f
 sin πf 、 T )ginΔθgin6πf。
Now, (s, /hf)"xK"= and the above (6
-5) By solving the equation, P FD = Ko (1+ J @ (2m f s
inπfoT )cosΔθ−2J, (2m f
sin x f , T ) sinΔθ5in2zfa
+ 2J, (2m f sin x f, T)
cosΔθ5in4 x f a-2J, (2m f
sin πf, T) ginΔθgin6πf.

+ 2J、(2m f sin n  f oT)co
s A  θain8π f。
+ 2J, (2m f sin n f oT) co
s A θain8π f.

−2JS(・・・ +・・・        〕    ・・・(6−6)
となる、なお Jll=(c/2nQ)=(1/2n)(1/T)−(
6−7)の関係があり、Cは光速、nは光ファイバの平
均屈折率、nは光ファイバの全長である。第1図に示す
ようにフォトセンサの出力P、。を変調周波数f0で同
期検波すれば、その直流出力p(/e)は。
-2JS(...+...]...(6-6)
In addition, Jll=(c/2nQ)=(1/2n)(1/T)−(
6-7), where C is the speed of light, n is the average refractive index of the optical fiber, and n is the total length of the optical fiber. The output P of the photosensor, as shown in FIG. If it is synchronously detected at modulation frequency f0, its DC output p(/e) will be.

P(/a)” KtJz(2mfsins f、T)s
inJθ・・・(6−8) となり、変調周波数2f、で同期検波すれば、その直流
出力P(2/@)は。
P(/a)” KtJz(2mfsins f,T)s
inJθ...(6-8) If synchronous detection is performed at a modulation frequency of 2f, the DC output P(2/@) will be.

P(2/e)”KxJs(2sfsing f、T)c
osJθ・・・(6−9) となる。
P(2/e)”KxJs(2sfsing f,T)c
osJθ...(6-9)

ところで第2図はベッセル関数51項まで示したグラフ
であり、いま2mfsins、fsT=2.6とすると
、その値は51項、53項とも0.5 となり、フォト
センサ7の利用可能出力はP (/ @)二o 、 5
 K、5sinΔθP (2f e)二〇 、 5 K
1cosΔθとなる。即ち、第3図に示すような出力p
(fa)。
By the way, FIG. 2 is a graph showing up to the 51st term of the Bessel function, and if we assume 2 mfsins and fsT = 2.6, the value of both the 51st term and the 53rd term is 0.5, and the usable output of the photosensor 7 is P. (/ @) Nio, 5
K, 5 sin ΔθP (2 f e) 20, 5 K
1 cos Δθ. That is, the output p as shown in FIG.
(fa).

P(2f、)が得られるので、従来においてΔθが90
度近傍で著るしい感度低下をまねいていたが、本実施例
ではΔθが45度近傍でp (f * )からP(2f
o)へと扱う信号を切換えれば、Δθに対してフォトセ
ンサ7の出力変化の大きい部分を常に使用することがで
きる。このため、高い精度を常に保持しながらΔθを広
い範囲で検出することができる。
Since P(2f,) is obtained, conventionally Δθ is 90
However, in this example, when Δθ is around 45 degrees, the change from p(f*) to P(2f
By switching the signal handled to o), it is possible to always use the portion where the output of the photosensor 7 changes largely with respect to Δθ. Therefore, Δθ can be detected over a wide range while always maintaining high accuracy.

上記説明中便宜上2mfginπf、rの値を2.6と
したが、この値はJ1項gJz項が零にならない任意の
値とすればよい。
In the above description, for convenience, the value of 2mfginπf,r was set to 2.6, but this value may be any value such that the J1 term gJz term does not become zero.

第4図は本発明による別の実施例を示すもので。FIG. 4 shows another embodiment according to the present invention.

第1図と変るところは、フォトセンサ7の出力成分から
直流増幅器14を介してJ a (x ) = Oとな
る成分を取出し、これを増巾器11にフィードバックさ
せるようにした点である。第2図に示すようにベッセル
関数の零項は。
The difference from FIG. 1 is that a component satisfying J a (x) = O is extracted from the output component of the photosensor 7 via a DC amplifier 14 and fed back to the amplifier 11. As shown in Figure 2, the zero term of the Bessel function is.

J、(2,4)=0 であるので、前記(6−6)式において、Ja(2mf
sinsfoT)=Q となるように変調指数mfを増巾器11にフィードバッ
クする制御を行なえば。
J, (2,4)=0, so in the above equation (6-6), Ja(2mf
If control is performed to feed back the modulation index mf to the amplifier 11 so that sinsfoT)=Q.

、L(2m fsins foT)cosΔθ=0とな
り、感度の高い値での制御が可能である。この結果、J
、(2mfsins10T)と、L(2mfsinπf
、T)との値が固定されるため、このような制御を用い
るときP (f、)/ P (2fa)= Kotan
 A eを求めることができ、nπ−π/ 2 (n 
=1 t 2 t3・・・)の値、即ちπ/2,3π/
2.・・・の特異点の処理によりΔθを求めることが可
能となる。勿論第3図において説明したsin、 co
oの切換方式を行っても何等問題となることはない、尚
、第4図中増巾・同期検出回路12A、12Bからの出
力信号中に、、に、は夫々にに1侃J工(2,4)K、
伽J、(2,4)であ られされる。
, L(2m fsins foT)cosΔθ=0, and control with a highly sensitive value is possible. As a result, J
, (2mfsin 10T) and L(2mfsinπf
, T) is fixed, so when using such control, P (f,)/P (2fa) = Kotan
A e can be found, nπ−π/2 (n
= 1 t 2 t3...), i.e. π/2, 3π/
2. It becomes possible to obtain Δθ by processing the singular points. Of course, sin and co explained in FIG.
There is no problem even if the switching method of o is used.In addition, in the output signals from the width increaser/synchronization detection circuits 12A and 12B in FIG. 2,4) K,
佽J, (2,4) will be hailed.

さらに、第4図に示すコンピュータ13はsinΔθ、
cotsΔθの直線性の補正、(ginΔθ)/(co
sΔθ)の演算、sin lθとcosΔθ の切換な
どを行う制御を行う一方、角速度への変換や角速度発生
の方向を演算するのに用いられる。これはΔθ=(4π
R1)/(λ。)×Ω より求められるからである。ここでRは光ファイバのル
ープの半径、λは光の波長、Ωは光ファイバのループの
回転角速度である。
Furthermore, the computer 13 shown in FIG.
Correction of linearity of cotsΔθ, (ginΔθ)/(co
It is used to perform control such as calculation of sΔθ) and switching between sin lθ and cosΔθ, and to calculate conversion to angular velocity and direction of generation of angular velocity. This is Δθ=(4π
This is because it is obtained from R1)/(λ.)×Ω. Here, R is the radius of the optical fiber loop, λ is the wavelength of light, and Ω is the rotational angular velocity of the optical fiber loop.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、低角速度検出に適する装置は検出
角速度レンジが狭く、逆に検出角速度レンジが広い装置
は低角速度の検出が困難であり。
As explained above, devices suitable for detecting low angular velocities have a narrow detection angular velocity range, and conversely, devices with a wide detection angular velocity range have difficulty detecting low angular velocities.

また光源の光パワーのドリフトに対しても計測スケール
の変動が大きく、高精度の角速度の検出が行えなかった
が1本発明は角速度分解能力と角速度の検出範囲を高精
度を保持しながら両立させるこてができ、かつ光源の光
パワーの変動補正も可能となるので、高精度な角速度検
出を行うことができる。
In addition, the measurement scale fluctuates greatly due to the drift of the optical power of the light source, making it impossible to detect angular velocity with high precision.1 The present invention achieves both angular velocity resolution ability and angular velocity detection range while maintaining high accuracy. Since it is possible to correct fluctuations in the optical power of the light source, highly accurate angular velocity detection can be performed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による角速度検出方法を実施す7   
   る装置の一例を示すブロック図、第2図は1種ベ
ッセル関数を示すグラフ、第3図は第1図に示す牛 フォトセンサの出力線図、第5図は本発明を実施する装
置の他の例を示すブロック図、第5図は従来による角速
度検出方法を行う装置を示すブロック図、第6図は第5
図に示すフォトセンサの出力線図である。 1・・・ループ状の光ファイバ、2A、2B・・・光結
合器、3・・・ビーム発生蓋、6・・・位相変調器、7
・・・フォトセンサ、9・・・発振器、11・・・増巾
器、12A。 12B・・・増巾・同期検波回路、13・・・コンビュ
ー第2図 Jo(x>、 It(z)、 J#)、JaCx)第3
図 第50 慄6(2) E。
FIG. 1 shows the method for detecting angular velocity according to the present invention.
FIG. 2 is a graph showing a type 1 Bessel function, FIG. 3 is an output diagram of the cow photosensor shown in FIG. 1, and FIG. 5 is a block diagram showing an example of a device implementing the present invention. 5 is a block diagram showing an example of a conventional angular velocity detection method, and FIG.
FIG. 3 is an output diagram of the photosensor shown in the figure. DESCRIPTION OF SYMBOLS 1... Loop-shaped optical fiber, 2A, 2B... Optical coupler, 3... Beam generation lid, 6... Phase modulator, 7
... Photo sensor, 9... Oscillator, 11... Amplifier, 12A. 12B... Amplified/synchronous detection circuit, 13... Conview Figure 2 Jo(x>, It(z), J#), JaCx) 3rd
Figure 50 Horror 6 (2) E.

Claims (1)

【特許請求の範囲】[Claims] 1、ループ状に巻回した光ファイバの両端から投入した
光を干渉させて光パワーの実効成分を検出する干渉系と
、前記二つの光に対して光の位相と異なる位相値を与え
る変調回路を備えた光学系とを有する光回路において、
前記異なる位相値を受けた夫々の光を同一のフォトセン
サに導入し、そこに発生する二つの光の位相差をΔθと
するとき、前記フォトセンサよりK_1sinΔθ成分
とK_1cosΔθ成分(K_1は定数)をとり出し、
光の位相差Δθの高感度領域を使用して前記sinとc
osの切換えを行うようにしたことを特徴とする角速度
検出方法。
1. An interference system that detects the effective component of optical power by interfering the lights input from both ends of an optical fiber wound in a loop, and a modulation circuit that gives the two lights a phase value different from the phase of the light. In an optical circuit having an optical system equipped with,
When the respective lights that have received the different phase values are introduced into the same photosensor, and the phase difference between the two lights generated there is Δθ, the K_1sinΔθ component and the K_1cosΔθ component (K_1 is a constant) are calculated from the photosensor. Take it out,
Using the high sensitivity region of the optical phase difference Δθ, the sin and c
An angular velocity detection method characterized by switching an OS.
JP60080199A 1985-04-17 1985-04-17 Method for detecting angular velocity Granted JPS61240116A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60080199A JPS61240116A (en) 1985-04-17 1985-04-17 Method for detecting angular velocity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60080199A JPS61240116A (en) 1985-04-17 1985-04-17 Method for detecting angular velocity

Publications (2)

Publication Number Publication Date
JPS61240116A true JPS61240116A (en) 1986-10-25
JPH0464411B2 JPH0464411B2 (en) 1992-10-14

Family

ID=13711714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60080199A Granted JPS61240116A (en) 1985-04-17 1985-04-17 Method for detecting angular velocity

Country Status (1)

Country Link
JP (1) JPS61240116A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4776700A (en) * 1987-09-30 1988-10-11 The United States Of America As Represented By The Secretary Of The Navy Switched state fiber optic gyroscope
JPH02189412A (en) * 1989-01-18 1990-07-25 Hitachi Ltd Optical fiber gyroscope
JPH0510772A (en) * 1991-07-05 1993-01-19 Matsushita Electric Ind Co Ltd Optical rotation detecting device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4776700A (en) * 1987-09-30 1988-10-11 The United States Of America As Represented By The Secretary Of The Navy Switched state fiber optic gyroscope
JPH02189412A (en) * 1989-01-18 1990-07-25 Hitachi Ltd Optical fiber gyroscope
JPH0510772A (en) * 1991-07-05 1993-01-19 Matsushita Electric Ind Co Ltd Optical rotation detecting device

Also Published As

Publication number Publication date
JPH0464411B2 (en) 1992-10-14

Similar Documents

Publication Publication Date Title
EP0532679B1 (en) Modulation frequency control in a fiber optic rotation sensor
US5157461A (en) Interface configuration for rate sensor apparatus
US4629323A (en) Birefringence type measuring device
JPS6129715A (en) Device for measuring irreversible phase shift generated in closed loop interferometer
JPH0680405B2 (en) Light fiber gyro
US4869592A (en) Method and apparatus for obtaining a digital measure of absolute rotation
JPH11511246A (en) Natural frequency tracker for fiber optic sensing coils
US11874113B2 (en) Bidirectional optical-carrying microwave resonance system based on circulator structure and method for detecting angular velocity by said system
CN115077567A (en) Scale factor compensation system and method based on waveguide reset error
US4433915A (en) Dual-polarization interferometer with a single-mode waveguide
JP2780141B2 (en) Natural frequency phase shift control loop
JPS61240116A (en) Method for detecting angular velocity
US4906096A (en) Apparatus and method for phase modulating optical signals in a fiber optic rotation sensor
US7187448B2 (en) Nonreciprocal phase shift fiber-optic gyrometer
RU2160885C1 (en) Method of stabilization of scale factor of fiber-optical gyroscope
JPS585365B2 (en) Rotation speed measuring device
JPH04270914A (en) Synchronous detector
RU276U1 (en) Light guide speed sensor
JPH09292235A (en) Interference type optical fiber gyroscope
JPS6329211A (en) Optical fiber rotary sensor
JPH02189412A (en) Optical fiber gyroscope
JPS622121A (en) Optical fiber gyroscope
JPS5963512A (en) Optical fiber gyroscope
JPS61266912A (en) Angular velocity detection system of optical fiber gyro
JPH0719880A (en) Optical fiber gyroscope device