JPS6123913Y2 - - Google Patents

Info

Publication number
JPS6123913Y2
JPS6123913Y2 JP4559980U JP4559980U JPS6123913Y2 JP S6123913 Y2 JPS6123913 Y2 JP S6123913Y2 JP 4559980 U JP4559980 U JP 4559980U JP 4559980 U JP4559980 U JP 4559980U JP S6123913 Y2 JPS6123913 Y2 JP S6123913Y2
Authority
JP
Japan
Prior art keywords
vibrator
longitudinal
thickness
present
vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4559980U
Other languages
Japanese (ja)
Other versions
JPS56147698U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP4559980U priority Critical patent/JPS6123913Y2/ja
Publication of JPS56147698U publication Critical patent/JPS56147698U/ja
Application granted granted Critical
Publication of JPS6123913Y2 publication Critical patent/JPS6123913Y2/ja
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】 本考案は圧電振動子の構造に関するものであ
る。
[Detailed Description of the Invention] The present invention relates to the structure of a piezoelectric vibrator.

高周波数超音波用圧電振動子としては、電気機
械結合係数が大きく、かつ振動姿態が単純な縦振
動型振動子が多く利用される。従来、縦振動型振
動子を鋭い指向性合成の目的で広い音波放射面を
有する様に配列する場合は、縦振動子型振動子単
体を音波放射面に平行又は直角の方向に多数個配
列している。又、第1図及び第2図に示すごと
く、振動変位の節の部分、又は音波放射面側ある
いはその反対面側の部分で同一共振周波数の縦振
動型振動子が複数個接合するように構成した複合
縦振動型振動子も多く利用されている。
As piezoelectric vibrators for high-frequency ultrasound, longitudinal vibrating vibrators are often used, which have a large electromechanical coupling coefficient and a simple vibration configuration. Conventionally, when arranging longitudinal oscillators to have a wide sound wave radiation surface for the purpose of sharp directivity synthesis, a large number of single longitudinal oscillator oscillators were arranged in a direction parallel or perpendicular to the sound wave radiation surface. ing. Furthermore, as shown in Figs. 1 and 2, a plurality of longitudinal oscillators having the same resonant frequency are connected at the nodes of vibration displacement, on the sound wave emission surface side, or on the opposite side thereof. Composite longitudinal vibration type vibrators are also widely used.

しかしながらこれら従来の縦振動型振動子は、
機械的共振特性が鋭く、機械的Qが大きい為送受
振周波数帯域を広くとれないこと、および、パル
ス変調した搬送波の波形の過度現象による立上り
が遅い欠点があつた。この為機械的Qが小さく広
い音波放射面が必要な場合には、ランジユバン型
振動子とするか、2種以上の近接した共振周波数
を有する縦振動型振動子単体を組み合せることに
よつて全体として機械的Qを小さくするように、
振動子を多数個配列していた。これを改良したも
のとして第3図及び第4図に示すように圧電素材
に音波放射面と直角方向に細溝を入れ、細溝で区
切られた各々の部分を縦振動の節となる部分、又
は音波放射面あるいはその反対面の部分で接合さ
せると共に、細溝で区切られた各々の部分が2種
以上の近接した共振周波数を有するように寸法段
差をつけ、全体として一つのトランスデユサとし
て縦振動を行なわせる複合縦振動型振動子が提案
されている。
However, these conventional longitudinal vibration type vibrators,
The mechanical resonance characteristics are sharp and the mechanical Q is large, so the transmitting/receiving frequency band cannot be widened, and the waveform of the pulse-modulated carrier wave has a slow rise due to a transient phenomenon. For this reason, if a wide sound wave radiation surface with a small mechanical Q is required, use a Languevin type vibrator or a combination of two or more types of single longitudinal vibrator type vibrators with close resonance frequencies. In order to reduce the mechanical Q as
A large number of vibrators were arranged. As an improved version of this, as shown in Figs. 3 and 4, thin grooves are formed in the piezoelectric material in a direction perpendicular to the sound wave radiation surface, and each part separated by the thin grooves is used as a node of longitudinal vibration. Alternatively, they may be joined at the sound wave emitting surface or the opposite surface, and each section separated by a thin groove may have dimensional steps so that it has two or more types of close resonance frequencies, and the entire transducer can be used as a single transducer to generate longitudinal vibrations. A composite longitudinal vibration type vibrator has been proposed.

しかし、この様な改良された構造の振動子でも
まず第1に、振動子に溝を入れる工程を要し、大
量かつ安価に生産を行なう上で大きな障害となつ
ていた。第2に、個々の振動子が独立振動子とみ
なされるため、各々の振動子から電気信号の入出
力用リード端子を引きだす為の工程が複雑になる
と同時に、外部衝撃や振動に対してリード線が断
線する危険率も高い。第3に、この様な構造の振
動子は機械的な強度が弱く、製造の歩留りも低い
欠点があつた。
However, even with such an improved structure, a vibrator requires a step of forming grooves in the vibrator, which is a major obstacle to mass production at low cost. Second, since each vibrator is considered an independent vibrator, the process of pulling out lead terminals for inputting and outputting electrical signals from each vibrator becomes complicated, and at the same time, the lead wires are protected against external shocks and vibrations. There is also a high risk of disconnection. Thirdly, the vibrator having such a structure has a drawback of low mechanical strength and low manufacturing yield.

本考案は上記の欠点を除き、大量かつ安価に信
頼性の高い広帯域振動子を提供することを目的と
する。
It is an object of the present invention to eliminate the above-mentioned drawbacks and provide a highly reliable broadband vibrator in large quantities and at low cost.

本考案の振動子は従来の縦振動に代えて厚み縦
振動を用いる特徴を有する。そして例えば筆者が
既に提案したPb1-xSrxTi1-y(Mn1/3Sb2/3)yO3
材料の様な厚み縦振動のみを強勢に励振する事が
可能な圧電材料を用いると好都合であり、その厚
みを不均一に構成する事を特徴とする厚み縦振動
子である。
The vibrator of the present invention is characterized by using thickness longitudinal vibration instead of conventional longitudinal vibration. For example, if we use a piezoelectric material that can strongly excite only the thickness longitudinal vibration, such as the Pb 1-x Sr x Ti 1-y (Mn1/3Sb2/3) y O 3- based material that the author has already proposed, This is a thickness longitudinal oscillator which is convenient and characterized in that its thickness is non-uniform.

以下図面を参照して本考案を実施例により説明
する。
The present invention will be described below by way of examples with reference to the drawings.

第5図a,b,c,d,e,fは本考案による
厚み振動子の構造の一例を示す。例えば焼結され
たPb1-xSrxTi1-y(Mn1/3Sb2/3)yO3系材料で構成
した略円板又は略矩形板等の略板状の厚み縦振動
子において厚みを連続的又は階段的に変える事を
特徴としており、振動子の上下面は全面に金属電
極膜が施こされ、厚み方向に分極されている。
Figures 5a, b, c, d, e, and f show an example of the structure of a thickness vibrator according to the present invention. For example, in a longitudinal vibrator with a substantially plate shape such as a substantially circular plate or a substantially rectangular plate made of sintered Pb 1-x Sr x Ti 1-y (Mn1/3Sb2/3) y O 3 material, It is characterized by continuous or stepwise change, and the upper and lower surfaces of the vibrator are entirely coated with metal electrode films and are polarized in the thickness direction.

第5図a図は二段の段差を設けた構造を有して
おり、この様に二つの寸法段差を有する振動子を
形成することにより3つの近接した共振周波数で
使用可能となる。同図は共振周波数の種類が3種
の場合について示してあるが、同b図の様に連続
して共振周波数が変化してもよい。
The structure shown in FIG. 5a has a two-step difference, and by forming a vibrator having two dimensional steps in this way, it can be used at three adjacent resonant frequencies. Although the figure shows a case where there are three types of resonance frequencies, the resonance frequencies may change continuously as shown in figure b.

また同c図の様に中心部の周波数が周辺部より
低くともよい。また、e,f図に示す様に矩形状
振動子でもよい。
Further, as shown in FIG. 3C, the frequency at the center may be lower than that at the periphery. Alternatively, a rectangular vibrator may be used as shown in figures e and f.

第6図は本考案を実施した3種の接近した共振
周波数をもつた第5a図の構造の厚み縦振動子を
夫々単独で駆動した場合の感度共振周波数特図で
ある。厚み縦振動子の機械的Qは振動子の材料に
よつて決定されるが、一般には機械的Qはかなり
大きい。ところが3種の近接した共振周波数を有
する厚み縦振動子を組み合せた本考案の実施例の
感度周波数特性は、第7図の曲線に示す様になり
非常に広帯域となる。このため本考案によれば送
受周波数を広く選択できることおよび送受波時の
過渡現象による送受波形の立ち上りを改善でき
る。
FIG. 6 is a sensitivity resonance frequency characteristic diagram when the thickness longitudinal vibrator having the structure of FIG. 5a having three types of closely resonant frequencies according to the present invention is driven individually. The mechanical Q of a thickness longitudinal vibrator is determined by the material of the vibrator, but generally the mechanical Q is quite large. However, the sensitivity frequency characteristic of the embodiment of the present invention, which combines thickness longitudinal vibrators having three types of closely resonant frequencies, is as shown by the curve in FIG. 7, and has a very wide band. Therefore, according to the present invention, it is possible to select a wide range of transmission and reception frequencies, and it is possible to improve the rise of the transmission and reception waveforms due to transient phenomena during transmission and reception.

この様に本考案による厚み縦振動子では広帯域
トランスデユサを歩留りよく大量かつ安価に提供
出来る。
As described above, the thickness longitudinal vibrator according to the present invention allows broadband transducers to be provided in large quantities and at low cost with good yield.

なお通常のジルコン・チタン酸鉛系圧電材料を
用いて本考案を実施した場合には、厚み振動以下
の周波数領域で多数の横効果振動が励振される為
有効でない。従つて本考案の構造は厚み振動の電
気機械結合係数が横効果振動の電気機械結合係数
より充分に大きい材料に限定される。
Note that if the present invention is implemented using an ordinary zircon-lead titanate-based piezoelectric material, it is not effective because a large number of transverse effect vibrations are excited in the frequency range below the thickness vibration. Therefore, the structure of the present invention is limited to materials whose electromechanical coupling coefficient for thickness vibration is sufficiently larger than the electromechanical coupling coefficient for transverse effect vibration.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は単一共振周波数をもつ従来の
複合縦振動を用いた振動子の斜視図。第3図、第
4図は異なつた3種類の共振周波数をもつ従来の
縦振動を用いた複合型振動子の斜視図。第5図
a,b,c,d,e,fは本考案による不均一の
厚さを有する圧電厚み縦振動子。第6図は、第5
図aの本考案実施例における3種類の振動子の単
独の周波数感度特性図であり、第7図はやはり本
考案の実施例による不均一な厚みを有する厚み縦
振動子の周波数感度特性図である。
FIGS. 1 and 2 are perspective views of a vibrator using conventional compound longitudinal vibration having a single resonant frequency. FIGS. 3 and 4 are perspective views of a conventional composite vibrator using longitudinal vibration having three different types of resonance frequencies. Figures 5a, b, c, d, e, and f are piezoelectric thickness longitudinal vibrators with non-uniform thickness according to the present invention. Figure 6 shows the fifth
FIG. 7 is a diagram showing individual frequency sensitivity characteristics of the three types of vibrators in the embodiment of the present invention shown in FIG. 7; FIG. be.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 厚み縦振動の電気機械結合係数が縦振動横効果
の電気機械結合数より充分に大きい圧電材料を用
いて構成される圧電厚み縦振動子において、厚み
が不均一になるように構成したことを特徴とする
圧電振動子。
A piezoelectric thickness longitudinal vibrator constructed using a piezoelectric material in which the electromechanical coupling coefficient of thickness longitudinal vibration is sufficiently larger than the electromechanical coupling coefficient of longitudinal vibration transverse effect, characterized in that the thickness is configured to be non-uniform. Piezoelectric vibrator.
JP4559980U 1980-04-04 1980-04-04 Expired JPS6123913Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4559980U JPS6123913Y2 (en) 1980-04-04 1980-04-04

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4559980U JPS6123913Y2 (en) 1980-04-04 1980-04-04

Publications (2)

Publication Number Publication Date
JPS56147698U JPS56147698U (en) 1981-11-06
JPS6123913Y2 true JPS6123913Y2 (en) 1986-07-17

Family

ID=29640704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4559980U Expired JPS6123913Y2 (en) 1980-04-04 1980-04-04

Country Status (1)

Country Link
JP (1) JPS6123913Y2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5332056B2 (en) * 2008-12-25 2013-11-06 本多電子株式会社 Ultrasonic sensor
JP5332059B2 (en) * 2009-04-15 2013-11-06 本多電子株式会社 Ultrasonic transducer
JP2011155776A (en) * 2010-01-28 2011-08-11 Japan Giyaruzu:Kk Ultrasonic vibrator
JP2012235925A (en) * 2011-05-12 2012-12-06 Olympus Medical Systems Corp Ultrasonic transducer, manufacturing method for ultrasonic transducer, and ultrasonic endoscope

Also Published As

Publication number Publication date
JPS56147698U (en) 1981-11-06

Similar Documents

Publication Publication Date Title
US9662680B2 (en) Ultrasonic transducer
US4101795A (en) Ultrasonic probe
JPS6133516B2 (en)
US8085621B2 (en) Ultrasonic transducer with improved method of beam angle control
US20050140465A1 (en) Noise suppression method for wave filter
US3952216A (en) Multiple-frequency transducer
US4117074A (en) Monolithic mosaic piezoelectric transducer utilizing trapped energy modes
JPS6135716B2 (en)
US3974464A (en) Acoustic ridge waveguide
JPS6123913Y2 (en)
US7388317B2 (en) Ultrasonic transmitting/receiving device and method for fabricating the same
US3058539A (en) Transducer with impedance-matching bridge
JP3485904B2 (en) Sound transducer
US4056793A (en) Acoustic waveguide resonator
JP3175255B2 (en) Ultrasonic delay element
JPH08275295A (en) Acoustic transducer
JPS5843357Y2 (en) Ultrasonic transducer
JPS58173912A (en) Piezoelectric element bending oscillator and piezoelectric filter
US4055821A (en) Acoustic ridge transversal filter
JPH02238799A (en) Transmitter-receiver for sonar
US4055819A (en) Acoustic ridge delay line
JP3366156B2 (en) Composite vibrator
JPH0241999Y2 (en)
JPS61101199A (en) Honeycomb-like vibrator
JPH0427280Y2 (en)