JPS6123880B2 - - Google Patents

Info

Publication number
JPS6123880B2
JPS6123880B2 JP17182981A JP17182981A JPS6123880B2 JP S6123880 B2 JPS6123880 B2 JP S6123880B2 JP 17182981 A JP17182981 A JP 17182981A JP 17182981 A JP17182981 A JP 17182981A JP S6123880 B2 JPS6123880 B2 JP S6123880B2
Authority
JP
Japan
Prior art keywords
intermediate treatment
peak current
concentration
current value
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP17182981A
Other languages
Japanese (ja)
Other versions
JPS5873797A (en
Inventor
Yasuyoshi Segawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Kentetsu Co Ltd
Original Assignee
Nihon Kentetsu Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Kentetsu Co Ltd filed Critical Nihon Kentetsu Co Ltd
Priority to JP17182981A priority Critical patent/JPS5873797A/en
Publication of JPS5873797A publication Critical patent/JPS5873797A/en
Publication of JPS6123880B2 publication Critical patent/JPS6123880B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electrochemical Coating By Surface Reaction (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はアルミニウムまたはその合金の3次電
解着色法に関し、さらに具体的には、その中間処
理液濃度および中間処理液温度の変動による色調
の変化を防止することの可能なアルミニウムまた
はその合金の電解着色法に関する。 アルミニウムまたはその合金の3次電解着色法
は前処理陽極酸化、中間処理、電解着色の各工程
から成り、従来の浅田法では得られない特殊な色
調を得るための方法である。上記工程のうち、中
間処理は硫酸、燐酸等の酸性処理液中にて交流を
通電することによつて実施されるが、その目的は
アルミニウムまたはその合金の素地と陽極酸化に
より形成された陽極酸化皮膜の多孔質層との間に
存在するバリヤ層中に第2の多孔質層を形成する
ことにある。 従来の中間処理は通電開始時よりの経過時間を
設定することにより所望の色調を得たが、処理液
の濃度や温度が変動すると如何に他の処理条件を
一定に保つても、得られる色調が変化してしま
い、製品歩留りを悪化させる主たる要因になつて
いる。 即ち、所望の色調を得る場合には、それに合わ
せて中間処理液濃度、中間処理液温度、処理電圧
および処理時間を設定し、これらの条件を一定に
保つことにより前記所望の色調を得ることが出来
る。一例として、グレー色を得る場合の中間処理
条件は下記の通りである。 液濃度 H2SO4 50g/ 液温度 20℃ 電 圧 AC低電圧 処理時間 1分 この場合の着色条件は一例ではAC10V1分であ
る。 ところが、中間処理液温が変動するとそれに伴
なつて色調も変化するため、前述のように中間処
理液温を一定に保つ必要がある。中間処理液温と
得られる色調の関係は一例として下記の通りであ
る。
The present invention relates to a tertiary electrolytic coloring method for aluminum or its alloy, and more specifically, to an electrolytic coloring method for aluminum or its alloy that can prevent changes in color tone due to fluctuations in the concentration and temperature of the intermediate treatment liquid. Concerning coloring methods. The tertiary electrolytic coloring method for aluminum or its alloys consists of the steps of pretreatment anodic oxidation, intermediate treatment, and electrolytic coloring, and is a method for obtaining a special color tone that cannot be obtained by the conventional Asada method. Among the above steps, the intermediate treatment is carried out by passing an alternating current in an acidic treatment solution such as sulfuric acid or phosphoric acid. The second porous layer is formed in the barrier layer between the porous layer of the coating. In conventional intermediate processing, the desired color tone was obtained by setting the elapsed time from the start of energization, but if the concentration and temperature of the processing solution fluctuate, no matter how much other processing conditions are kept constant, the desired color tone cannot be obtained. This has become a major factor in deteriorating product yield. That is, in order to obtain a desired color tone, the intermediate treatment liquid concentration, intermediate treatment liquid temperature, treatment voltage, and treatment time are set accordingly, and these conditions are kept constant to obtain the desired color tone. I can do it. As an example, the intermediate processing conditions for obtaining a gray color are as follows. Liquid concentration: 50 g of H 2 SO 4 / Liquid temperature: 20°C Voltage: AC low voltage Processing time: 1 minute The coloring conditions in this case are, for example, AC10V for 1 minute. However, if the temperature of the intermediate treatment liquid changes, the color tone also changes accordingly, so it is necessary to keep the temperature of the intermediate treatment liquid constant as described above. An example of the relationship between the temperature of the intermediate treatment liquid and the color tone obtained is as follows.

【表】 また前記の通り、中間処理液濃度の変動により
得られる色調も変化する。一例を挙げれば下記の
通りである。
[Table] Furthermore, as described above, the color tone obtained changes as the intermediate treatment solution concentration changes. An example is as follows.

【表】 しかるに従来から、中間処理液の濃度および温
度を一定に保つために多大の努力が必要とされ、
温度調節のための加熱、冷却エネルギーや濃度を
一定に保つための管理負担は莫大ものであり、何
らかの改善策の開発が渇望されてきた。 本発明者は上記問題点の解決策を求めて鋭意研
究の結果、中間処理ピーク電流値によつて着色後
の色調が決定されることを見い出し、本発明の完
成に至つた。 即ち、本発明はアルミニウムまたはその合金の
3次電解着色法における中間処理工程において、
ピーク電流対中間処理液温のグラフから任意の中
間処理液温に対するピーク電流を求め、次いでピ
ーク電流対中間処理電圧のグラフから前記ピーク
電流に対する中間処理電圧を求め、このピーク電
流値および中間処理電圧によつて中間処理を行な
うことにより、中間処理液濃度および中間処理液
温の変動による色調の変化を防止することを特徴
とするものである。 従つて、本発明は中間処理におけるピーク電流
値によつて着色後の色調が決定されることを基礎
としてなされたものであり、ピーク電流の値は第
1図に示すように処理時間に対する関係から測定
される。そして、このピーク電流値をもとに、従
来のように中間処理液の濃度および温度を一定に
保つ代りに、予め設定しておいたグラフにより、
特定の濃度および温度に対する最適電圧を定める
ことによつて中間処理を実施し、所望の色調を比
較的容易に得るものである。なお、周知の通り、
処理時間(通電時間)に依り着色後の色調が変化
するので、処理時間を適切に設定し、所望の色調
を一定して得ることを可能にしている。処理電圧
はピーク電流値に対する電圧、液温のグラフから
定められる。 ピーク電流値と色調との関係は次のとおりであ
る。
[Table] However, in the past, great efforts were required to keep the concentration and temperature of the intermediate treatment liquid constant.
The administrative burden of maintaining constant heating and cooling energy and concentration for temperature regulation is enormous, and there has been a strong desire to develop some kind of improvement measure. As a result of intensive research in search of a solution to the above-mentioned problems, the present inventors discovered that the color tone after coloring is determined by the peak current value of intermediate processing, leading to the completion of the present invention. That is, the present invention provides an intermediate treatment step in a tertiary electrolytic coloring method for aluminum or its alloy.
Find the peak current for any intermediate treatment liquid temperature from the graph of peak current vs. intermediate treatment liquid temperature, then calculate the intermediate treatment voltage for the peak current from the graph of peak current vs. intermediate treatment voltage, and calculate this peak current value and intermediate treatment voltage. By performing the intermediate treatment using the method, it is possible to prevent changes in color tone due to fluctuations in the concentration and temperature of the intermediate treatment liquid. Therefore, the present invention has been made on the basis that the color tone after coloring is determined by the peak current value in intermediate processing, and the peak current value is determined from the relationship with the processing time as shown in Figure 1. be measured. Then, based on this peak current value, instead of keeping the concentration and temperature of the intermediate treatment liquid constant as in the past, a preset graph is used to calculate the
By determining the optimum voltage for a particular concentration and temperature, intermediate treatments can be performed to obtain the desired color tone with relative ease. Furthermore, as is well known,
Since the color tone after coloring changes depending on the processing time (current application time), it is possible to consistently obtain a desired color tone by appropriately setting the processing time. The processing voltage is determined from a graph of voltage and liquid temperature versus peak current value. The relationship between peak current value and color tone is as follows.

【表】 中間処理液(H2SO4)の濃度の違いによる処理
電圧とピーク電流値の関係は第2図のようにな
る。 その供試材はA1200P、寸法は2×70×150mmで
ある。 浴組成 H2SO4、50、100、150、200g/ 条件− 電圧、4.5、5.5、6.5、7.5(ACV) 液温 20℃±1℃ 第2図に示すように、それぞれの濃度において
処理電圧とピーク電流値の間には直線的関係があ
り硫酸濃度が高くなる程、ピーク電流値も高くな
る傾向がある。 また同じ供試材により、中間処理液(H2SO4
の濃度の違いによる液温とピーク電流値の関係は
第3図のようになる。この場合、 浴組成 H2SO4 50、150g/ 条 件 電圧 6.5(ACV) 液温 10、20、30、40(各±1)℃ である。第3図に示すように、それぞれの濃度に
おいて、液温とピーク電流値との間にはほぼ直線
的関係があり、中間処理液温が高くなる程ピーク
電流対値は高くなる傾向がある。 次に本発明の若干の実施例を示す。 実施例 1 中間処理液としてH2SO4を用い、その濃度150
g/においてグレイを得る場合には、前記の表
から、ピーク電流値89A/m2とし、第2図のグラ
フから処理電圧6.3Vとして中間処理を行ない、
次いで電解着色を行なつたところグレイが得られ
る。 実施例 2 中間処理液として、H2SO4を用い、その濃度
150g/において、グリーンを得る場合には、
ピーク電流値を110A/m2とし、第3図から液温
は約30℃、電圧を6.5Vとして中間処理を行な
い、次いで電解着色を行なつたところグリーンが
得られた。 なお、本発明の方法は中間処理に限らず、浅田
法のような単一色系の着色においても色の濃淡変
化に対応することを目的とし、アルマイトの電流
値に対して適用することができる。 以上述べた通り、本発明によればピーク電流値
を所定の値に保持するために、第3図に見られる
ように中間処理液温の変動による影響があまりな
く、それによる色調の変化を防止することができ
るから、従来必要とされてきた中間処理液温度の
調節のための加熱または冷却エネルギーが不要と
なり、エネルギーの節減効果が大きい。また、第
2図に見られるように中間処理液濃度の影響もあ
まりなく、その変動による色調の変化を防止する
ことができるから、従来のような濃度を一定に保
つために神経をすり減らすことがなく、管理負担
の軽減効果も大きい。
[Table] Figure 2 shows the relationship between the processing voltage and peak current value depending on the concentration of the intermediate processing solution (H 2 SO 4 ). The sample material is A1200P, and its dimensions are 2 x 70 x 150 mm. Bath composition H 2 SO 4 , 50, 100, 150, 200 g/ Conditions - Voltage, 4.5, 5.5, 6.5, 7.5 (ACV) Solution temperature 20°C ± 1°C As shown in Figure 2, processing voltage at each concentration There is a linear relationship between the sulfuric acid concentration and the peak current value, and the higher the sulfuric acid concentration, the higher the peak current value tends to be. In addition, using the same sample material, the intermediate treatment liquid (H 2 SO 4 )
The relationship between the liquid temperature and the peak current value depending on the concentration of is shown in Figure 3. In this case, the bath composition is H 2 SO 4 50, 150g/conditions voltage 6.5 (ACV) liquid temperature 10, 20, 30, 40 (each ±1)°C. As shown in FIG. 3, there is a nearly linear relationship between the liquid temperature and the peak current value at each concentration, and the higher the intermediate treatment liquid temperature, the higher the peak current value tends to be. Next, some embodiments of the present invention will be shown. Example 1 Using H 2 SO 4 as the intermediate treatment liquid, its concentration was 150
If you want to obtain gray at g/, use the peak current value of 89A/m 2 from the table above, and perform intermediate processing with the processing voltage of 6.3V from the graph in Figure 2.
Next, when electrolytic coloring is performed, a gray color is obtained. Example 2 H 2 SO 4 was used as the intermediate treatment liquid, and its concentration
When obtaining green at 150g/,
The peak current value was set to 110 A/m 2 , and as shown in FIG. 3, intermediate treatment was carried out at a liquid temperature of about 30° C. and a voltage of 6.5 V, and then electrolytic coloring was carried out, and a green color was obtained. The method of the present invention is not limited to intermediate processing, but can also be applied to the current value of alumite, with the aim of responding to changes in color shading, even in monochromatic coloring such as the Asada method. As described above, according to the present invention, in order to maintain the peak current value at a predetermined value, as shown in FIG. 3, there is little influence from fluctuations in intermediate processing liquid temperature, and changes in color tone due to this are prevented. This eliminates the need for heating or cooling energy for adjusting the temperature of the intermediate treatment liquid, which has been required in the past, resulting in a significant energy saving effect. In addition, as shown in Figure 2, there is little effect on the concentration of the intermediate processing solution, and changes in color tone due to fluctuations in the concentration can be prevented, so there is no need to strain your nerves to maintain a constant concentration as in the past. This has a great effect on reducing the administrative burden.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は中間処理時間とピーク電流値の関係を
示すグラフ、第2図は中間処理液濃度による中間
処理電圧とピーク電流値の関係を示すグラフ、第
3図は中間処理液温とピーク電流値の関係を示す
グラフである。
Figure 1 is a graph showing the relationship between intermediate treatment time and peak current value, Figure 2 is a graph showing the relationship between intermediate treatment voltage and peak current value depending on intermediate treatment liquid concentration, and Figure 3 is a graph showing the relationship between intermediate treatment liquid temperature and peak current value. It is a graph showing the relationship between values.

Claims (1)

【特許請求の範囲】[Claims] 1 アルミニウムまたはその合金の3次電解着色
法における中間処理工程において、ピーク電流対
中間処理液温のグラフから任意の中間処理液温に
対するピーク電流を求め、次いでピーク電流対中
間処理電圧のグラフから前記ピーク電流に対する
中間処理電圧を求め、このピーク電流値および中
間処理電圧によつて中間処理を行なうことを特徴
とするアルミニウムまたはその合金の電解着色
法。
1. In the intermediate treatment step in the tertiary electrolytic coloring method of aluminum or its alloy, the peak current for any intermediate treatment liquid temperature is determined from the graph of peak current vs. intermediate treatment liquid temperature, and then the peak current for any intermediate treatment liquid temperature is determined from the graph of peak current vs. intermediate treatment voltage. 1. A method for electrolytically coloring aluminum or its alloy, characterized in that an intermediate treatment voltage for a peak current is determined, and intermediate treatment is performed using the peak current value and the intermediate treatment voltage.
JP17182981A 1981-10-27 1981-10-27 Electrolytic pigmentation method for aluminum or its alloy Granted JPS5873797A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17182981A JPS5873797A (en) 1981-10-27 1981-10-27 Electrolytic pigmentation method for aluminum or its alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17182981A JPS5873797A (en) 1981-10-27 1981-10-27 Electrolytic pigmentation method for aluminum or its alloy

Publications (2)

Publication Number Publication Date
JPS5873797A JPS5873797A (en) 1983-05-04
JPS6123880B2 true JPS6123880B2 (en) 1986-06-07

Family

ID=15930508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17182981A Granted JPS5873797A (en) 1981-10-27 1981-10-27 Electrolytic pigmentation method for aluminum or its alloy

Country Status (1)

Country Link
JP (1) JPS5873797A (en)

Also Published As

Publication number Publication date
JPS5873797A (en) 1983-05-04

Similar Documents

Publication Publication Date Title
US3669856A (en) Process for the production of colored protective coatings on articles of aluminum or aluminum alloys
JPS60234310A (en) Method of increasing capacitance of anode oxide aluminum electrolytic condenser foil
JPH0747838B2 (en) Coloring method of titanium or its alloy by controlling the amount of electricity
GB1438383A (en) Method for producing a coloured oxide coating on aluminum or
US3704209A (en) Method for electrochemical coloring of aluminum and alloys
US3930966A (en) Method of forming colored oxide film on aluminum or aluminum alloy
JPS6123880B2 (en)
US3669855A (en) Control of integral color anodizing process
US1965683A (en) Coating aluminum
US4808280A (en) Method for electrolytic coloring of aluminim or aluminum alloys
US3335073A (en) Method of making anodized tantalum foil
EP0182479A1 (en) Nickel sulphate colouring process for anodized aluminium
JP2561397B2 (en) Electrolytic coloring method of aluminum or aluminum alloy
JPS6154119B2 (en)
JPS5884995A (en) Electrolytic coloring method for aluminum or its alloy
JPH0573838B2 (en)
ES482021A1 (en) Coating system.
JP2534805B2 (en) Electrolytic coloring method of aluminum or aluminum alloy
JPH03236497A (en) Formation of black-based film of titanium and titanium alloy
JPS6389699A (en) Formation of opaque anodic oxide film on aluminum alloy material
SU956625A1 (en) Methov for controlling aluminium electolyzer
SU1216255A1 (en) Method of checking back electromotive force of aluminium electrolyzer
ES474761A1 (en) Process for electrolytic coloring of anodized aluminum. (Machine-translation by Google Translate, not legally binding)
DE1948552C (en) Process for the electrolytic production of colored oxide layers on aluminum
JPS59182990A (en) Method for coloring aluminum or aluminum alloy