JPS6123806B2 - - Google Patents

Info

Publication number
JPS6123806B2
JPS6123806B2 JP54040021A JP4002179A JPS6123806B2 JP S6123806 B2 JPS6123806 B2 JP S6123806B2 JP 54040021 A JP54040021 A JP 54040021A JP 4002179 A JP4002179 A JP 4002179A JP S6123806 B2 JPS6123806 B2 JP S6123806B2
Authority
JP
Japan
Prior art keywords
water
phenol
formaldehyde
resin
free
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54040021A
Other languages
Japanese (ja)
Other versions
JPS55133443A (en
Inventor
Isao Kai
Toshiaki Baba
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Yukizai Corp
Original Assignee
Asahi Organic Chemicals Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Organic Chemicals Industry Co Ltd filed Critical Asahi Organic Chemicals Industry Co Ltd
Priority to JP4002179A priority Critical patent/JPS55133443A/en
Publication of JPS55133443A publication Critical patent/JPS55133443A/en
Publication of JPS6123806B2 publication Critical patent/JPS6123806B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Mold Materials And Core Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Phenolic Resins Or Amino Resins (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は有機自硬性鋳型用液状フエノール樹
脂組成物の製造方法に関するもので、さらに詳述
すると、遊離フエノール及び遊離ホルムアルデヒ
ドの含有量が少なく、低粘度で、かつ引火点の高
いレゾール型の有機自硬性鋳型用液状フエノール
樹脂組成物(以下には単にフエノール樹脂と称す
る)の製造方法に関する。 この種のフエノール樹脂は、フエノールとホル
ムアルデヒドをアルカリ性触媒の存在下に、加
熱、縮重合させ、ついで脱水処理により縮重合物
の水、未反応フエノール、未反応ホルムアルデヒ
ド及びその他の揮発分を除去して得られる。鋳造
用として使用する場合、鋳物砂にフエノール樹脂
および酸硬化剤を添加することで、鋳型として充
分な強度を発揮しなければならないことは勿論で
あるが、そのほかに混砂作業、鋳型造型作業およ
び注湯作業の点にかんがみ、遊離フエノールと遊
離ホルムアルデヒドの含有率が低いこと、低粘度
であること、引火点が高いことなどが要求され
る。 その理由は遊離フエノールと遊離ホルムアルデ
ヒドの含有率が高い場合、混砂時、鋳型造型時お
よび注湯時において、ひどい悪臭や刺戟臭を発
し、作業者の身体にカブレなどの皮膚炎症を発生
させ、著るしく作業環境を悪化させるためであ
り、また遊離フエノールの含有率が高い場合は、
特に大型鋳物用の鋳型の造型時において肉厚部分
の内部硬化が不充分となる欠点が生じるためであ
る。さらに、この種のフエノール遊離の粘度は90
〜135cp/30℃であるが、従来の製造法では遊離
フエノールや遊離ホルムアルデヒドの含有率を下
げると、樹脂の粘度が高くなるために、メタノー
ルあるいはそれに類する有機溶剤を混入して粘度
値を引き下げなければならず、この場合引加点が
低下して、たとえば35〜58℃程度となり、引火性
が大きくなり、その貯蔵設備を特別なものにしな
ければならなくなる不都合が生じる。 ところで従来知られているこの種のフエノール
樹脂のフエノール含有率は西ドイツのS社のもの
では11.4wt.%程度、米国D社のものでは11.7wt.
%程度であり、かなり高くなつている。又遊離ホ
ルムアルデヒドも西ドイツのS社のものでは
0.69wt.%、米国のD社のものでは0.78wt.%程度
であり、これも通常きわめて高率である。いずれ
にしても、これ等の数値以下のものは得られてい
ない。その原因は従来のこの種のフエノール樹脂
の製造方法それ自体に存在していた。 すなわち従来のフエノール樹脂の製造方法は撹
拌装置、環流装置、減圧脱水装置および加熱・冷
却装置を持つ50〜10000リツターの反応缶に、フ
エノール、ホルムアルデヒドおよびアルカリ性触
媒を仕込んだ後、加熱下で撹拌しながら縮重合
し、さらに加熱下で減圧脱水により、水、未反応
分を除去する方法(以下にはバツチ脱水方法と称
する)なのである。この方法では缶内の水や未反
応分を除去するのに長時間を要し、したがつてフ
エノール樹脂が熱履歴を受けて高分子化し、本発
明のような低粘度のフエノール樹脂を製造し得な
い。このため、従来のフエノール樹脂は粘度を低
くすべく、脱水温度を押えたため、未反応分の除
去が述分できななかつたのであつた。 以上のような、この種のフエノール樹脂の従来
製造方法にかんがみ、本発明者等は遊離フエノー
ルおよび遊離ホルムアルデヒドの含有量をもつと
減少させるべく種々検討した結果、フエノールと
ホルムアルデヒドとをアルカリ性触媒の存在下に
反応させて得られた縮重合物を脱水するにあた
り、脱水の目的とは相反して、縮重合物に人為的
に適量の水を加えた後、従来製造方法による脱水
温度よりはるかに高い温度に加熱された長管状の
脱水処理管に連続的に送り込み、生成した水蒸気
により該縮重合物の管内壁面への焼着を防止しつ
つ、接続された減圧下の蒸発缶にフラツシングさ
せ、水、未反応フエノール、未反応ホルムアルデ
ヒド及びその他の揮発分を可及的に蒸発缶より系
外へ除去しながら連続脱水処理を行うことによ
り、従来のフエノール樹脂の問題点を解決したフ
エノール樹脂が得られることを見出し本発明をな
すに至つた。 すなわち、そのような新構想に基く本発明の要
旨は頭書に記載の特許請求の範囲に掲記した通り
であり、本発明の目的は大型の鋳型であつても、
内部硬化能が良好で作業環境を著るしく改善し得
られ、低粘度で有機溶剤を実質上必要とせず、そ
のため当該液状樹脂の貯蔵にあたり、引火の危険
性が少ないフエノール樹脂の製造方法を提供する
ことにある。 以下に本発明のフエノール樹脂の製造方法につ
いてさらに具体的に説明をする。 フエノールおよびホルムアルデヒドをアルカリ
性触媒の存在下に通常行われるバツチ方式により
縮重合を行い、樹脂濃度30〜75wt.%の縮重合物
を得る。ついで脱水工程に入る前に、予じめ樹脂
濃度が5〜45wt.%になるように該縮重合物に水
を加えておく。次に、その末端に蒸発缶が接続さ
れたた長管状の脱水処理管に、水を加えた縮重合
物を連続添に送り込み連続脱水処理を行なう。こ
の長管状の脱水処理管は、管の長さLと管の内径
Dとの比、つまりL/Dを1000〜2500程度、好適
には1500程度になるように設定され、また管内温
度は100〜130℃に加熱されている。さらに蒸発缶
は50〜200mmHgAb.の減圧状態に保持されてい
る。 110〜150℃に加熱された長管状の脱水処理管に
連続的に送り込まれた水添加の縮重合物より加熱
により発生した水蒸気がフエノール樹脂縮重合物
中の未反応フエノール、未反応ホルムアルデヒド
およびその他の揮発分を洗い流し、かつ、はげし
い乱流状態となりながら管内を流れるため、縮重
合物の管内壁面への焼着も防止される。脱水処理
管を通り抜けた水蒸気および液状フエノール樹脂
は50〜200mmHgAb.の減圧状態に保持された蒸発
缶にフラツシングされる。ここで水蒸気および未
反応フエノール、未反応ホルムアルデヒドおよび
その他の揮発分と液状フエノール樹脂とが分離さ
れる。 このようにフエノール樹脂縮重合物は従来のバ
ツチ方式の脱水温度より高い温度に加熱された脱
水処理管内を通過するものの、高温度の水蒸気と
ともに管内を短期間に通過するため熱履歴を受け
ることが少なく、このため高分子化が押えられ
る。つまり増粘することなく脱水処理されて、低
粘度のものとして得られるわけである。 脱水終了後のフエノール樹脂は蒸発缶から取り
出され、水分含有率が9〜42wt.%になるように
水を加え均一に混合後、目的の有機自硬性鋳型用
フエノール樹脂として使用される。 本発明により得られるフエノール樹脂中のフエ
ノールホルムアルデヒド樹脂分の含有率を50〜
80wt.%なる値に限定した理由は、もし50wt.%よ
り少くすれば鋳型中の残留水分が多くなつて乾燥
が必要になり、また鋳型内部の硬化速度も遅くな
るためである。逆に80wt.%より多くすれば砂に
対するぬれ性が悪くなり、鋳型性能が出ない。
又、樹脂粘度が高くなるため混砂した被覆砂の流
動性が悪くなり、つまり不良を起すためである。 また遊離フエノール含有率を5wt.%以下と限定
した理由は、5wt.%よりも含有率が多くなると、
特定化学物質等障害予防規則や毒劇物取締法によ
る規制を受け労働安全衛生上非常にきびしい制約
を受ける。また混練時、造型時、注湯時にフエノ
ールガスが発生し、人体に対して、かぶれ等の悪
影響を与えるおそれが多いからである。さらに遊
離ホルムアルデヒドを0.5wt.%以下に限定した理
由は、遊離フエノールと同様、混砂時や造型時に
ホルムアルデヒドガスが発生し、作業環境を著る
しく悪化させるからである。すなわち刺激性の臭
気が著るしくて作業員の健康衛生上すこぶる悪い
影響を与えるからである。 また上記したごとく樹脂分、遊離モノマーの量
を所定の範囲に調整し、かつ樹脂粘度を使用しや
すい粘度範囲とし、さらに樹脂の引火性をなくす
ために適量の水が添加される。水含有率が42wt.
%より多くなると樹脂分と水分が分離しやすくな
り、また9wt.%より少なくなると粘度が高くなり
使用しずらく引火点も低くなる。 尚、本発明でいう、樹脂濃度とはアルミ箔容器
に樹脂を取り180±1℃の熱板上で1時間加熱後
室温まで放冷し残分をwt.%で示したものであ
り、遊離フエノールはHLC、遊離ホルムアルデ
ヒドは塩酸ヒドロキシアミン法で、水分はカール
フイツシヤー法、粘度はB型粘度計で、また引火
点はタグ式で測定した値である。 実施例 1 フエノール550Kg、38%のホルマリン568Kg、触
媒としてのNaOH1.65Kg、水6.6Kg、触媒としての
Ca(OH)23.85Kg、水15.4Kgの割合で混和したも
のを使用してバツチ操業を行つた。 反応釜内において、初温30℃より1時間以内に
70℃に昇温し、該温度を6.5時間保持し、それか
ら1時間以内に再び30℃まで冷却した。冷却後に
中和剤として、上記の原料に対して、パラトルエ
ンスルホン酸22.7Kg、水34.1Kgを加えた。この縮
重合物の樹脂濃度49wt.%、PHは4.5であつた。こ
れに水145Kgを加え、樹脂濃度43.7wt.%の原液を
作つた。 次に脱水工程を連続操業において行つた。 管入口液流量100Kg/hとし、管内の温度を120
〜130℃にして処理した。加熱スチーム圧力は2.5
〜3.4Kg/cm2にした。また蒸発缶は100〜120mm
HgAb.の減圧状態であつた。処理時間は13.5時間
であつた。このようにして得られた溜出液700Kg
の樹脂濃度は80wt.%であつた。また粘度は
550cp/30℃であつた。 これに若干の水を加えて調整することにより、
下記の性質を有する製品組成物が得られた。 樹脂濃度………………………72wt.% 粘 度…………………………75cp/30℃ 遊離フエノール………………5wt.% 遊離ホルムアルデヒド………0.2wt.% 水 分…………………………17.7wt.% 引火点…………………………引火せず 比較例 1 比較例として、上記の原料をバツチ方式によつ
て脱水した所、60mmHgAb.の減圧状態下脱水温度
は80℃までしか上げられなかつた。その理由は樹
脂分が高分子化し粘度が上昇してしまうからであ
る。 また、その場合の製品の性質は下記のとおりで
あつた。 樹脂濃度………………………72wt.% 粘 度…………………………155cp/30℃ 遊離フエノール………………13wt.% 遊離ホルムアルデヒド………1wt.% 水 分…………………………9wt.% 引火点…………………………引火せず すなわち、同じように中間で水を加えても、遊
離分ははるかに高く、その点では従来品と変りが
ない。つまり単に水で薄めたという作用によるも
のでなかつたことが判かる。 比較例 2 比較例1と同様の方法で遊離フエノールを5wt.
%以下にするため20mmHgAb.の減圧状態で95℃ま
で昇温し脱水を行つた。この時の樹脂濃度は
87wt.%で粘度75000cp/30℃であつた。これに
メタノールを加えて調整することで下記の性質の
製品組成が得られた。 樹脂濃度………………………70wt.% 粘 度…………………………120cp/30℃ 遊離フエノール………………5.0wt.% 遊離ホルムアルデヒド………0.2wt.% 水 分…………………………4.2wt.% 引火点…………………………37℃ すなわち、バツチ方式で遊離フエノールを
5.0wt.%以下とすると樹脂粘度を低くするためメ
タノールを多量に使用しなければならず、このた
め引火点が低くなつてしまう。 本発明の樹脂組成物を製造するにあたり、脱水
工程においては、たとえばパイロツト・プラント
では管の内径D=12mm、長さL=22mのもので、
L/Dは1833であつた。本操業のプラントでは内
径D=35.7mm、長さL=39.6m、L/Dは1109で
あつた。このようにL/Dを少なくとも1000と
し、好適には1500、最大値として、2500程度にす
ると、脱水工程に一種のフラツシング現象が導入
され、温度をある程度上げても過度縮重合が阻止
せられるからであると信じられている。 実施例 2 フエノール550Kg、38%ホルマリン568Kg、
NaOH1.65Kg、水6.6Kg、Ca(OH)23.85Kg、水
15.4Kgの割合で原料を調整して縮重合反応を行わ
せた。加熱および冷却の温度条件は実施例1の場
合と変わりがなかつた。 反応後、パラトルエンスルホン酸22.7Kgを水
34.1Kgに溶解したものを撹拌下に添加して中和し
た。PHは4.5であつた。又この場合の樹脂濃度は
49wt.%であつた。 上記の原液に対し、水を325Kg添加して樹脂濃
度を38.6wt.%とした。樹脂分は1527Kgであつ
た。 次に脱水操作を行うため、原液流量を100Kg/h
に操作した。管内温度は110〜120℃、スチーム圧
力は2〜3Kg/cm、蒸発缶は100〜120mmHgAb.の
減圧状態であつた。操作は連続的に行われた。こ
の場合の樹脂排出温度は35〜40℃、樹脂量(出来
高)は680Kgであつた。 この場合の組成は、 樹脂濃度………………………81wt.% 遊離フエノール………………6.7wt.% 遊離ホルムアルデヒド………0.2wt.% 残留水分………………………7.0wt.% 粘 度…………………………650cp/30℃ であつた。これを所要のものに製品化するため
に、水422Kgを加えて、樹脂濃度を50wt.%のもの
にした。この物の組成は 樹脂濃度………………………50wt.% 遊離フエノール………………4.1wt.% 遊離ホルムアルデヒド………0.12wt.% 水 分…………………………42.0wt.% 粘 度…………………………35cp/30℃ であつた。 実施例 3 原料の量比は前実施例2の如く選定し、縮重合
物反応条件、原液の調製の前例と同様に行つた
が、水を1604Kg添加し、樹脂濃度を21wt.%と
し、樹脂量を2806Kgの割合とした。 次に上記の原液につき、前例と同様にして脱水
操作を行つた。その条件は 原液温度………………30℃ 原液流量………………100Kg/h 管内温度………………120〜130℃(スチーム圧は 2.5〜3.5Kg/cm) 蒸発缶圧力(減圧)…100〜120mmHgAb. として連続運点したところ、 樹脂排出温度…………………………30〜35℃ 樹脂量(出来高)……………………651Kg の排出物が得られた。 このようにして得られた排出樹脂組成物の特性
は、 樹脂濃度………………………82wt.% 遊離フエノール………………3.6wt.% 遊離ホルムアルデヒド………0.19wt.% 残留水分………………………7.5wt.% 粘 度…………………………860cp/30℃ のものであつた。これを所要のものに製品化する
ために、このようにして出来た組成物に対して、
水16Kgを加えて樹脂濃度80wt.%のものにした。
この製品の組成は、 樹脂濃度………………………80wt.% 遊離フエノール………………3.5wt.% 遊離ホルムアルデヒド………0.18wt.% 水 分…………………………9.7wt.% 粘 度…………………………700cp/30℃ であつた。 実施例1〜3並びに比較例1及び2の結果を一
覧表で示せば第1表の通りである。 第1表より明らかなごとく、本発明に係るフエ
ノール樹脂組成物は、遊離フエノール(5wt.%以
下)および遊離ホルムアルデヒド(0.5wt.%以
下)の含有量が従来のフエノール樹脂より少いた
め、特定化学物質等障害予防規則や、毒物及び劇
物取締法などの法的制約から除外され、また引火
点が70℃以上であるため、消防法にもとづく危険
物取扱いにおいて、少なくとも第4類第三石油類
の重油、グリセリン等と同一に取扱われ、指定数
量(又は保管数量)を大きくしえるなど法的規制
は緩和され、ないしは全く除外(引火点のない場
合)されるという従来のフエノール樹脂では得ら
れない最大の特徴を有するものである。
The present invention relates to a method for producing a liquid phenolic resin composition for organic self-hardening molds, and more specifically, it is a resol-type organic resin composition with a low content of free phenol and free formaldehyde, a low viscosity, and a high flash point. The present invention relates to a method for producing a liquid phenolic resin composition for hard molds (hereinafter simply referred to as phenolic resin). This type of phenolic resin is produced by heating and polymerizing phenol and formaldehyde in the presence of an alkaline catalyst, and then dehydrating the condensate to remove water, unreacted phenol, unreacted formaldehyde, and other volatile components. can get. When used for casting, it goes without saying that the foundry sand must have sufficient strength as a mold by adding a phenolic resin and an acid curing agent, but it must also be used for sand mixing work, mold making work, etc. In view of pouring work, it is required to have a low content of free phenol and free formaldehyde, a low viscosity, and a high flash point. The reason for this is that when the content of free phenol and free formaldehyde is high, a severe odor or irritating odor is emitted during sand mixing, mold making, and pouring, which can cause skin irritation such as rashes on the worker's body. This is because it significantly worsens the working environment, and if the content of free phenol is high,
This is because, especially when molding a large casting mold, internal hardening of the thick portion is insufficient. Furthermore, the viscosity of this type of phenol release is 90
~135cp/30℃, but in conventional manufacturing methods, lowering the content of free phenol and free formaldehyde increases the viscosity of the resin, so methanol or a similar organic solvent must be mixed in to lower the viscosity value. In this case, of course, the point of attraction is lowered to, for example, about 35 to 58°C, and the flammability increases, creating the inconvenience that special storage equipment is required. By the way, the phenol content of conventionally known phenolic resins of this type is about 11.4wt.% by company S in West Germany, and 11.7wt.% by company D in the United States.
%, which is quite high. Also, the free formaldehyde is from Company S in West Germany.
It is 0.69wt.%, and that of Company D in the United States is about 0.78wt.%, which is also usually an extremely high percentage. In any case, nothing less than these values has been obtained. The cause lies in the conventional method of producing this type of phenolic resin itself. In other words, the conventional method for producing phenolic resin is to charge phenol, formaldehyde, and an alkaline catalyst into a 50 to 10,000 liter reactor equipped with a stirring device, reflux device, vacuum dehydration device, and heating/cooling device, and then stir the mixture under heat. This is a method in which water and unreacted components are removed by condensation polymerization while heating and dehydration under reduced pressure (hereinafter referred to as batch dehydration method). In this method, it takes a long time to remove the water and unreacted components in the can, so the phenolic resin undergoes thermal history and becomes a polymer, making it difficult to produce the low-viscosity phenolic resin of the present invention. I don't get it. For this reason, in order to lower the viscosity of conventional phenolic resins, the dehydration temperature was suppressed, making it impossible to remove unreacted components. In view of the conventional manufacturing method of this type of phenolic resin as described above, the present inventors conducted various studies to reduce the content of free phenol and free formaldehyde. When dehydrating the condensation product obtained by the above reaction, contrary to the purpose of dehydration, after artificially adding an appropriate amount of water to the condensation product, the dehydration temperature is much higher than that obtained by conventional production methods. The water is continuously fed into a long dehydration treatment tube heated to a high temperature, and the water vapor is flushed into a connected evaporator under reduced pressure while preventing the condensation product from burning onto the inner wall surface of the tube. By performing continuous dehydration treatment while removing unreacted phenol, unreacted formaldehyde, and other volatile components from the evaporator as much as possible, a phenolic resin that solves the problems of conventional phenolic resins can be obtained. This discovery led to the present invention. That is, the gist of the present invention based on such a new concept is as stated in the claims in the header, and the purpose of the present invention is to
Provides a method for producing a phenolic resin that has good internal curing ability, significantly improves the working environment, has a low viscosity, substantially does not require organic solvents, and therefore has low risk of ignition when storing the liquid resin. It's about doing. The method for producing a phenolic resin of the present invention will be explained in more detail below. Condensation polymerization of phenol and formaldehyde is carried out in the presence of an alkaline catalyst by a conventional batch method to obtain a polycondensation product having a resin concentration of 30 to 75 wt.%. Then, before entering the dehydration step, water is added to the condensation product in advance so that the resin concentration is 5 to 45 wt.%. Next, the condensation product to which water has been added is continuously fed into a long dehydration treatment tube to which an evaporator is connected at the end of the tube to perform continuous dehydration treatment. This long tubular dehydration treatment tube is set so that the ratio of the length L of the tube to the inner diameter D of the tube, that is, L/D, is about 1000 to 2500, preferably about 1500, and the temperature inside the tube is 100. Heated to ~130℃. Furthermore, the evaporator is maintained at a reduced pressure of 50 to 200 mmHgAb. The water vapor generated by heating the water-added condensation product that is continuously fed into a long dehydration treatment tube heated to 110 to 150℃ removes unreacted phenol, unreacted formaldehyde, and other substances in the phenolic resin condensation product. Since the volatile components of the condensate are washed away and the fluid flows through the tube in a highly turbulent state, burning of condensation products on the inner wall surface of the tube is also prevented. The water vapor and liquid phenolic resin that have passed through the dehydration treatment tube are flushed into an evaporator maintained at a reduced pressure of 50 to 200 mmHgAb. Here, the liquid phenolic resin is separated from water vapor, unreacted phenol, unreacted formaldehyde, and other volatile components. In this way, the phenolic resin condensate passes through the dehydration treatment tube, which is heated to a higher temperature than the dehydration temperature of the conventional batch method, but because it passes through the tube together with high-temperature water vapor in a short period of time, it is not subject to thermal history. Therefore, polymerization can be suppressed. In other words, it is dehydrated without thickening and is obtained as a low-viscosity product. After dehydration, the phenolic resin is taken out from the evaporator, water is added to the resin to give a moisture content of 9 to 42 wt.%, and after uniform mixing, it is used as the desired organic self-hardening phenolic resin for molds. The content of phenol formaldehyde resin in the phenol resin obtained by the present invention is 50 to 50%.
The reason for limiting the value to 80 wt.% is that if it is less than 50 wt.%, the residual moisture in the mold will increase, making drying necessary, and the hardening speed inside the mold will also be slow. On the other hand, if it is more than 80wt.%, the wettability to sand will be poor and the mold performance will not be good.
Furthermore, since the viscosity of the resin increases, the fluidity of the coated sand mixed with the sand deteriorates, resulting in defects. Also, the reason why the free phenol content was limited to 5wt.% or less is that when the content is higher than 5wt.%,
It is subject to extremely severe restrictions in terms of occupational safety and health due to the Regulations for Prevention of Hazards Due to Specified Chemical Substances and the Poisonous and Deleterious Substances Control Law. In addition, phenol gas is generated during kneading, molding, and pouring, which is likely to have an adverse effect on the human body, such as rashes. Furthermore, the reason why free formaldehyde is limited to 0.5 wt.% or less is that, like free phenol, formaldehyde gas is generated during sand mixing and molding, which significantly deteriorates the working environment. That is, the irritating odor is so pronounced that it has a very negative effect on the health and hygiene of workers. Further, as described above, the resin content and the amount of free monomer are adjusted within a predetermined range, the resin viscosity is adjusted to a range that is easy to use, and an appropriate amount of water is added to eliminate the flammability of the resin. Water content is 42wt.
If it is more than 9wt.%, the resin content and water will separate easily, and if it is less than 9wt.%, the viscosity will be high, making it difficult to use, and the flash point will be low. In addition, the resin concentration as used in the present invention refers to the residual content expressed in wt.% after placing the resin in an aluminum foil container, heating it on a hot plate at 180±1°C for 1 hour, and then allowing it to cool to room temperature. Phenol was measured by HLC, free formaldehyde was measured by the hydrochloric acid hydroxyamine method, water was measured by the Karl Fischer method, viscosity was measured by a B-type viscometer, and flash point was measured by a tag method. Example 1 550Kg of phenol, 568Kg of 38% formalin, 1.65Kg of NaOH as a catalyst, 6.6Kg of water, 6.6Kg of water as a catalyst
Batch operation was carried out using a mixture of 3.85 kg of Ca(OH) 2 and 15.4 kg of water. In the reaction vessel, within 1 hour from the initial temperature of 30℃
The temperature was raised to 70°C, maintained at that temperature for 6.5 hours, and then cooled again to 30°C within 1 hour. After cooling, 22.7 kg of paratoluenesulfonic acid and 34.1 kg of water were added to the above raw materials as neutralizing agents. This condensation product had a resin concentration of 49 wt.% and a pH of 4.5. 145 kg of water was added to this to create a stock solution with a resin concentration of 43.7 wt.%. A dewatering step was then carried out in continuous operation. The liquid flow rate at the pipe inlet is 100Kg/h, and the temperature inside the pipe is 120Kg/h.
Processed at ~130°C. Heating steam pressure is 2.5
~3.4Kg/ cm2 . Also, the evaporator is 100-120mm
The patient was under reduced pressure due to HgAb. The processing time was 13.5 hours. 700 kg of distillate thus obtained
The resin concentration was 80wt.%. Also, the viscosity is
It was 550cp/30℃. By adding some water to this,
A product composition was obtained having the following properties. Resin concentration……………72wt.% Viscosity…75cp/30℃ Free phenol…5wt.% Free formaldehyde…0.2wt.% Moisture: 17.7wt.% Flash point: No ignition Comparative example 1 As a comparative example, the above raw materials were dehydrated using a batch method. The dehydration temperature of 60mmHg Ab. under reduced pressure could only be raised to 80℃. The reason for this is that the resin component becomes polymeric and the viscosity increases. In addition, the properties of the product in that case were as follows. Resin concentration......72wt.% Viscosity...155cp/30℃ Free phenol...13wt.% Free formaldehyde...1wt.% Water Minutes…………………………9wt.% Flash point…………………………Not flammable In other words, even if water is added in the same way, the free content is much higher and the There is no difference from the conventional product in this respect. In other words, it is clear that this was not simply due to the effect of diluting it with water. Comparative Example 2 Free phenol was added to 5 wt. in the same manner as Comparative Example 1.
% or less, dehydration was performed by raising the temperature to 95°C under a reduced pressure of 20 mmHgAb. The resin concentration at this time is
It had a viscosity of 75,000 cp/30°C at 87 wt.%. By adding methanol to this, a product composition with the following properties was obtained. Resin concentration……………70wt.% Viscosity…120cp/30℃ Free phenol…5.0wt.% Free formaldehyde…0.2wt. % Moisture……………………4.2wt.% Flash point……………………37℃ In other words, free phenol is added in batches.
If it is less than 5.0wt.%, a large amount of methanol must be used to lower the resin viscosity, which lowers the flash point. In producing the resin composition of the present invention, in the dehydration step, for example, in a pilot plant, the inner diameter of the pipe is D = 12 mm, the length L = 22 m,
L/D was 1833. In the plant under actual operation, the inner diameter D = 35.7 mm, the length L = 39.6 m, and L/D was 1109. In this way, when L/D is at least 1000, preferably 1500, and the maximum value is about 2500, a kind of flushing phenomenon is introduced in the dehydration process, and excessive condensation polymerization can be prevented even if the temperature is raised to a certain extent. It is believed that Example 2 Phenol 550Kg, 38% formalin 568Kg,
NaOH 1.65Kg, water 6.6Kg, Ca(OH) 2 3.85Kg, water
The raw materials were adjusted at a ratio of 15.4 kg to carry out the condensation polymerization reaction. The temperature conditions for heating and cooling were the same as in Example 1. After the reaction, add 22.7 kg of paratoluenesulfonic acid to water.
A solution of 34.1 kg was added under stirring to neutralize. The pH was 4.5. Also, the resin concentration in this case is
It was 49wt.%. To the above stock solution, 325 kg of water was added to make the resin concentration 38.6 wt.%. The resin content was 1527Kg. Next, to perform the dehydration operation, the flow rate of the stock solution was increased to 100Kg/h.
operated on. The temperature inside the tube was 110-120°C, the steam pressure was 2-3 Kg/cm, and the evaporator was under reduced pressure of 100-120 mmHgAb. The operation was carried out continuously. In this case, the resin discharge temperature was 35 to 40°C, and the amount of resin (yield) was 680 kg. The composition in this case is: Resin concentration......81wt.% Free phenol...6.7wt.% Free formaldehyde...0.2wt.% Residual moisture...... ……7.0wt.% Viscosity…………………………650cp/30℃. In order to commercialize this into the required product, 422 kg of water was added to make the resin concentration 50 wt.%. The composition of this product is: Resin concentration: 50wt.% Free phenol: 4.1wt.% Free formaldehyde: 0.12wt.% Water content: 50wt.% ……42.0wt.% Viscosity…………………………35cp/30℃. Example 3 The raw material ratios were selected as in Example 2, and the condensation product reaction conditions and stock solution preparation were the same as in the previous example, but 1604 kg of water was added, the resin concentration was 21 wt.%, and the resin The amount was set as a proportion of 2806Kg. Next, the above stock solution was dehydrated in the same manner as in the previous example. The conditions are: Stock solution temperature: 30℃ Stock solution flow rate: 100Kg/h Tube temperature: 120-130℃ (steam pressure: 2.5-3.5Kg/cm) Evaporator pressure (Reduced pressure)...Continuous operation at 100-120mmHgAb. Resin discharge temperature......30-35℃ Resin amount (output)......651Kg of discharged material Obtained. The characteristics of the discharged resin composition thus obtained are as follows: Resin concentration: 82wt.% Free phenol: 3.6wt.% Free formaldehyde: 0.19wt.% Residual moisture was 7.5wt.% and viscosity was 860cp/30°C. In order to commercialize this into the required product, for the composition made in this way,
16 kg of water was added to make the resin concentration 80 wt.%.
The composition of this product is: Resin concentration......80wt.% Free phenol...3.5wt.% Free formaldehyde...0.18wt.% Water content... ………9.7wt.% Viscosity…………………………700cp/30℃. Table 1 shows the results of Examples 1 to 3 and Comparative Examples 1 and 2. As is clear from Table 1, the phenolic resin composition according to the present invention has a lower content of free phenol (5 wt.% or less) and free formaldehyde (0.5 wt.% or less) than conventional phenolic resins. It is excluded from legal restrictions such as the Ordinance on Prevention of Hazards from Substances, etc. and the Poisonous and Deleterious Substances Control Law, and because its flash point is 70°C or higher, it must be classified as at least Class 4, Class 3 Petroleum, etc. when handling hazardous materials based on the Fire Service Act. It is treated in the same way as heavy oil, glycerin, etc., and legal regulations have been relaxed, such as increasing the specified quantity (or storage quantity), or completely excluding it (if it does not have a flash point), which cannot be obtained with conventional phenolic resins. It has the greatest feature that no one has.

【表】 次に本発明の実施例1及び比較例1で得られた
フエノール樹脂の混練・造型時の発生ガスを以下
に示す。
[Table] Next, gases generated during kneading and molding of the phenolic resins obtained in Example 1 and Comparative Example 1 of the present invention are shown below.

【表】 知管で、ホルムアルデヒドは北川検知管を用
いて作業者の顔の位置で行なつた。)
条件: ハイスピードミキサー(連続ミキサー)使用 本 品…0.8wt.%(砂に対して) 硬化剤…50wt.%(フエノール樹脂に対して) 混練・造型時に、ホルムアルデヒドがごく微量
検出されることがあるが一般には、許容濃度以下
であつて何ら差支えがなかつた。その他のガスは
検知管では測定できないほど低濃度であつた。 つぎに本発明の実施例1及び比較例1で得られ
たフエノール樹脂を有機自硬性用の砂に被覆し鋳
型として使用した場合の鋳型強度(引つかき強度
及び放置強度)を示す。 条件: ハイスピードミキサー使用 砂…………フリマントル新砂 樹 脂……0.8%(砂に対して) 硬化剤……50%(フエノール樹脂に対して)
[Table] Formaldehyde was measured using a Kitagawa detection tube at the location of the worker's face. )
Conditions: High-speed mixer (continuous mixer) used Product...0.8wt.% (based on sand) Hardening agent...50wt.% (based on phenolic resin) Very small amounts of formaldehyde may be detected during kneading and molding. However, in general, there was no problem as long as the concentration was below the permissible level. The concentrations of other gases were too low to be measured with a detector tube. Next, the mold strength (stretch strength and standing strength) when organic self-hardening sand is coated with the phenolic resin obtained in Example 1 and Comparative Example 1 of the present invention and used as a mold will be shown. Conditions: Using a high-speed mixer Sand: Frimantle new sand Resin: 0.8% (based on sand) Hardener: 50% (based on phenolic resin)

【表】 引つかき強度は、造型1時間後抜型しジヨージ
フイツシヤー社の引つかき強度計で測定した。 引つかき強度とは回転力によりめりこんだ歯の
深さで測定するもので、値が小さい程鋳型強度は
高い。この結果より遊離フエノールが少ない樹脂
が内部の強度が強く、したがつて遊離フエノール
が少ない樹脂が造型性が良くなることがわかる。
[Table] The stick strength was measured using a stick strength meter manufactured by Jiyoji Fisher Co., Ltd. after one hour of molding, the mold was removed. Snagging strength is measured by the depth of the teeth sunk in by rotational force, and the smaller the value, the higher the mold strength. This result shows that resins with less free phenol have stronger internal strength, and therefore resins with less free phenol have better moldability.

【表】 テストピースは50φ×50hのものを使用した。 以上により、鋳型強度も従来と同等以上である
ことがわかる。 以上説明のごとく、本発明で得られたフエノー
ル樹脂を使用した鋳型の性能は通例あるいはそれ
以上であることがわかる。
[Table] The test piece used was 50φ x 50h. From the above, it can be seen that the mold strength is also equal to or higher than that of the conventional mold. As explained above, it can be seen that the performance of the mold using the phenolic resin obtained by the present invention is normal or better.

Claims (1)

【特許請求の範囲】 1 フエノールとホルムアルデヒドをアルカリ性
触媒の存在下に縮重合を行なわせ、脱水工程にお
いて得られた縮重合物に予じめ適量の水を加えた
ものを、加熱された長管状の脱水処理管に連続し
て送入し、生成した水蒸気により該縮重合物の管
内壁面への焼着を防止しつつ、蒸発缶内でフラツ
シング作用によつて、水、未反応フエノール、未
反応ホルムアルデヒド及びその他の揮発分を可及
的に係外に除去しながら連続脱水処理を行うこと
を特徴とした フエノールホルムアルデヒド樹脂
50〜80wt.% 遊離フエノール 5wt.%以下 遊離ホルムアルデヒド 0.5wt.%以下 水 分 9〜42wt.% の組成を有し、有機溶剤を実質上含まず、かつ引
火点が70℃以上である有機自硬性鋳型用液状フエ
ノール樹脂組成物の製造方法。
[Scope of Claims] 1. Polycondensation of phenol and formaldehyde in the presence of an alkaline catalyst is carried out, and an appropriate amount of water is added in advance to the polycondensation product obtained in the dehydration step, and the resulting product is heated in the form of a long tube. The water, unreacted phenol, and unreacted water are continuously fed into the dehydration treatment tube, and while the generated water vapor prevents the condensation product from being burned onto the inner wall of the tube, water, unreacted phenol, and unreacted water are removed by flushing action in the evaporator. A phenol formaldehyde resin characterized by continuous dehydration treatment while removing formaldehyde and other volatile components as much as possible.
50 to 80 wt.% Free phenol 5 wt.% or less Free formaldehyde 0.5 wt.% or less Water An organic compound with a composition of 9 to 42 wt.%, substantially free of organic solvents, and with a flash point of 70°C or higher. A method for producing a liquid phenolic resin composition for hard molds.
JP4002179A 1979-04-03 1979-04-03 Organic self-curable liquid phenolic resin composition for mold Granted JPS55133443A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4002179A JPS55133443A (en) 1979-04-03 1979-04-03 Organic self-curable liquid phenolic resin composition for mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4002179A JPS55133443A (en) 1979-04-03 1979-04-03 Organic self-curable liquid phenolic resin composition for mold

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP20004082A Division JPS58125334A (en) 1982-11-15 1982-11-15 Organic self-curing liquid phenolic resin composition

Publications (2)

Publication Number Publication Date
JPS55133443A JPS55133443A (en) 1980-10-17
JPS6123806B2 true JPS6123806B2 (en) 1986-06-07

Family

ID=12569243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4002179A Granted JPS55133443A (en) 1979-04-03 1979-04-03 Organic self-curable liquid phenolic resin composition for mold

Country Status (1)

Country Link
JP (1) JPS55133443A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5156895A (en) * 1974-11-13 1976-05-18 Lignyte Co Ltd KOSHINKUKANSOHONYORUFUENOORUJUSHISOSEIBUTSUNO SEIZOHOHO

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5156895A (en) * 1974-11-13 1976-05-18 Lignyte Co Ltd KOSHINKUKANSOHONYORUFUENOORUJUSHISOSEIBUTSUNO SEIZOHOHO

Also Published As

Publication number Publication date
JPS55133443A (en) 1980-10-17

Similar Documents

Publication Publication Date Title
US4521543A (en) Non-flammable rigid foam and its use as a building material
DE2413925C2 (en) Molding compound for foundry molds and cores
JPS6123806B2 (en)
JPH0593128A (en) Alkaline resole phenol-aldehyde resin binder composition
DE2509151A1 (en) BONDED GLASS FIBER PRODUCTS, PROCESS FOR PRODUCING THE SAME AND SUITABLE BINDERS
DE2010532A1 (en) Process for the production of Fui> furyl alcohol-formaldehyde prepolymers and their use as foundry mold material ^ binders
JPH0270717A (en) Novolac phenol resin for shell mold
JPS5827227B2 (en) refractory
US3043804A (en) Curing promoter for furane resins
JPS5817211B2 (en) Method for producing liquid phenolic resin composition for organic self-hardening molds
JPS58125334A (en) Organic self-curing liquid phenolic resin composition
JPS5881539A (en) Resin coated sand and its production
JPS581129B2 (en) Manufacturing device for liquid phenolic resin composition for organic self-hardening molds
JP2002102999A (en) Resin coated sand for shell mold
US2414416A (en) Method of setting phenol-aldehyde resins and products derived therefrom
JPH0578553A (en) Alkaline, resol phenol-aldehyde resin binder composition
US2592588A (en) Cashew oil condensation and polymerization in the shell
US2460256A (en) Reaction products of an aldehyde
JPS58196137A (en) Resin coated sand for shell mold method
JPS5924715A (en) Normally solid phenolic resin
SU1090482A1 (en) Moulding sand for producing shell moulds and cores in heated tooling
CN109778552B (en) Organic furfuryl alcohol modified amino resin-inorganic sol composite coating for casting filter screen, preparation method and application
JP2603396B2 (en) Self-hardening binder for mold and method for producing mold
CN107987237A (en) A kind of preparation method of phenolic resin for refractory material
US2170950A (en) Resins from phenolic compositions and esters of anacardic acid