JPS61239567A - Power generation method by fuel cell - Google Patents

Power generation method by fuel cell

Info

Publication number
JPS61239567A
JPS61239567A JP60080481A JP8048185A JPS61239567A JP S61239567 A JPS61239567 A JP S61239567A JP 60080481 A JP60080481 A JP 60080481A JP 8048185 A JP8048185 A JP 8048185A JP S61239567 A JPS61239567 A JP S61239567A
Authority
JP
Japan
Prior art keywords
gas
electric power
fuel cell
power consumption
coal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60080481A
Other languages
Japanese (ja)
Inventor
Toshiaki Yoshida
敏明 吉田
Kenzo Nakazawa
中沢 健三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP60080481A priority Critical patent/JPS61239567A/en
Publication of JPS61239567A publication Critical patent/JPS61239567A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0643Gasification of solid fuel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To make installation of a storage tank and security of its site to be unnecessary, abridge facilities for transmitting power to the spot, and enable the existing pipe line to be utilized, by using a pipe line as buffer tank to generate electric power at a consumption place. CONSTITUTION:Gas fuel produced e.g., in a coal gas furnace 1 is supplied into fuel cells 3, which are installed at an electric power consumption place or the like, via a pipe line 2 laid underground. The coal gas furnace 1 is operated under the maximum load condition of 100% at the peak time P of electric power consumption, and on the other hand the coal gas furnace 1 is operated under the minimum load condition of 20% at the other time not having electric power generation by the fuel cells so that the gas fuel produced during this time can be stored to be supplied at the peak time of electric power consumption with the gas produced under the maximum load condition being combined. Hence, the pipe line 2 itself is enabled to serve as buffer tank for extra gas fuel produced under the minimum load condition.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は燃料電池による発電方法に関するものである。[Detailed description of the invention] [Industrial application field] The present invention relates to a method of generating electricity using a fuel cell.

[従来の技術] 近年の電力の供給は、原子力が14%、火力が乃%、水
力か7%程度となってa3つ、原子力冗電が増加されつ
つある。しかし原子力発電はほぼ一定出力運転である1
−め、その設置d11容最は電力の最低必要量である総
発電設備能力の3()%をjukえることは問題かある
。従って時間、季節による必要電力のピーク分は他の発
電に頼らざるを、1ケい。。o7oあ、1ヤ7□1.エ
イッ7.。。7)□い1.ヵ   iして火力は50〜
100%運転、水力は0〜100%(ビークロート専用
)運転のJ−うに負荷変化を打つて必要電力量の変動に
対処するようにしている。
[Prior Art] In recent years, the supply of electric power has been reduced to 14% by nuclear power, 2% by thermal power, and about 7% by hydropower, and nuclear power redundancy is increasing. However, nuclear power generation operates at almost constant output1.
However, it is problematic that the installed capacity is 3% of the total power generation equipment capacity, which is the minimum required amount of electric power. Therefore, there is no need to rely on other power generation sources to meet the peak demand for electricity depending on the time and season. . o7oah, 1ya7□1. 7. . . 7) □1. The firepower is 50~
J-Unit is operated at 100%, while hydropower is operated at 0 to 100% (dedicated to the beak route), and the load changes are applied to cope with fluctuations in the amount of electricity required.

[発明が解決しようとする問題点1   、     
   1しかし、現在発電の主力となっている火力発電
用のLN’Gの供給(,11、数十年という短かい間に
供給か不安定となることが確実視されており、火力発電
にとってかわる発電方法か種々検δく1さ     1
れている。この方法として、近年、埋蔵量がよ    
 ・:り豊富な石炭の有効利用方法としてこれを〕jス
化させたガス燃料(+−12、CO)の電気化学反応に
より発電を行うようにした燃4゛;1電池か注1]を集
めている。しかし、この癩i 1’l電池にょる揚合も
、ピークロード用としての機能を要求される。しかし、
石炭)2ス化炉を前記燃料電池の最大負荷時に合わl!
て設けることは不経済であり、又電力の必要端か少ない
時、石炭ガス化炉を絞って運転し、その時発生り−るガ
ス燃オ′:1を貯蔵しておき、必要時に供給させるよう
にするには騒人な早の貯蔵タンク等が必要とイyす、そ
れらを設置する敷地の6イr保や建設のための費用に問
題かある。
[Problem to be solved by the invention 1,
1 However, it is certain that the supply of LN'G for thermal power generation, which is currently the main source of power generation (11), will become unstable in a short period of several decades, and the Check various power generation methods 1
It is. As this method, reserves have increased in recent years.
・As a method of effectively utilizing the abundant coal, we have developed a combustion system that generates electricity through an electrochemical reaction of gas fuel (+-12, CO), which is made from coal. are collecting. However, this type of battery is also required to function as a peak load battery. but,
(coal) 2) Combine the sulfurizing furnace at the maximum load of the fuel cell!
It is uneconomical to install a separate coal gasifier, and when the amount of electricity needed is low, the coal gasifier is operated at a reduced capacity, and the gas generated at that time is stored and supplied when needed. In order to do so, storage tanks and the like would be required, but there would be problems with the maintenance of the site where they would be installed and the cost of construction.

本発明は、上記問題点着目してなしたもので、石炭ガス
化炉にて発生するノjス燃第31を、地rに埋設された
パイプラインを介して電力消費地に設(プた燃オ′)1
電池に輸送することにより電力の消費地発生を行わl、
口つ前記パイプラインをバッファタンクとして利用する
ことにより電力のピーク時に燃4′セ1電池による発電
量を増大することを目的としている。
The present invention was made in view of the above-mentioned problems, and it is possible to connect the nozzle gas generated in a coal gasifier to a power consumption area via a pipeline buried underground. Moe')1
Generate power consumption by transporting it to batteries,
The purpose of this invention is to increase the amount of power generated by the 4' fuel cell during peak power demand by using the pipeline as a buffer tank.

1問題点を解決するための手段] 本発明は、上記技術的課題を解決しようとしたもので、
石炭ガス化炉にて発生するガス燃料を、地下に埋設され
たパイプラインを介()てミノJ消費地に設(づられた
にi利電池に輸)スするJ、−うにし、電力のピーク時
以外(Jl、石炭)jス化炉を低負荷運転してその詮牛
/jスを0[■記バイブライン内に貯蔵しておき、電力
のピーク時にrj炭ガス化炉を最大負荷運転してぞの弁
体ガスと前記パイプライン内に貯蔵しておいたガスとに
より燃オ′」電池による発電を行わしめることを特徴と
覆る燃料電池による発電方法、に係るものである。
Means for Solving Problem 1] The present invention attempts to solve the above technical problem, and
The gas fuel generated in the coal gasification furnace is transported via underground pipelines to the energy battery installed in the consumption area. The coal gasifier is operated at a low load during non-peak hours (Jl, coal), and the raw material is stored in the vibration line, and the coal gasifier is operated at maximum power during peak power hours. This invention relates to a power generation method using a fuel cell, characterized in that the fuel cell generates power using the valve body gas during load operation and the gas stored in the pipeline.

[作  用] 従って、本発明で(jl、パイプラインをバラノアタン
クとして利用するようにしていイ)ので、貯蔵タンクの
設置、そのための敷地の6イ「保か不要となり、しかも
電力を消費地で発生C5ゼるようにしているために高価
な現月々までの送電設備を不要にでき、又既存のバイブ
′ラインの流用も可能−Cある。
[Function] Therefore, with the present invention (jl, the pipeline is used as a baranoa tank), it becomes unnecessary to install a storage tank and maintain the site for it, and moreover, electricity is generated at the consumption area. Since it is designed to be connected to C5, it is possible to eliminate the need for expensive power transmission equipment, and it is also possible to use the existing vibe line.

[実 施 例] 以下本発明の実施例を図面を参照しつつ説明する。[Example] Embodiments of the present invention will be described below with reference to the drawings.

第1図は最大負荷100%運転時に、燃料電池により5
00間の発電を行うことができる量のガス燃料を生産で
きる石炭ガス化炉の運転方法を概略的に示したもので、
−日のうちで、例えば燃お1電池による発電か必要なの
は電力のピーク時Pの6時間程度であり、それ以外の1
8時間は原子力による発電で十分なため燃料電池による
発電は不要となる。従って、このような場合、電力のピ
ーク時Pのみ石炭ガス化炉を100%運転させ、その他
は運転を停止させておくことが考えられる。しかし、石
炭ガス化炉は、起動、停止を頻繁に行わせることが安定
操業の面から不向きである。
Figure 1 shows that when operating at 100% maximum load, the fuel cell
This is a schematic diagram showing how to operate a coal gasifier that can produce gas fuel in an amount that can generate electricity for 2000 hours.
- For example, power generation using one combustible battery is required for about 6 hours during the peak power period P, and for the other 1 day.
Nuclear power is sufficient for 8 hours, so fuel cell power generation is not necessary. Therefore, in such a case, it is conceivable to operate the coal gasifier at 100% only during the peak power period P, and stop the operation at other times. However, from the viewpoint of stable operation, it is not suitable for coal gasifiers to start and stop frequently.

そのl=め、電力のピーク時Pは石炭ガス化炉を最大負
荷100%状態で運転し、その他の燃料電池による発電
を行わない時間は石炭ガス化炉を最低負荷20%状態で
運転して、その際に生産されたガス燃料を貯蔵して置き
、電ツクのピーク時に、最大負荷状態で生産されたガス
と貯蔵されたノjスを合せて燃料電池に供給することに
より、電力のピーク時石炭ガス化炉の設佑容吊を電力換
弁50OMW相当としておいても、燃オ′11電池の設
備容量さえ人きくしてお【プぽ、80ONWの電力を取
り出すことができるようにしている。図中斜線部分Xは
電力の増加分を示す。
The coal gasifier is operated at the maximum load of 100% during the peak power period P, and the coal gasifier is operated at the minimum load of 20% during other times when the fuel cell is not generating power. The gas fuel produced at that time is stored, and the gas produced under the maximum load condition and the stored fuel are combined and supplied to the fuel cell during peak electricity demand. Even if the installed capacity of the coal gasification furnace is set to be equivalent to 50 OMW of electric power switching valve, even the installed capacity of the fuel-O'11 battery can be increased to generate 80 ONW of electricity. A shaded area X in the figure indicates an increase in power.

しかし、前記最低負荷?O%状態での運転時に生産され
るガス燃料を貯蔵しておくためには、前記したように非
常に大きな容量、数の貯蔵タンクが必要□となる。
But said minimum load? In order to store the gaseous fuel produced during operation in the 0% state, a very large capacity and number of storage tanks are required as described above.

本発明は、このために、石炭ガス化炉にJ−って生産さ
れたガス燃料を、地下に埋設された既存或いは新設のパ
イプラインを介して電力消費地に送り、該消費地に設置
しI−燃料電池により電力ピーク時の電力不足分を消費
地にて発生させるようにしている。
To this end, the present invention aims to send the gas fuel produced by the coal gasification furnace to the power consumption area via an existing or newly constructed pipeline buried underground, and to install the gas fuel in the power consumption area. The I-fuel cell is used to generate power shortages at peak times at the consumption area.

第2.3図はその一例を示すもので、石炭ガス化炉1に
て生産されたガス燃料を地■に埋設されたパイプライン
2を介して電力消費地等に設けた燃料電池3に供給する
ようにしている。
Figure 2.3 shows an example of this, in which gas fuel produced in a coal gasifier 1 is supplied to a fuel cell 3 installed in an electric power consumption area via a pipeline 2 buried underground. I try to do that.

尚図中4はパイプライン?のガス圧力を検出して石炭ガ
ス化炉1の生産調整を行うための紅力調整賃買、5は安
全のためのノjス貯藏タンク、6は弁を示覆。
Is 4 in the diagram a pipeline? 5 is a storage tank for safety, and 6 is a valve cover.

上記した偶成によれば、パイプライン?自体を、最低負
荷状態で生産される余剰ガス(yH¥”Iのバッフ?タ
ンクとすることかできる。
According to the coincidence mentioned above, pipeline? It can itself be used as a buffer tank for excess gas (yH\"I) produced under the lowest load condition.

次に、」−記パイブライン?自体によるガス燃料の貯蔵
について、具体的に説明する。
Next, “-” pipe line? The storage of gas fuel by itself will be specifically explained.

前記第1図に示したように、500 N II+の発電
を行うに必要なガス燃料を生産できる石炭ガス生垣を例
にとって説明すると、負荷最大時の発生ガス@51oo
は 3100 = 300刈0” N…3/hであり、従っ
て20%負荷時の発生ガス量S2oは820=300 
X103X 0.2=60X10” Nm’ /I)で
ある。従って、ピークロート時を除り18時間で生産さ
れ貯蔵しな(プればならない量V1はl       
 V=60X10’ X18 =1080X10” l
t1m’となる。
As shown in Fig. 1 above, taking as an example a coal-gas hedge that can produce the gas fuel necessary to generate 500 N II+ power, the gas generated at maximum load is @51oo.
is 3100 = 300 mowing 0"N...3/h, so the amount of gas generated S2o at 20% load is 820 = 300
X 103X 0.2 = 60
V=60X10'X18=1080X10''l
It becomes t1m'.

次に、上記ガス燃料を、一般に用いられている高珪幹線
配管(10・〜70Kg/cnl’ )て600へのら
のを用いて輸送、貯蔵刀ろ場合について説明ザる。
Next, a case will be explained in which the above-mentioned gas fuel is transported and stored using commonly used high-density main line piping (10.about.70 kg/cnl') to 600 kg.

配管内の銭1丁−を7 Kv、−’ cut2 とし、
::!0kiJ / C11l’ (7)圧力で輸送し
J−うと覆ると、配管内に貯);へてさるガス岸V(、
二1゜ V= 0.27 Lx (30−7) = 6.21 
 l  flJm3”+と4する。よって1080x1
0” l輔1を貯蔵すろに必=174Km となる。
Let 1 coin in the pipe be 7 Kv, -' cut2,
::! 0kiJ / C11l' (7) When transported under pressure and covered, it is stored in the pipe);
21°V = 0.27 Lx (30-7) = 6.21
l flJm3”+4. Therefore, 1080x1
It would take 174km to store 0"l.

尚、−に記において、配管の径を大きくしたり、配管を
何条にも敷設したり、又、輸送圧力を増加させろことに
より前記配管の敷設長さを短かくてきることは勿論であ
る。又、上記配管は711設しても良いか、既設の高圧
φ♀糾配管ら良人でおりしかも増加しつつおるので、こ
れを流用Jることもでき、ぞの場合には電力消費地まで
の送電設備の設置を省略することができる。
In addition, in -, of course, the length of the piping can be shortened by increasing the diameter of the piping, laying the piping in multiple lines, or increasing the transport pressure. . Also, is it okay to install 711 of the above piping? Since the number of existing high pressure φ♀ piping is increasing, it is also possible to reuse it, and in that case, it is possible to install it to the power consumption area. The installation of power transmission equipment can be omitted.

第4図は本発明の他の例を示すもので、従来一般の電気
鉄道網においては、所要の距離(約5Km)毎に給電を
行うようにしているが、これを電気鉄道網7に沿ってパ
イプライン?を付設し、所要の距離毎に設けた燃料電池
3により給電を行うようにした場合を示している。
FIG. 4 shows another example of the present invention. Conventionally, in a general electric railway network, power is supplied every required distance (approximately 5 km); A pipeline? The figure shows a case in which power is supplied by fuel cells 3 provided at required distances.

尚、ピークロード時以外のとき燃料電池による低発電を
行いつつ発生ガスの貯蔵を行うこともできること、石炭
ガス生垣で生産されるノjス以外のガスも同様に利用で
きることは勿論である。
It goes without saying that the generated gas can be stored while generating low power generation with the fuel cell at times other than peak load times, and that gases other than the gas produced in the coal-gas hedge can also be used in the same way.

[発明の効果] 上記したように、本発明の燃料電池による発電方法によ
れば、石炭ガス生垣にて発生するガス燃料を、地下に埋
設されたパイプラインを介して電力消費地に設(プた燃
料電池に輸送し、パイプラインをバッツァタンクとして
利用しつつ電力を消費地にて発生させるようにしている
の−〇 − て、貯蔵タンクの設置とその1−めの敷地のf(f’ 
(A(を不要にてき、且つ現地までの送電設MVを省略
し、又既存のパイプラインの流用し可能であり等、経演
的1」つ効果的に、燃オ′11事’l’i’」の☆化に
対応じた発電を可能にできる優れた’Aj宋を奏し背る
・                        
 1
[Effects of the Invention] As described above, according to the power generation method using a fuel cell of the present invention, gas fuel generated in a coal-gas hedge is transferred to a power consumption area via a pipeline buried underground. The electricity is generated at the consumption area while using the pipeline as a batza tank.
(A), the power transmission equipment MV to the site is omitted, and the existing pipeline can be used, etc. The excellent ``Aj Song'' that enables power generation that corresponds to the ☆ of ``i''.
1

【図面の簡単な説明】[Brief explanation of drawings]

第1図は石炭ガス生垣の運転方法の一例を示ず説明図、
第2図は本発明の方法の一例を示す説明用断面図、第3
図(J1第2図の説明用断面図、第4図は本発明の方法
の他の例を示71説明用甲面図で市る。 1は石炭ガス化炉、2はパイ/ライン、3(2I、  
    1燃料電池、4は圧力調91?装置直、5はガ
ス貯蔵タンク、6は弁、7は電気鉄道網を示刀、。 ざ ←模や
Figure 1 is an explanatory diagram that does not show an example of how a coal-gas hedge is operated;
FIG. 2 is an explanatory sectional view showing an example of the method of the present invention, and FIG.
Figure (J1 is an explanatory sectional view of Figure 2, and Figure 4 is an explanatory top view of another example of the method of the present invention. 1 is a coal gasification furnace, 2 is a pie/line, 3 is an explanatory top view. (2I,
1 fuel cell, 4 pressure control 91? 5 indicates the gas storage tank, 6 indicates the valve, and 7 indicates the electric railway network. Za←Moya

Claims (1)

【特許請求の範囲】[Claims] 1)石炭ガス化炉にて発生するガス燃料を、地下に埋設
されたパイプラインを介して電力消費地に設けられた燃
料電池に輸送するようにし、電力のピーク時以外は石炭
ガス化炉を低負荷運転してその発生ガスを前記パイプラ
イン内に貯蔵しておき、電力のピーク時に石炭ガス化炉
を最大負荷運転してその発生ガスと前記パイプライン内
に貯蔵しておいたガスとにより燃料電池による発電を行
わしめることを特徴とする燃料電池による発電方法。
1) The gas fuel generated in the coal gasification furnace will be transported to the fuel cell installed in the power consumption area via a pipeline buried underground, and the coal gasification furnace will be operated during non-peak periods of power consumption. The coal gasifier is operated at a low load and the generated gas is stored in the pipeline, and the coal gasifier is operated at maximum load during peak power consumption to combine the generated gas and the gas stored in the pipeline. A power generation method using a fuel cell, characterized in that power generation is performed using a fuel cell.
JP60080481A 1985-04-16 1985-04-16 Power generation method by fuel cell Pending JPS61239567A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60080481A JPS61239567A (en) 1985-04-16 1985-04-16 Power generation method by fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60080481A JPS61239567A (en) 1985-04-16 1985-04-16 Power generation method by fuel cell

Publications (1)

Publication Number Publication Date
JPS61239567A true JPS61239567A (en) 1986-10-24

Family

ID=13719463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60080481A Pending JPS61239567A (en) 1985-04-16 1985-04-16 Power generation method by fuel cell

Country Status (1)

Country Link
JP (1) JPS61239567A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02117072A (en) * 1988-10-26 1990-05-01 Toyo Eng Corp Fuel cell power generation system
WO2006009264A1 (en) * 2004-07-21 2006-01-26 Kyocera Corporation Fuel cell system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57212778A (en) * 1981-06-23 1982-12-27 Kansai Electric Power Co Inc:The Fuel controlling method in fuel cell power generating system
JPS5973854A (en) * 1982-10-20 1984-04-26 Toshiba Corp Fuel cell apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57212778A (en) * 1981-06-23 1982-12-27 Kansai Electric Power Co Inc:The Fuel controlling method in fuel cell power generating system
JPS5973854A (en) * 1982-10-20 1984-04-26 Toshiba Corp Fuel cell apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02117072A (en) * 1988-10-26 1990-05-01 Toyo Eng Corp Fuel cell power generation system
WO2006009264A1 (en) * 2004-07-21 2006-01-26 Kyocera Corporation Fuel cell system
US8815456B2 (en) 2004-07-21 2014-08-26 Kyocera Corporation Fuel cell system

Similar Documents

Publication Publication Date Title
Green Jr An ammonia energy vector for the hydrogen economy
Kojima et al. A demonstration project in hachinohe: Microgrid with private distribution line
Forsberg Is hydrogen the future of nuclear energy?
Kleperis et al. Analysis of the Role of the Latvian Natural Gas Network for the use of Future Energy Systems: Hydrogen from Res
Chyong et al. Electricity and gas coupling in a decarbonised economy
CN113424393A (en) Method, device and system for stabilizing power grid
Minin et al. Prospects for the development of wind energy resources in the western sector of the Arctic zone of Russia
JPS61239567A (en) Power generation method by fuel cell
Yuan et al. Techno-economic study of a distributed hybrid renewable energy system supplying electrical power and heat for a rural house in China
Manners Some location principles of thermal electricity generation
JPH0491638A (en) Energy system
WO2017088346A1 (en) Production method and equipment for marine oil gas energy sources without carbon emission
Harvey Solar-hydrogen electricity generation and global CO2 emission reduction
Zhdanovich et al. Analysis on the possibility for construction of a power plant using landfill gas in Novosibirsk Oblast
Meng Analysis of The Role of Smart Grids in Renewable Energy
Dutton The Hydrogen Economy and Carbon Abatement–Implications and Challenges for Wind Energy
Carnevali et al. Electricity and the environment: Air pollutant emissions in Argentina
Kendall Green Hydrogen for communities: Cutting fossil-CO2 for buildings and vehicles in UK
KR20160029904A (en) Wind power generator
Kwiatkiewicz Energy Sector in Georgia and the Export Policy of Azerbaijan’s Fuels and Hydrocarbon Resources
Miller et al. Reactor vessel annealing system
Kobayashi Conceptualizing radical solutions to global warming via pipeline transport green fuel ammonia produced from abundant renewable energy in equatorial waters
Ali Hydrogen producation.
Renken Economic and ecologic feasibility of an electrolyser in combination with a hydropower plant
Zebergs et al. Integration of energy systems of the Baltic states into the North-European system for sustainable energy supply development