JPS61239254A - Reversal developing method - Google Patents

Reversal developing method

Info

Publication number
JPS61239254A
JPS61239254A JP9109185A JP9109185A JPS61239254A JP S61239254 A JPS61239254 A JP S61239254A JP 9109185 A JP9109185 A JP 9109185A JP 9109185 A JP9109185 A JP 9109185A JP S61239254 A JPS61239254 A JP S61239254A
Authority
JP
Japan
Prior art keywords
photoreceptor
toner
voltage
bias
pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9109185A
Other languages
Japanese (ja)
Inventor
Susumu Shoji
進 庄司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP9109185A priority Critical patent/JPS61239254A/en
Publication of JPS61239254A publication Critical patent/JPS61239254A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/06Apparatus for electrographic processes using a charge pattern for developing
    • G03G15/08Apparatus for electrographic processes using a charge pattern for developing using a solid developer, e.g. powder developer
    • G03G15/09Apparatus for electrographic processes using a charge pattern for developing using a solid developer, e.g. powder developer using magnetic brush
    • G03G15/0907Apparatus for electrographic processes using a charge pattern for developing using a solid developer, e.g. powder developer using magnetic brush with bias voltage

Abstract

PURPOSE:To prevent photographic fog and to attain images having high quality by using a pulse voltage which has the same polarity as electrification of a photosensitive body and has a pulse width in a prescribed range as a bias voltage. CONSTITUTION:An electrifier 2, a laser beam 3 which forms a prescribed electrostatic latent image, a reversal development device 4, a transfer device 6, a cleaner 7, a destaticizing lamp 8, etc. are arranged around a photosensitive drum 1. The development device 4 consists of a nonmagnetic sleeve 41, a fixed magnet gathered body 42, a layer thickness control member 43 and a toner vessel 44 and a DC power source 46 is connected to the nonmagnetic sleeve 41 through a switching circuit 45. The pulse voltage whose polarity is equal to that of electrification of the photosensitive drum 1 and waveform width is 0.1-5.0msec and rise is sharp is used as the DC bias given to the nonmagnetic sleeve 41.

Description

【発明の詳細な説明】 「産業上の利用分野J 本発明は電子写真方式や静電記録方式に適用される反転
現像方法に係り、特に−成分の高抵抗磁性トナーを用い
た反転現像方法に関する。
Detailed Description of the Invention "Industrial Application Field J This invention relates to a reversal developing method applied to electrophotography and electrostatic recording, and particularly relates to a reversal developing method using a -component high-resistance magnetic toner. .

「従来の技l#J 従来よりレーザービーム、オプチカルファイバー、LE
D、LCD等の露光手段を用いて、全面帯電させた感光
体に非荷電の静電潜像を形成するプリンターやファクシ
ミリ等の画像形成装置は既に公知である。又、ポジフィ
ルムを用いて前記感光体に同様な静電潜像を形成するマ
イクロフィルムシステムも既に公知である。
``Conventional techniques l#J Conventionally, laser beam, optical fiber, LE
2. Description of the Related Art Image forming apparatuses such as printers and facsimile machines that form an uncharged electrostatic latent image on a photoreceptor whose entire surface is charged using an exposure means such as a D or LCD are already known. Furthermore, a microfilm system is already known that uses a positive film to form a similar electrostatic latent image on the photoreceptor.

そしてこれらの装置は電子複写機の場合と異なり、感光
体の帯電極性と同極性の電荷を付与したトナーを、前記
露光手段により形成された感光体のネガ的(非荷電)な
静電潜像部位に選択的に付着、言い変えれば、静電荷を
有する非露光部分には静電的反発力によりトナーを付着
させずに、非荷電部分である静電潜像部にのみトナーを
転移させる、いわゆる反転現像方法を採用している。
Unlike electronic copying machines, these devices apply toner charged with the same polarity as the photoreceptor to a negative (uncharged) electrostatic latent image on the photoreceptor formed by the exposure means. In other words, toner is not attached to non-exposed areas that have an electrostatic charge due to electrostatic repulsion, and the toner is transferred only to the electrostatic latent image area that is non-charged. A so-called reversal development method is used.

そしてこの種の現像方法においては、装置の小形化、現
像の安定化、フリーメインテナンス等の面から一成分磁
性トナー、特に転写効率の向上の面から高抵抗の磁性ト
ナーを用いる事が有利であることは既に知られており、
かかる−成分の高抵抗磁性トナーを用いた反転現像方法
として、前記磁性トナーを担持するトナー担持体上に形
成された磁気刷子を、感光体表面に摺擦させて現像を行
う磁気刷子現像方法(特公昭58−2705 、特開昭
55−134884他)が公知である。
In this type of development method, it is advantageous to use a single-component magnetic toner from the viewpoint of downsizing the device, stabilizing development, free maintenance, etc., and in particular, it is advantageous to use a high-resistance magnetic toner from the viewpoint of improving transfer efficiency. It is already known that
As a reversal development method using a high-resistance magnetic toner having such a component, there is a magnetic brush development method (in which development is carried out by rubbing a magnetic brush formed on a toner carrier carrying the magnetic toner on the surface of a photoconductor). Japanese Patent Publication No. 58-2705, Japanese Unexamined Patent Publication No. 55-134884, etc.) are known.

しかしながらかかる現像方法においては、感光体のほぼ
全面にトナーを摺擦させて現像を行う為に、静電的反発
力を有する静電荷の存在領域である非露光部分にもトナ
ーが付着してかぶりが生ずる場合があり、而も前記摺擦
により感光体が摩耗し、耐久性が低下するという欠点を
有する。
However, in this developing method, development is performed by rubbing the toner over almost the entire surface of the photoreceptor, so the toner also adheres to non-exposed areas where electrostatic charges with electrostatic repulsion exist, causing fogging. Moreover, the photoreceptor is abraded due to the above-mentioned rubbing, resulting in a decrease in durability.

かかる欠点を解消する為、感光体と所定間隔離間させて
対面配置したトナー担持体側に、直流バイアス電圧、又
は該直流バイアス電圧に交流電圧を重畳して形成される
交番バイアス電圧を印加させ、該バイアス電圧によりト
ナー担持体より感光体の静電潜像部に転移させる現像方
法(特開昭54−8!3733、特開昭55−1348
f(4、特開昭58−48349他)が存在する。
In order to eliminate this drawback, a direct current bias voltage or an alternating current bias voltage formed by superimposing an alternating current voltage on the direct current bias voltage is applied to the side of the toner carrier disposed facing the photoreceptor with a predetermined distance between them. A developing method in which toner is transferred from a toner carrier to an electrostatic latent image area of a photoreceptor using a bias voltage (JP-A-54-8!3733, JP-A-55-1348)
f (4, JP-A-58-48349, etc.) exists.

「発明が解決しようとする問題点」 しかしながら直流バイアス電圧を印加する現像方法では
下記のような欠点が発生する。
"Problems to be Solved by the Invention" However, the following drawbacks occur in the developing method that applies a DC bias voltage.

■即ち、前記現像方法における画像濃度は、−′般に直
流バイアス電位Vdと感光体の潜像表面電位Vwとの差
により決定され1、一方、かぶりのない画像を得る為に
は前記直流バイアス電位Vdを感光体の非露光部表面電
位vb以下に設定しなげればならない為に、コントラス
トの高い高品質の画像を得る為には必然的に前記非露光
部表面電位vbを高くしなければならず、この結果、感
光体の疲労度が増し、耐久性の減少につながる。
(2) That is, the image density in the above development method is generally determined by the difference between the DC bias potential Vd and the latent image surface potential Vw of the photoreceptor. Since the potential Vd must be set below the surface potential vb of the non-exposed part of the photoreceptor, in order to obtain a high-quality image with high contrast, the surface potential vb of the non-exposed part must be made high. As a result, the degree of fatigue of the photoreceptor increases, leading to a decrease in durability.

(■又、前記欠点を少しでも解消する為に、直流バイア
ス電位Vdを感光体の非露光部表面電位Vbに接近させ
て形成すると、露光される原稿の背景濃度のバラツキ、
及び前記非露光部表面電位■bのバラツキや変動によっ
て直流バイアス電位Vdが非露光部表面電位vbより大
になる部位が部分的に生じ、その部分にかぶりが発生す
る。
(■Also, in order to eliminate the above-mentioned drawbacks as much as possible, if the DC bias potential Vd is formed close to the surface potential Vb of the non-exposed part of the photoreceptor, the background density of the exposed document will vary,
Also, due to variations and fluctuations in the non-exposed portion surface potential (b), there is a portion where the DC bias potential Vd becomes higher than the non-exposed portion surface potential vb, and fogging occurs in that portion.

■更に、トナー担持体に同レベルの電位を長く印加し続
けると、トナー担持体上のトナーの帯電電極性が強くな
る。そして電位を印加し終った時、帯電極性が強くなっ
ているトナー担持体上のトナーに対し、トナー担持体が
逆極性に強く帯電され、トナーがトナー担持体上に吸着
される。それゆえ該担持体上のトナ一層には当然に帯電
むらが生じ、この状態で現像を行うとかぶりを生じさせ
たり、縁端効果により像のにじみや二重像が発生する場
合がある。
(2) Furthermore, if the same level of potential is continued to be applied to the toner carrier for a long time, the charged polarity of the toner on the toner carrier becomes stronger. When the application of the potential is finished, the toner carrier is strongly charged to the opposite polarity to the toner on the toner carrier, which has a strong charging polarity, and the toner is attracted onto the toner carrier. Therefore, uneven charging naturally occurs in the single layer of toner on the carrier, and if development is performed in this state, fogging may occur, or image blurring or double images may occur due to edge effects.

一方、非露光部表面電位vbと同等又は近接させた電位
を有する直流バイアス電圧に交流電圧を重畳して形成さ
れる交番バイアス電圧を用いる、後者の現像方法(特開
昭54−89733)においては、脈動効果により前記
トナ一層の帯電むらは解消されるが、前記交番バイアス
電圧の山側電位が前記非露光部表面電位vb以上となる
為、かぶりが生じ易く、且つ前記■及び■の欠点は何等
解消し得ないのみならず、交流電圧を重畳する為その会
商電圧となり、安全性が低減するという問題が派生する
On the other hand, in the latter developing method (JP-A-54-89733), which uses an alternating bias voltage formed by superimposing an alternating current voltage on a direct current bias voltage having a potential equal to or close to the surface potential vb of the non-exposed area, Although the pulsation effect eliminates the charging unevenness of the toner layer, since the peak side potential of the alternating bias voltage is higher than the non-exposed area surface potential vb, fogging is likely to occur, and what are the disadvantages of (1) and (2) above? Not only is this problem impossible to solve, but since the alternating current voltage is superimposed, the problem becomes a commercial voltage, which reduces safety.

本発明が解決しようとする技術的課題は、かぶりが生じ
ることなく高品質の画像を得ることが出来る反転現像方
法を提供することにある。
A technical problem to be solved by the present invention is to provide a reversal development method that can obtain high-quality images without causing fogging.

又、本発明の他の目的とする所は、感光体の非露光部電
位、即ち帯電電位を低電位に維持し、耐久性の向上を図
ることにある。
Another object of the present invention is to maintain the potential of the non-exposed portion of the photoreceptor, that is, the charging potential, at a low potential to improve durability.

更に、本発明の他の目的とする所は、担持体上のトナ一
層における帯電むらの発生を防止し、鮮明な画像を得る
ことにある。
Another object of the present invention is to prevent uneven charging in a single layer of toner on a carrier and to obtain clear images.

「発明の概要」 先ず本発明の完成に至るまでの過程を順を追って説明す
る。
"Summary of the Invention" First, the process leading to the completion of the present invention will be explained step by step.

バイアス電圧によって感光体の静電潜像部にトナーを転
移させる反転現像方法においては、トナー担持体上に担
持されたトナ一層と、感光体とが非接触状態にある為゛
に、前記トナーがトナー担持体より感光体に転移する為
には、「トナー飛翔速度S×現像間隔L」からなる有限
の時間を必要とし、而も前記飛翔速度Sは現像間隔しに
存在する電界、即ち、バイアス電圧Vbiasと感光体
表面電位(Vw又はvb)との差によって決定されるも
のであり、従ってバイアス電圧が例え一定でも感光体表
面電位(Vw又はvb)が異なれば前記トナーの飛翔速
度Sは当然に異なる値を示すことになる。
In the reversal development method in which toner is transferred to the electrostatic latent image portion of the photoreceptor by a bias voltage, the toner is transferred to the electrostatic latent image portion of the photoreceptor because the toner layer carried on the toner carrier and the photoreceptor are in a non-contact state. In order for the toner to transfer from the carrier to the photoreceptor, a finite time consisting of "toner flight speed S x development interval L" is required, and the above flight speed S is determined by the electric field that exists between the development intervals, that is, the bias. It is determined by the difference between the voltage Vbias and the photoreceptor surface potential (Vw or vb). Therefore, even if the bias voltage is constant, if the photoreceptor surface potential (Vw or vb) differs, the flying speed S of the toner will naturally change. will show different values.

従って例えば、前記バイアス電圧を非潜像表面電位(露
光部電位)vbより大に設定したとしても、そのバイア
ス電圧の印加時間tを、α(Vbias−Vw)X現像
間隔りで決定される露光部のトナー飛翔時間t1より大
にして且つα(Vbias−vb)x現像間隔しで決定
される非露光部のトナー飛翔時間t2より小の範囲に設
定すれば、露光部にはトナーが転移しても非露光部には
トナーが転移されないこととなる。(前記αは定数)而
もこの場合においてバイアス電圧を、その波高値及び谷
側電圧レベルのいずれもが感光体の帯電極性と同極性の
パルス電圧で構成すれば、該バイアス電圧をトナー極性
及び感光体帯電極性と同一の極性に維持することが出来
、反転現像を行う上で何の支障も生ずることがなく、且
つ前記印加時間t (パルス幅)やパルス電圧の最大電
位、周波数等を前記範囲に合わせて自由に且つ容易に設
定することが出来るという長所も派生する。
Therefore, for example, even if the bias voltage is set to be larger than the non-latent image surface potential (exposure area potential) vb, the application time t of the bias voltage is determined by α(Vbias-Vw)X development interval. If the toner flight time t1 is set to be larger than the toner flight time t1 of the exposed area and smaller than the toner flight time t2 of the non-exposed area determined by α(Vbias-vb) x development interval, toner will not transfer to the exposed area. Even if the toner is not exposed to light, the toner will not be transferred to the non-exposed areas. (The above α is a constant) However, in this case, if the bias voltage is composed of a pulse voltage whose peak value and valley side voltage level are both the same polarity as the charged polarity of the photoreceptor, the bias voltage can be adjusted to the toner polarity and It is possible to maintain the same polarity as the photoreceptor charge polarity, and there is no problem in performing reversal development, and the application time t (pulse width), maximum potential, frequency, etc. Another advantage is that it can be freely and easily set according to the range.

本発明者はかかる着想に基づいて鋭意研究し、且つ実験
を繰り返して行った結果、前記バイアス電圧として感光
体の帯電極性と同極性にして、且つその波形が急峻な立
ち上がりと立ち下がりを有するパルス電圧を用い、その
パルス幅を0.1〜5゜0 m5ecに設定設定するこ
とにより前記目的が円滑に達成出来る事が判明した。
Based on this idea, the present inventor conducted extensive research and repeated experiments, and found that the bias voltage is a pulse having the same polarity as the charged polarity of the photoreceptor and whose waveform has steep rises and falls. It has been found that the above object can be smoothly achieved by using a voltage and setting the pulse width to 0.1 to 5°0 m5ec.

従って本発明によれば、前記パルス電圧を用いることに
より始めて下記式の範囲内で感光体の非露光部表面電位
をバイアス電圧レベル以下に下げることが可能になる訳
であるが、本発明は前記パルス電圧を非露光部表面電位
以上にした場合のみに限定されるものではなく、非露光
部表面電位以下にした場合も後記する効果を円滑に達成
し得、本発明の技術的範囲に含まれる。
Therefore, according to the present invention, it is possible to lower the surface potential of the non-exposed portion of the photoreceptor below the bias voltage level within the range of the following formula only by using the pulse voltage. The present invention is not limited to the case where the pulse voltage is set to the surface potential of the non-exposed part or higher, but also when the pulse voltage is set to the surface potential of the non-exposed part or lower, the effects described later can be smoothly achieved and are included in the technical scope of the present invention. .

l Vb  l > l Vbias/ a l +b
 V  ・−イ)■b:感光体の非露光部表面電位 Vbias:パルス電圧の波高値 1.52<a < 1.88.−20< b <110
尚、感光体の帯電極性と同極性にして、且つその波形が
急峻な立ち上がりと立ち下がりを有するパルス電圧は、
一般に直流電源をスイッチングして得られる矩形波パル
ス(第1図A参照)により形成されるが、必ずしもこれ
のみに限定されるものではなく、例えば交流電源に、整
流回路とクリッパ回路を接続する事により、又は、下部
クリップレベルをOv又は感光体の帯電極性と同極性の
電圧レベルに設定したスライサー回路を接続することに
より、その波形が急峻な立ち上がりと立ち下がりを有す
る略台形状のパルス電圧(第1図B参照)が形成される
l Vb l > l Vbias/ a l +b
V・-a)■b: Surface potential of the non-exposed part of the photoconductor Vbias: Peak value of pulse voltage 1.52<a<1.88. −20<b<110
In addition, a pulse voltage having the same polarity as the charged polarity of the photoreceptor and whose waveform has steep rises and falls is
Generally, it is formed by a rectangular wave pulse obtained by switching a DC power source (see Figure 1 A), but it is not necessarily limited to this. For example, it can be formed by connecting a rectifier circuit and a clipper circuit to an AC power source. or by connecting a slicer circuit whose lower clip level is set to Ov or a voltage level with the same polarity as the charged polarity of the photoconductor, a substantially trapezoidal pulse voltage whose waveform has steep rises and falls ( (see FIG. 1B) is formed.

従って前記パルス電圧とは、単に谷側電圧レベルがOV
か又はその波高値と同極性にあるものをさし、そのパル
ス発生電源が交流電源か直流電源かを問わない。この場
合前記谷側電圧レベルは感光体の潜像表面電位以下であ
ることが好ましいことは当然である。
Therefore, the pulse voltage simply means that the valley side voltage level is OV.
or has the same polarity as its peak value, regardless of whether the pulse generating power source is an AC power source or a DC power source. In this case, it is natural that the valley side voltage level is preferably lower than the latent image surface potential of the photoreceptor.

又、前記直流パルスのパルス幅は前述した通り、 0.
1〜5.0 m5ec、好ましくは0.15−)2ms
ecの範囲に設定するのがよいが、パルス幅はデユー 
  4テイ比と周波数との関係において簡単に決定出来
、例えば、直流パルスのデユーティ比が50%の場合に
おいて周波数を100〜5000H2、好ましくは50
0〜3000H2に設定することにより前記範囲のパル
ス幅を得ることが可能となる。勿論、前記デユーティ比
は必ずしも50%に設定する必要はなく、周波数との関
係で適宜デユーティ比を変化させることが可能である。
Further, as mentioned above, the pulse width of the DC pulse is 0.
1-5.0 m5ec, preferably 0.15-)2ms
It is best to set it within the ec range, but the pulse width should be set within the range of
4 It is easy to determine the relationship between the Tey ratio and the frequency. For example, when the duty ratio of the DC pulse is 50%, the frequency is 100 to 5000H2, preferably 50%.
By setting it to 0 to 3000H2, it is possible to obtain a pulse width within the above range. Of course, the duty ratio does not necessarily need to be set to 50%, and it is possible to change the duty ratio as appropriate in relation to the frequency.

更に、本発明は、前、記トナー担持体と前記感光体との
現像間隔を、トナー担持体上に担持されたトナ一層厚よ
り大なる離間間隔をもって配置するのが好ましい。
Further, in the present invention, it is preferable that the development interval between the toner carrier and the photoreceptor be larger than the thickness of one layer of toner carried on the toner carrier.

更に又、前記パルス電圧を下記式の範囲に設定すること
により、高品質の画像濃度を得るに足るだけの電位差r
 V bias −Vw Jを採ることが出来、ソリッ
ド濃度、ライン濃度いずれも高品質な画像に維持出来る
Furthermore, by setting the pulse voltage within the range of the following formula, the potential difference r can be set to a value sufficient to obtain high quality image density.
V bias -Vw J can be taken, and high quality images can be maintained in both solid density and line density.

l Vbiasl >c X l Vw l −d V
 ≧250 V・・・・・・ 口) 2.5 <c <3.3 、−35<d <135「効
果」 かかる発明によれば、バイアス電圧として周期的に変化
する前記構成のパルス電圧を用いている為に、トナー担
持体と現像容器との間に空間電荷が発生する恐れがなく
、この結果、担持体上のトナ一層における帯電むらの発
生を防止し、現像された画像に像のにじみや二重像が生
じることなく鮮明な画像を得ることが出来る。
l Vbiasl > c X l Vw l -d V
2.5 < c < 3.3 , -35 < d < 135 "Effect" According to this invention, the pulse voltage of the above structure that changes periodically as the bias voltage is used as the bias voltage. As a result, there is no risk of space charge being generated between the toner carrier and the developer container, and as a result, uneven charging in the toner layer on the carrier is prevented, and the developed image is Clear images can be obtained without blurring or double images.

更に又、本発明は、特に前記パルス電圧を直流電源をス
イッチングして得られる矩形波パルスで構成することに
より容易に電位、周波数、デユーティ比を変化させるこ
とが出来、この結果、トナーの挙動規制が容易になり、
常にバラツキのない最適画像が得られる。
Furthermore, in the present invention, in particular, by configuring the pulse voltage with a rectangular wave pulse obtained by switching a DC power supply, the potential, frequency, and duty ratio can be easily changed, and as a result, the behavior of the toner can be regulated. becomes easier,
Optimal images without variations can always be obtained.

又、本発明によれば、前記イ)式の範囲内において例え
ば第1図A、Bに示す如く、感光体の非露光部電位vb
をパルス電圧の波高値V biasより小に設定した場
合においても、露光部にトナーを転移させた後、非露光
部にトナーが転移する前に前記パルス電圧がすみやかに
非露光部電位vb以下に立下がる為に、かぶりが生じる
ことなく高品質の画像を得ることが出来ると共に、その
分感光体の帯電電位を低くすることが出来、感光体の疲
労を低減し、耐久性の向上と安全性を高めることが出来
る。
Further, according to the present invention, within the range of the above formula (a), the potential vb of the non-exposed part of the photoconductor is adjusted as shown in FIGS.
Even when V bias is set to be smaller than the peak value V bias of the pulse voltage, after the toner is transferred to the exposed area, but before the toner is transferred to the non-exposed area, the pulse voltage quickly becomes lower than the non-exposed area potential vb. Because of this, high-quality images can be obtained without fogging, and the charged potential of the photoconductor can be lowered accordingly, reducing fatigue of the photoconductor, improving durability and safety. can be increased.

又、本発明は、磁界ではなく電界を用いてトナーを感光
体の静電潜像部に転移させる構成を採る為、磁気刷子現
像のようにトナー担持体の背面側に固定磁極を配する事
を条件としないが、必要に応じて前記固定磁極を所定位
置に配したり、又磁気刷子現像法と組み合わせて構成す
ることも可能である。
Furthermore, since the present invention adopts a configuration in which toner is transferred to the electrostatic latent image area of the photoreceptor using an electric field rather than a magnetic field, a fixed magnetic pole is arranged on the back side of the toner carrier as in magnetic brush development. Although this is not a condition, it is also possible to arrange the fixed magnetic pole at a predetermined position as necessary, or to configure it in combination with a magnetic brush development method.

尚、本発明は更に種々の効果を有するが、それらは下記
の実施例により一層明瞭化される。
It should be noted that the present invention further has various effects, which will be further clarified by the following examples.

「実施例」 以下、図面を参照して本発明の好適な実施例を例示的に
詳しく説明する。ただしこの実施例に記載されている構
成部品の寸法、材質、形状、その相対配置などは特に特
定的な記載がない限りは、この発明の範囲をそれのみに
限定する趣旨ではなく、単なる説明例に過ぎない。
"Embodiments" Hereinafter, preferred embodiments of the present invention will be described in detail by way of example with reference to the drawings. However, unless otherwise specified, the dimensions, materials, shapes, and relative arrangements of the components described in this example are not intended to limit the scope of this invention, but are merely illustrative examples. It's nothing more than that.

第2図は本発明が適用された画像形成装置の概略構成を
示し、1aは感光体表面で感光体ドラム1の表面に光導
電性絶縁層を形成してなり、感光体ドラム1は矢印方向
に100mm/seaの周速で回転可能に構成している
FIG. 2 shows a schematic configuration of an image forming apparatus to which the present invention is applied, in which 1a is the surface of a photoreceptor, and a photoconductive insulating layer is formed on the surface of the photoreceptor drum 1, and the photoreceptor drum 1 is directed in the direction of the arrow. It is configured to be rotatable at a circumferential speed of 100 mm/sea.

光導電性絶縁層にはセレン、酸化亜鉛、アモルファスシ
リコン等の無機半導体や、ポリビニルカルバゾル等の有
機半導体等が使用され、夫々使用特性が異なるが、本実
施例においてはポリビニルカルバゾル系の有機半導体を
用い、正極性の帯電がなされるよう構成している。
Inorganic semiconductors such as selenium, zinc oxide, and amorphous silicon, and organic semiconductors such as polyvinyl carbazole are used for the photoconductive insulating layer, and each has different usage characteristics. It uses a semiconductor and is configured to be positively charged.

前記感光体ドラム1の周囲には、回転方向に沿って感光
体表面1aを一様に均一帯電させる帯電器2、該帯電さ
れた感光体表面1aの電荷を、画像情報に基づいて消散
させ、所定の静電潜像を形成するレーザビーム3、該静
電潜像を反転現像する反転現像装置4、該現像装置4に
より顕像化されたトナー像を転写紙5に転写する転写器
6、転写後の残留トナーを除去するクリーナ7、及び非
露光部の残留電荷を除去する除電ランプ8 (イレーザ
)等が配置されており、これにより所定の画像形成サイ
クルを繰り返し行うことが可能となる。
Around the photoreceptor drum 1, there is a charger 2 that uniformly charges the photoreceptor surface 1a along the rotation direction, and a charger 2 that dissipates the charge on the photoreceptor surface 1a based on image information. a laser beam 3 that forms a predetermined electrostatic latent image; a reversal developing device 4 that reversely develops the electrostatic latent image; a transfer device 6 that transfers the toner image visualized by the developing device 4 onto a transfer paper 5; A cleaner 7 that removes residual toner after transfer, and a static elimination lamp 8 (eraser) that removes residual charges in non-exposed areas are provided, thereby making it possible to repeat a predetermined image forming cycle.

さて、前記現像装置4は、感光体ドラム1と所定間隔離
間して配置し、感光体ドラム1と同一の周速で矢印方向
に回転する非磁性スリーブ41と、該スリーブ41内に
内包された固定磁石集成体42と、前記感光体表面1a
対面位置の上流側に配置された層厚規制部材43と、ト
ナー容器44から構成され、前記感光体ドラムlとの現
像間隔(最近接間隔)及び層厚規制部材43により規制
されるトナー層厚は現像位置におけるトナ一層厚より現
像間隔が大になるよう設定している。
The developing device 4 includes a non-magnetic sleeve 41 that is arranged at a predetermined distance from the photoreceptor drum 1 and rotates in the direction of the arrow at the same circumferential speed as the photoreceptor drum 1, and a non-magnetic sleeve 41 that is enclosed within the sleeve 41. Fixed magnet assembly 42 and the photoreceptor surface 1a
It is composed of a layer thickness regulating member 43 disposed upstream of the facing position and a toner container 44, and the toner layer thickness is regulated by the development interval (nearest interval) with the photoreceptor drum l and the layer thickness regulating member 43. The development interval is set to be larger than the thickness of the toner layer at the development position.

又前記非磁性スリーブ41には、スイッチング回路45
を介して直流電源46が接続され、該スイッチング回路
45に付設されたタイマー(図示せず)により周期的に
スイッチング操作を行うことにより矩形状の直流パルス
電圧が非磁性スリーブ41に印加されるよう構成してい
る。
Further, the non-magnetic sleeve 41 includes a switching circuit 45.
A DC power supply 46 is connected through the switching circuit 45, and a rectangular DC pulse voltage is applied to the non-magnetic sleeve 41 by periodically performing a switching operation using a timer (not shown) attached to the switching circuit 45. It consists of

又前記現像装置4に使用されるトナーとして、平均粒径
8〜20ILm 、電気抵抗率が1014Ω・cm、比
誘電率が2.0以下であって、摩擦帯電により正の帯電
極性を有する磁性トナーを使用する。
The toner used in the developing device 4 is a magnetic toner having an average particle size of 8 to 20 ILm, an electrical resistivity of 1014 Ω·cm, a relative permittivity of 2.0 or less, and having positive charging polarity due to triboelectric charging. use.

かかる装置を用いて行った実験結果を下記に示す。The results of experiments conducted using such an apparatus are shown below.

■先ず直流パルス電圧のパルス幅aと画像濃度及びかぶ
りとの関係を調べる為に、vbを500v、VWを28
0v、V biasの周波数を150 Hzに固定し、
デユーティ比のみを10〜θO%の範囲で、10%きざ
みで変化させた所、デユーティ比が80%(パルス幅a
 5.5 m5ec)以上でかぶりが発生した。
■First, in order to investigate the relationship between the pulse width a of the DC pulse voltage, image density, and fog, we set VB to 500V and VW to 28V.
0v, fix the V bias frequency to 150 Hz,
When only the duty ratio was changed in the range of 10 to θO% in 10% increments, the duty ratio was 80% (pulse width a
Fog occurred above 5.5 m5ec).

次にV biasの周波数を3KHzに固定し、デユー
ティ比のみを10%きざみで変化させた所、デユーティ
比が20%(パルス幅a O,07m5ec)以下で画
像濃度1.0以下になることが判明した。
Next, when the V bias frequency was fixed at 3KHz and only the duty ratio was changed in 10% increments, the image density became less than 1.0 when the duty ratio was less than 20% (pulse width a O, 07m5ec). found.

従って直流パルス電圧のパルス幅a O,1〜5.0m
!;eC1好ましくは0.15〜2m5ecの範囲に設
定することによりかぶりが生じることなく高品質の画像
濃度を得ることが出来る。
Therefore, the pulse width of the DC pulse voltage a O, 1 to 5.0 m
! By setting eC1 preferably in the range of 0.15 to 2 m5ec, high quality image density can be obtained without fogging.

■かぶりのない画像、即ち非露光部における画像濃度が
0.1以下の画像が得られるVbiasとvbとの関係
を示すイ)式の推定 先ず前記■と同様にVbiasの周波数、デユーティ比
を固定し、vbを200V 〜500V (V Wは前
記■と同様)変化させた場合に、非露光部における画像
濃度が0.1以下の画像が得られるVbiasを測定し
てみると、相関度0.993の確率で直線状に変化する
ことが確認された。(第3図中の想像線に−そこでデユ
ーティ比を固定し、周波数を前記■と同様に夫々変化さ
せてかぶりのない画像が得られるV biasとvbと
の関係式を統計的手法で求めた。その結果、下記イ)式
の範囲でカブリのない画像が得られることが判明した。
■ Estimation of equation (a) showing the relationship between Vbias and vb that allows obtaining an image with no fog, that is, an image with an image density of 0.1 or less in the unexposed area. First, as in (■) above, fix the frequency and duty ratio of Vbias However, when changing vb from 200V to 500V (VW is the same as above), we measured Vbias at which an image with an image density of 0.1 or less in the non-exposed area was obtained, and found that the correlation was 0. It was confirmed that it changes linearly with a probability of 993. (Refer to the imaginary line in Figure 3.The duty ratio is fixed there, and the frequency is varied in the same way as in (■) above.A relational expression between V bias and vb that can obtain a fog-free image is calculated using a statistical method. As a result, it was found that fog-free images could be obtained within the range of formula (a) below.

l Vb  l > l Vbias/ a l +b
 V ・・−イ)1.52<a <1.88. −20
<b <110従ってVbiasを例えば800vに設
定した場合におイテもvbが約400〜520V520
vれば、V biasより低い電圧に設定することが可
能であり、而もVbiasを高く設定出来る為に、コン
トラストが高く且つかぶりのない高品質な画像が得られ
る。
l Vb l > l Vbias/ a l +b
V...-a) 1.52<a<1.88. -20
<b <110 Therefore, when Vbias is set to, for example, 800v, Vb is approximately 400 to 520V520
If V bias is set, it is possible to set a voltage lower than V bias, and since V bias can be set high, a high quality image with high contrast and no fogging can be obtained.

■尚、参考的に、1.0以上の画像濃度が得られるVb
iasの最小値と潜像表面電位Vwとの関係を確認して
みた。
■For reference, Vb that provides an image density of 1.0 or more
The relationship between the minimum value of ias and the latent image surface potential Vw was confirmed.

先ずVbiasの周波数を1KHz、デユーティ比を固
定し、Vwを50〜300Vまで変化させた場合に、す
くなく共1.0以上の画像濃度が得られるV bias
を測定してみると、Vbiasが少なくともVvより大
で且つ250v以上の場合において、相関度0.89の
確率で直線状に変化することが確認された。(第3図中
の想像線に−2) さらに、周波数を100 Hzからl0KH2まで夫々
変化させて1.0以上の画像濃度が得られるV bia
sの最小値の範囲を統計的手法で求めた。その結果、周
波数が5 KHz(同0.1m5ec)以下の場合にお
いて、下記口)式の範囲で1.0以上の画像濃度が得ら
れることが判明した。
First, when the V bias frequency is fixed at 1 KHz, the duty ratio is fixed, and Vw is varied from 50 to 300 V, an image density of at least 1.0 or higher can be obtained in both V bias
When measured, it was confirmed that when Vbias is at least larger than Vv and 250V or more, it changes linearly with a probability of a correlation of 0.89. (-2 on the imaginary line in Figure 3) Furthermore, V bia which can obtain an image density of 1.0 or more by changing the frequency from 100 Hz to 10KH2, respectively.
The range of the minimum value of s was determined using a statistical method. As a result, it was found that when the frequency was 5 KHz (0.1 m5ec) or less, an image density of 1.0 or more could be obtained within the range of the following equation.

Vbias>c X I Vw l −d V≧250
v・・・・・・口) 2.5 <c<3.3 、−35<d <135従って
V biasが少なくともVw以上で且つ前記口)式を
満足していれば本発明が円滑に適用出来ることが判明し
た。例えば前記Vwが180vの場合、V biasは
略320〜630v以上であれば良好な画像濃度が得ら
れる。
Vbias>c X I Vw l -d V≧250
2.5 < c < 3.3, -35 < d < 135 Therefore, if V bias is at least Vw or more and satisfies the above formula, the present invention can be applied smoothly. It turns out it can be done. For example, when the Vw is 180V, good image density can be obtained if the V bias is approximately 320 to 630V or more.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(A)、(B)はいずれも本発明に適用されるパ
ルス電圧波形の具体例を示すグラフ図、第2図は本発明
が適用された画像形成装置の概略図、第3図は、パルス
電圧と感光体の非露光部及び潜像部の表面電位との夫々
の関係そ示すグラフ図である。 第1図 (A) (0+b!a+bA□J (B) 第2図 第3図 (■)
1A and 1B are graphs showing specific examples of pulse voltage waveforms applied to the present invention, FIG. 2 is a schematic diagram of an image forming apparatus to which the present invention is applied, and FIG. 1 is a graph diagram showing the relationship between pulse voltage and surface potential of a non-exposed area and a latent image area of a photoreceptor, respectively. Figure 1 (A) (0+b!a+bA□J (B) Figure 2 Figure 3 (■)

Claims (1)

【特許請求の範囲】 1)感光体の帯電極性と同極性の電荷が付与された一成
分の高抵抗磁性トナーを、バイアス電圧によって感光体
上の静電潜像部に転移させる反転現像方法において、前
記バイアス電圧として感光体の帯電極性と同極性にして
、且つその波形が急峻な立ち上がりと立ち下がりを有す
るパルス電圧を用い、そのパルス幅を0.1〜5.0m
secに設定した事を特徴とする反転現像方法 2)感光体の非露光部表面電位を、下記式の範囲内で前
記パルス電圧の波高値以下に設定した事を特徴とする特
許請求の範囲第1項記載の反転現像方法 |Vb|>|Vbias/a|+bV Vb:感光体の非露光部表面電位 Vbias:パルス電圧の波高値 1.52<a<1.88、−20<b<110
[Claims] 1) In a reversal development method in which a one-component high-resistance magnetic toner charged with the same polarity as the charge polarity of the photoreceptor is transferred to an electrostatic latent image area on the photoreceptor by a bias voltage. As the bias voltage, a pulse voltage having the same polarity as the charged polarity of the photoreceptor and whose waveform has steep rises and falls is used, and the pulse width is 0.1 to 5.0 m.
sec. 2) A reversal developing method characterized in that the surface potential of the non-exposed part of the photoreceptor is set below the peak value of the pulse voltage within the range of the following formula. Reversal development method described in item 1 |Vb|>|Vbias/a|+bV Vb: Surface potential of non-exposed portion of photoreceptor Vbias: Peak value of pulse voltage 1.52<a<1.88, -20<b<110
JP9109185A 1985-04-30 1985-04-30 Reversal developing method Pending JPS61239254A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9109185A JPS61239254A (en) 1985-04-30 1985-04-30 Reversal developing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9109185A JPS61239254A (en) 1985-04-30 1985-04-30 Reversal developing method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP7934185A Division JPS61239253A (en) 1985-04-16 1985-04-16 Reversal development method

Publications (1)

Publication Number Publication Date
JPS61239254A true JPS61239254A (en) 1986-10-24

Family

ID=14016849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9109185A Pending JPS61239254A (en) 1985-04-30 1985-04-30 Reversal developing method

Country Status (1)

Country Link
JP (1) JPS61239254A (en)

Similar Documents

Publication Publication Date Title
JP3599192B2 (en) Image forming device
JP4382421B2 (en) Development method and apparatus in image forming apparatus
CA2051764C (en) Method and apparatus for forming electrophotographic image
JP2006221107A (en) Image forming method
JP2005099686A (en) Developing device
JPS6330622B2 (en)
JP2003295613A (en) Image forming apparatus
JPS61239254A (en) Reversal developing method
JPH0527864B2 (en)
JPS6341062B2 (en)
JP4310152B2 (en) Developing device in image forming apparatus
JPS61239253A (en) Reversal development method
JPS6217224B2 (en)
JP3024884B2 (en) Developing device
JPH0510673B2 (en)
JP3530724B2 (en) Image forming device
JP3605785B2 (en) Image forming device
JPH0638176B2 (en) Development method
JPH0381788A (en) Developing device
JPS6246868B2 (en)
JPS60247650A (en) Electrophotographic process
JPS6275654A (en) Developing method
JPH11174929A (en) Image forming device
JPS60256166A (en) Electrophotographic developing device
JPH02143258A (en) Developer