JPS61237918A - Quick raised temp.-saturated temp. type ceramic glow plug - Google Patents

Quick raised temp.-saturated temp. type ceramic glow plug

Info

Publication number
JPS61237918A
JPS61237918A JP7991285A JP7991285A JPS61237918A JP S61237918 A JPS61237918 A JP S61237918A JP 7991285 A JP7991285 A JP 7991285A JP 7991285 A JP7991285 A JP 7991285A JP S61237918 A JPS61237918 A JP S61237918A
Authority
JP
Japan
Prior art keywords
ceramic
temperature
heating
cross
glow plug
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7991285A
Other languages
Japanese (ja)
Inventor
Keiichi Kato
圭一 加藤
Noriyoshi Nakanishi
中西 徳好
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP7991285A priority Critical patent/JPS61237918A/en
Publication of JPS61237918A publication Critical patent/JPS61237918A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve starting performance of engines and durability with control ling the generation of cracks by installing heating resistance elements in such a manner that U-shape heating resistance elements having two pieces are buried longitudinally in a rod-like ceramic body and heating resistance elements are so arranged as in a primary, secondary, third, and fourth quadrants when X, Y axes co-ordinates are set up through a center of the rode as the origin. CONSTITUTION:When X, Y axes co-ordinates are set up through a center of a cross section of heating resistance elements having circular or oval shape as the origin, each heating resistance element 302 is buried in the cross section area of a heating body 301 corresponding to a primary, secondary, third, and fourth quadrants thereof respectively. In relation between glow plug peak temp. and generation rate of cracks in case of circular cross section, cracks start to occur as temp. exceeds 1,100 deg.C in a comparison example 1, almost occur at 1,300 deg.C, and almost all occur at 1,500 deg.C in a comparison example 3, however, cracks start to occur from about 1,460 deg.C in an embodiment example 1 and almost all occur at about 1,750 deg.C. Thus, remarkable effect is obtained compared as those in the past.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、ディーゼルエンジンの始動着火装置として使
用されるセラミックグロープラグに関するものである。
DETAILED DESCRIPTION OF THE INVENTION "Field of Industrial Application" The present invention relates to a ceramic glow plug used as a starting ignition device for a diesel engine.

「従来の技術」 ディーゼルエンジンの始動着火装置として使用されるグ
ロープラグは、急速な昇温立ち上がりを得るため、通電
初期に大電流を投入し、高温下でのグロープラグのクラ
ンク発生による破損を防止するために着火可能の温度に
到達した後、電流を少な(流れるように制御することに
より、安定な温度を維持することが一般に採用されてい
る。通電初期に急速な昇温立ち上がりを行わせ、例えば
通電開始後、3.5秒で900℃程度に昇温させ、その
後、はぼ一定の温度に維持する。
"Conventional technology" Glow plugs used as starting ignition devices for diesel engines use a large current at the beginning of energization to achieve a rapid rise in temperature, thereby preventing damage due to glow plug cranking under high temperatures. In order to achieve ignition, it is generally adopted to maintain a stable temperature by controlling the current to flow at a low level after reaching a temperature that allows ignition. For example, the temperature is raised to about 900° C. in 3.5 seconds after the start of energization, and then the temperature is maintained at a constant temperature.

従来の電流を制御するものとして、第1図に示すものが
ある。すなわち通電初期には電源101からリレー接点
102を介してグロープラグ103に通電されるが、昇
温後は電源101より抵抗104、リレー接点105を
経てグロープラグ103に通電され電流は抵抗104を
通過することにより、電流が城、少して発熱量が減少し
、グロープラグの温度は昇温せずほぼ一定に維持される
。また、第2図に示すものがある。電源101から正の
抵抗温度係数を有するブレーキングコイル106を経て
グロープラグ107に通電される。ブレーキングコイル
106は、温度が上昇すると共に抵抗が上昇するため、
高温になると抵抗が増大し、グロープラグ107への電
流が減少して発熱量が減少する。
A conventional current control device is shown in FIG. That is, at the initial stage of energization, power is applied from the power source 101 to the glow plug 103 via the relay contact 102, but after the temperature rises, the power is applied from the power source 101 to the glow plug 103 via the resistor 104 and the relay contact 105, and the current passes through the resistor 104. By doing so, the current decreases, the amount of heat generated decreases, and the temperature of the glow plug does not rise and remains almost constant. There is also one shown in FIG. Electricity is supplied from a power source 101 to a glow plug 107 via a braking coil 106 having a positive temperature coefficient of resistance. Since the resistance of the braking coil 106 increases as the temperature increases,
When the temperature increases, the resistance increases, the current to the glow plug 107 decreases, and the amount of heat generated decreases.

一方、従来のセラミック焼結体からなるグロープラグは
、第3図および第4図に示すように、セラミック焼結体
125中に発熱抵抗体126が軸線に沿って先端部で屈
曲させて、平行状に配置埋設されているものであり、軸
線に垂直な断面において、発熱抵抗体126が2箇所に
存在することとなり、この2箇所から所要の熱量を供給
することとなって、セラミック焼結体125および発熱
抵抗体126に対する熱負荷が多くなり、耐久性に問題
がある。
On the other hand, in a conventional glow plug made of a ceramic sintered body, as shown in FIGS. 3 and 4, a heating resistor 126 is placed in a ceramic sintered body 125 and is bent at its tip along the axis line so that it is parallel to the body. In the cross section perpendicular to the axis, the heating resistors 126 are located at two locations, and the required amount of heat is supplied from these two locations, thereby increasing the ceramic sintered body. 125 and the heat generating resistor 126 increases, which poses a problem in durability.

また、セラミック焼結体125の表面から発熱抵抗体1
26までの距離にバラツキがあり、したがって、焼結体
断面の温度分布が不均一となる。さらに、発熱抵抗体1
26が一断面中に2本存在する場合、発熱抵抗体126
はその線径が比較的大きく、発熱抵抗体126とセラミ
ック焼結体125とは線膨張係数が異なるため、セラミ
ック焼結体125への熱応力および発熱抵抗体126の
熱応力がかなり大きくなる。
Furthermore, the heating resistor 1 is
There is variation in the distance up to 26, and therefore the temperature distribution in the cross section of the sintered body becomes non-uniform. Furthermore, heating resistor 1
When two 26 exist in one cross section, the heating resistor 126
has a relatively large wire diameter, and the heating resistor 126 and the ceramic sintered body 125 have different linear expansion coefficients, so that the thermal stress on the ceramic sintered body 125 and the thermal stress on the heating resistor 126 becomes considerably large.

本出願人は、上記の問題点を解決すべく、昭和60年2
月20日出願の特願昭60−33489号「セラミック
ヒータ」により、セラミック焼結体に発熱抵抗体を埋設
したヒータにおいて、前記発熱抵抗体をセラミック焼結
体中に複数本設け、これら発熱抵抗体を初期電圧印加時
には並列に、温度飽和時には直列に電源へ接続すべくし
た急速昇温一温度飽和型セラミックヒータを提案した。
In order to solve the above-mentioned problems, the applicant proposed
According to Japanese Patent Application No. 60-33489 "Ceramic Heater" filed on May 20th, in a heater in which a heating resistor is embedded in a ceramic sintered body, a plurality of said heating resistors are provided in the ceramic sintered body, and these heating resistors are We proposed a rapid temperature rise/temperature saturation type ceramic heater that connects the body to the power supply in parallel when the initial voltage is applied and in series when the temperature is saturated.

第5図および第6図にそのグロープラグを示す。The glow plug is shown in FIGS. 5 and 6.

5iJ4あるいはSiCs Alto、 、AINなど
のセラミック焼結体1中にW、No%Pe、 Niある
いはCrなとの2本の発熱抵抗体2および3を埋設し、
陽電極取出し線4・5を介在させて、セラミック焼結体
1の基端側の陽電極取出し金具6に接続し、さらに、リ
ード線7に接続する。発熱抵抗体2および3の他端は電
極取出し線に接続し、発熱抵抗体2はセラミック焼結体
1の中間部の陰電極取出し管10を介して、金属外筒1
1に接続する。一方、発熱抵抗体3はセラミック焼結体
1の基端に取付けた電極取出し管12を介してリード線
13に接続する。
Two heating resistors 2 and 3 made of W, No%Pe, Ni or Cr are buried in a ceramic sintered body 1 such as 5iJ4 or SiCs Alto, AIN, etc.
The positive electrode lead wires 4 and 5 are interposed to connect to the positive electrode lead metal fitting 6 on the proximal end side of the ceramic sintered body 1, and further to the lead wire 7. The other ends of the heating resistors 2 and 3 are connected to the electrode lead wire, and the heating resistor 2 is connected to the metal outer cylinder 1 through the cathode lead pipe 10 in the middle of the ceramic sintered body 1.
Connect to 1. On the other hand, the heating resistor 3 is connected to a lead wire 13 via an electrode extraction tube 12 attached to the base end of the ceramic sintered body 1.

初期電圧印加時は、発熱抵抗体2および3に通電して、
これら発熱抵抗体2および3の合成発熱量により、急速
昇温を行わしめる。
When applying the initial voltage, the heating resistors 2 and 3 are energized,
The combined calorific value of these heating resistors 2 and 3 causes rapid temperature rise.

急速昇温後は発熱体3および2は直列に接続され、合成
抵抗が増加し、通電量が減少し、発熱量も減少して昇温
せず一定の温度に維持される。
After the rapid temperature rise, the heating elements 3 and 2 are connected in series, the combined resistance increases, the amount of current is reduced, and the amount of heat generated is also reduced, so that the temperature does not rise and is maintained at a constant temperature.

しかし、出願人はセラミックグロープラグについて実験
をかさねて行くうちに次のことを知見した。
However, as the applicant conducted repeated experiments on ceramic glow plugs, he discovered the following.

多数の生産ロフト中いくつかは第7図(比較例3)およ
び第8図(比較例4)に示すように、発熱抵抗体・2・
3が偏って位置し所要の特性が得られないであろう。
As shown in FIG. 7 (Comparative Example 3) and FIG. 8 (Comparative Example 4), some of the many production lofts are equipped with heating resistors.
3 will be located unevenly and the desired characteristics will not be obtained.

その理由は以下のような製法上に問題が生じるものと考
えられる。第9図に示すようにセラミック粉体が斜めに
充填されたとき、あるいは第10図に示すように充填す
るセラミック粉体の粒の密度が高い部分Hや低い部分り
が生じ、これが圧縮されたときに生じるであろう。
The reason for this is thought to be that the following problems arise in the manufacturing method. When the ceramic powder is filled obliquely as shown in Figure 9, or as shown in Figure 10, areas H and low density of the ceramic powder grains are formed, which are compressed. will occur from time to time.

また、一般にセラミック焼結体からなるグロープラグは
金属外筒部先端の発熱体が窒化珪素質等の略丸棒状のセ
ラミック焼結体からなり、この焼結体の長手方向内部に
平面U字状に折り曲げたタングステン金属主体の発熱抵
抗体(コイル状発熱線)が埋設されており、この発熱抵
抗体へ通電することにより、前記セラミック焼結体から
なる発熱体を赤熱させて噴霧される燃料に着火させるよ
うにしている。
In general, in glow plugs made of ceramic sintered bodies, the heating element at the tip of the metal outer cylinder is made of silicon nitride or the like and is made of a substantially round bar-shaped ceramic sintered body. A heating resistor (coil-shaped heating wire) made mainly of tungsten metal is buried in the ground, and by supplying electricity to the heating resistor, the heating element made of the ceramic sintered body becomes red hot and the fuel to be sprayed is heated. I'm trying to ignite it.

このようなセラミックグロープラグにおいては、エンジ
ンの始動時期を速く得るために急速な温度立ち上がり特
性が要求され、一方高温時に発熱抵抗体とセラミック発
熱体(焼結体)との熱膨張差により生じるセラミック発
熱体のクラック発生を防止するために着火可能な温度に
達した後、電流を制御して一定温度以上に昇温しないよ
うにすることが必要とされる。
Such ceramic glow plugs are required to have rapid temperature rise characteristics in order to quickly start the engine, and on the other hand, ceramic glow plugs that occur due to the difference in thermal expansion between the heating resistor and the ceramic heating element (sintered body) at high temperatures are required. In order to prevent the generation of cracks in the heating element, it is necessary to control the current so that the temperature does not rise above a certain temperature after the heating element reaches an ignitable temperature.

現在市販のセラミックグロープラグは第11図に示すご
とく金属外筒201先端に金属チューブ202を介して
窒化珪素質等のセラミック発熱体203を固定している
。このセラミック発熱体203は略丸棒状のセラミック
焼結体からなり、この焼結体の長手方向内部に沿って平
面U字状に折り曲げたタングステン金属主体の発熱抵抗
体204(コイル状発熱体)が1本埋設されている。こ
の発熱体204は例えば第11図のごときボディアース
型の場合陽極端子205からリード線206を介して(
+)電圧が印加され、ボディアース(−)側へはリード
線207、金属チューブ202および金属外筒201を
介して短絡される構造となっている。
As shown in FIG. 11, the ceramic glow plug currently on the market has a ceramic heating element 203 made of silicon nitride or the like fixed to the tip of a metal outer cylinder 201 via a metal tube 202. This ceramic heating element 203 is made of a ceramic sintered body in the shape of a substantially round bar, and a heating resistor 204 (coil-shaped heating element) mainly made of tungsten metal is bent into a plane U-shape along the inside of this sintered body in the longitudinal direction. One is buried. For example, in the case of a body ground type as shown in FIG. 11, this heating element 204 is connected to
+) voltage is applied and short-circuited to the body ground (-) side via lead wire 207, metal tube 202, and metal outer cylinder 201.

このようなグロープラグに使用されているセラミック発
熱体203は従来第12図(比較例1)および第13図
(比較例2)に示すごとく加工方法の差異により断面円
形または小判形の2種類が提供されている。何れも棒状
セラミック焼結体203a。
Ceramic heating elements 203 used in such glow plugs are conventionally available in two types, circular or oval in cross section, due to differences in processing methods, as shown in Figure 12 (Comparative Example 1) and Figure 13 (Comparative Example 2). provided. Both are rod-shaped ceramic sintered bodies 203a.

203b内の長手方向に沿ってU字状の発熱抵抗体20
4a、204bがそれぞれ1本埋設されており、これら
を断面で見るとそれぞれ2ケ所に現れている。これら発
熱抵抗体204a、204bにあっては発熱抵抗体から
セラミック発熱体203a、203b表面への距離(2
08a、209a、208b、209 b ”)の平均
が比較的大きく、且つその距離が不均一なため、セラミ
ック発熱体203 a 、  203 bの断面におけ
る熱の分布も不均一となり、発熱体全体として充分な供
給熱量を得ることができない。このことはエンジン始動
時における急速昇温特性に大きな影響を与えている。ま
た、このようなことは同様に発熱抵抗体204a、20
4b内体の発熱量を大きくする必要があり、したがって
該発熱抵抗体204a、204bの線径が比較的大きく
なり且つ抵抗値の小さいものを使用しなければならない
。このことは発熱抵抗体204 a 、  204 b
の1本当りの発熱量が大きくなり、そのため長時間の高
−低温の繰返し使用によりセラミック発熱体203a、
203bと発熱抵抗体204 a 、  204 bと
の熱膨張差のためこのセラミック発熱体内、特に発熱抵
抗体204a、204b近傍にクランクが発生して耐久
性が劣る問題がある。
U-shaped heating resistor 20 along the longitudinal direction inside 203b
One each of 4a and 204b is buried, and when viewed in cross section, each appears at two locations. For these heating resistors 204a and 204b, the distance from the heating resistor to the surface of the ceramic heating elements 203a and 203b (2
08a, 209a, 208b, 209b") is relatively large and the distance between them is uneven, the heat distribution in the cross section of the ceramic heating elements 203a, 203b is also uneven, and the heating element as a whole is insufficient. It is not possible to obtain a sufficient amount of heat to be supplied. This has a great effect on the rapid temperature rise characteristic at the time of engine startup. Also, this also causes the heating resistors 204a, 20
It is necessary to increase the amount of heat generated by the inner body 4b, and therefore, the wire diameter of the heating resistors 204a and 204b must be relatively large and the resistance value must be small. This means that the heating resistors 204a and 204b
The amount of heat generated per one of the ceramic heating elements 203a and
Due to the difference in thermal expansion between the ceramic heating element 203b and the heating resistors 204a and 204b, cranks occur in the ceramic heating element, particularly near the heating resistors 204a and 204b, resulting in poor durability.

この点について第14図に基づきさらに詳述する。This point will be explained in more detail based on FIG. 14.

グロープラグの温度飽和曲線は約3秒で900℃前後に
急速昇温した後、約1350℃程度を高温のピークとす
る一般のグロープラグの温度飽和特性を示す。このよう
な特性はまだ充分であるとはいえない。これに対しより
早い期間に900℃に昇温すべく例えば発熱抵抗体の線
径を太くして抵抗値を低くすると温度飽和曲線Yのごと
くなる。この場合比較的早い期間に900℃までの急速
昇温は達成されるが一方飽和時の高温のピークが135
0℃を超えてしまい、セラミック発熱体内の抵抗体の熱
膨張が厳しくクランクが発生し易くなる。また、これに
対し高温のピークをより低い温度に抑制してクランクの
発生率をより低減させるべく、例えば発熱抵抗体の線径
を細くして抵抗値を高くしてやると温度飽和曲線Zのご
とくなる。この場合比較的高温のピークが低く抑制はで
きるが、一方900℃までに昇温する期間が前記曲線X
よりも遅くなり急速昇温特性が劣化する。
The temperature saturation curve of the glow plug shows the temperature saturation characteristics of a general glow plug, in which the temperature rapidly increases to around 900°C in about 3 seconds, and then reaches a high temperature peak of about 1350°C. Such characteristics are still not sufficient. On the other hand, if the wire diameter of the heating resistor is increased to lower the resistance value in order to raise the temperature to 900° C. in a faster period, the temperature saturation curve Y will be obtained. In this case, a rapid temperature rise up to 900°C is achieved in a relatively short period, but on the other hand, the high temperature peak at saturation is 135°C.
If the temperature exceeds 0°C, the thermal expansion of the resistor inside the ceramic heating element becomes severe and cranking is likely to occur. In addition, in order to suppress the high temperature peak to a lower temperature and further reduce the occurrence rate of cranking, for example, if the wire diameter of the heating resistor is made thinner and the resistance value is increased, the temperature saturation curve becomes as shown in Z. . In this case, the peak of relatively high temperature can be suppressed to a low level, but on the other hand, the period during which the temperature rises to 900°C is
, and the rapid temperature rise characteristics deteriorate.

以上のごとくセラミック発熱体の断面積における発熱抵
抗体からの熱の分布が前記第12図および第13図に示
すごとき発熱抵抗体204a、204b表面までの距離
(208a、  209a、  208b、209 b
 )の平均がが大きくまたこの距離にバラツキがあるも
のでは、この発熱抵抗体204a、204bの線径をい
くら変更してみても上記温度飽和曲線Xよりも優れた急
速昇温特性を得ることや、高温のピ一温度をより抑制す
ることは困難である。また、温度飽和後(アフターグロ
ー)の温度を高く維持することも困難であった。
As described above, the distribution of heat from the heating resistor in the cross-sectional area of the ceramic heating element is determined by the distance to the surface of the heating resistor 204a, 204b (208a, 209a, 208b, 209b) as shown in FIGS. 12 and 13.
) is large and the distance varies, no matter how much the wire diameters of the heating resistors 204a and 204b are changed, it is not possible to obtain rapid temperature rise characteristics superior to the above temperature saturation curve X. However, it is difficult to further suppress the high temperature. It was also difficult to maintain a high temperature after temperature saturation (afterglow).

「発明が解決しようすとる問題点」 本出願人は上記の点に鑑、み、鋭意の研究の結果、セラ
ミック焼結体の長手方向に沿ってU字状の発熱抵抗体を
平行に2本埋設し、この発熱体の略円形または小判形の
断面において前記発熱抵抗体の埋設された位置がある一
定の領域に配置していることが上記特性をより改善され
ることを知見した。
"Problems to be Solved by the Invention" In view of the above points, the applicant has conducted extensive research and found that two U-shaped heating resistors are installed in parallel along the longitudinal direction of the ceramic sintered body. It has been found that the above-mentioned characteristics can be further improved by embedding the heating resistor and arranging the buried position of the heating resistor in a certain area in the substantially circular or oval cross section of the heating element.

したがって、本発明においてはグロープラグの急速昇温
特性をより向上させ且つ温度飽和時の高温ピークをより
抑制させることにより、エンジンの始動性およびクラン
クの発生を抑制して耐久性を向上させることのできるセ
ラミックグロープラグを提供することを目的とする。
Therefore, in the present invention, by further improving the rapid temperature rise characteristics of the glow plug and further suppressing the high temperature peak at temperature saturation, it is possible to improve engine startability and suppress the occurrence of cranking, thereby improving durability. The purpose is to provide ceramic glow plugs that can.

r問題点を解決するための手段」 本発明によればセラミック焼結体内の長手方向に沿って
U字状の発熱抵抗体を平行に2本埋設した棒状のセラミ
ック発熱体を有するグロープラグであって、該セラミッ
ク発熱体の断面においてその中心を原点としてXY軸座
標とした場合、前記発熱抵抗体の埋設された位置が各座
標の第1象限、第2象限、第3象限および第4象限に相
当する発熱体の断面積中における領域に位置しているこ
とを特徴とするセラミックグロープラグが提供される。
According to the present invention, a glow plug has a rod-shaped ceramic heating element in which two U-shaped heating resistors are embedded in parallel in the longitudinal direction of a ceramic sintered body. If the center of the cross section of the ceramic heating element is set as the XY axis coordinate, the position where the heating resistor is buried is in the first quadrant, second quadrant, third quadrant, and fourth quadrant of each coordinate. A ceramic glow plug is provided which is characterized in that it is located in a region in the cross-sectional area of the corresponding heating element.

また、本発明によればセラミック発熱体の平均外径り、
に対し、前記原点を中心とする各象限の領域に位置する
発熱抵抗体の外接円D2が0.5〜0.9の比率の範囲
に位置しているセラミックグロープラグが提供される。
Further, according to the present invention, the average outer diameter of the ceramic heating element is
On the other hand, there is provided a ceramic glow plug in which the circumscribed circle D2 of the heating resistor located in each quadrant region centered on the origin is located within a ratio range of 0.5 to 0.9.

U字状の発熱抵抗体を2本セラミック発熱体内に埋設さ
れている場合、この発熱体(焼結体)を切断した断面に
おいては第15図の円形または第16図の小判形断面に
示すごとくこれら抵抗体は4ケ所に位置する。このよう
な構成にセラミックグロープラグを作成する場合、通常
ホットプレス焼成法による。すなわち、ホットプレス機
の長方形の型内の底部に一定厚み分だけセラミック粉体
を充填し、その上部に1木目のU字状発熱抵抗体を置き
、その上部にまた一定厚み分のセラミック粉体を充填し
、その上部にもう1本のU字状発熱抵抗体を置き、さら
にその上部にセラミック粉体を充充填しこれ等を圧縮し
て生成形体を作製した後、高温高圧下において焼成する
ことにより本発明のセラミックグロープラグが得られる
。しかしながら上記充填されるセラミック粉体の量、厚
みおよびホットプレス時の圧力、焼結後の収縮等のあら
ゆる条件により、ホットプレスの型内に設定した初期状
態どうりの構成を焼成後に得ることは容易でない。
When two U-shaped heating resistors are embedded in a ceramic heating element, the cross section of the heating element (sintered body) will be circular as shown in Figure 15 or oval shaped as shown in Figure 16. These resistors are located at four locations. When creating a ceramic glow plug with such a configuration, a hot press firing method is usually used. That is, the bottom of a rectangular mold of a hot press machine is filled with ceramic powder to a certain thickness, a first-grain U-shaped heating resistor is placed on top of it, and a certain thickness of ceramic powder is placed on top of it. is filled, another U-shaped heating resistor is placed on top of it, and the top is filled with ceramic powder, which is compressed to create a green body, which is then fired under high temperature and high pressure. As a result, the ceramic glow plug of the present invention can be obtained. However, due to various conditions such as the amount and thickness of the ceramic powder to be filled, the pressure during hot pressing, and shrinkage after sintering, it is not possible to obtain the same configuration as the initial state set in the hot press mold after firing. It's not easy.

このように作成されたセラミック発熱体の断面は例えば
第15図および第16図に示すごとき状態のものが得ら
れる。
The cross section of the ceramic heating element thus produced is as shown in FIGS. 15 and 16, for example.

第15図の円形断面あるいは第16図の小判形断面のセ
ラミック発熱体(焼結体301)の断面において、その
中心を原点としてXY軸座標とした場合、発熱抵抗体3
02の埋設された位置が各座標の第1象限、第2象限、
第3象限および第4象限に相当する発熱体301の断面
積中における領域に位置させる。
In the cross section of the ceramic heating element (sintered body 301) having a circular cross section as shown in FIG. 15 or an oval cross section as shown in FIG.
The buried position of 02 is the first quadrant, the second quadrant of each coordinate,
It is located in a region in the cross-sectional area of the heating element 301 corresponding to the third and fourth quadrants.

セラミック発熱体301の平均外径り、(第16図に示
す小判形の断面においてはX軸上の長さが略直径とする
ものである)に対し、原点を中心とする各象限の領域に
位置する発熱抵抗体302の外接円の直径D2が0.5
〜0.9の比率の範囲内に位置させる。
With respect to the average outer diameter of the ceramic heating element 301 (in the oval-shaped cross section shown in FIG. 16, the length on the X axis is approximately the diameter), the area of each quadrant centered on the origin is The diameter D2 of the circumscribed circle of the located heating resistor 302 is 0.5
~0.9 ratio.

第17図に示すように発熱抵抗体302の表面にはタン
グステンシリサイド層303 (513N4焼結体のS
iとタングステンとが焼成時に反応して生成する層)は
最大50μmで、このタングステンシリサイド生成層3
03は導電性を有することからタングステン線相互の距
離は約50μ信は必要である。
As shown in FIG. 17, the surface of the heating resistor 302 is covered with a tungsten silicide layer 303 (S
The layer formed by the reaction between i and tungsten during firing has a maximum thickness of 50 μm, and this tungsten silicide generation layer 3
Since 03 has conductivity, the distance between the tungsten wires must be approximately 50 μm.

上記の比率が0.5以下であると、発熱抵抗体302同
士がまたはタングステンシリサイド層が接触して短絡す
る虞があり、一方0.9以上であると発熱抵抗。
If the above ratio is less than 0.5, there is a risk that the heat generating resistors 302 or the tungsten silicide layers will come into contact with each other and cause a short circuit, while if it is 0.9 or more, the heat generating resistors 302 may come into contact with each other and cause a short circuit.

体302の外側のセラミックの粒子の粒度分布が悪く、
緻密質になりにくいものである。
The particle size distribution of the ceramic particles outside the body 302 is poor;
It is difficult to become dense.

「発明の効果」 第18図および第19図に昇温特性を示す。第18図は
円形断面のものであって、比較例1は3.2秒で900
℃に達し最高温度1300℃程度であり、比較例3の発
熱抵抗体が偏ったものは4.2秒で900℃に達し、昇
温時間が遅くなっていることを示し、本発明では2.2
秒で900℃に達し、昇温時間が速くアフターグロー後
も1000℃程度の温度に維持する。第19図のものは
、小判形断面のものであって、比較例2のものは3.0
秒で900℃に達し、その後1300℃程度まで昇温し
それから急激に温度が降下する。比較例4の4ケの発熱
抵抗体がある。ものは、4.2秒で900℃に達し、昇
温時間が遅くなっており、本発明のものは、2秒で90
0℃に達し、昇温が速く、その後はぼ1000℃の温度
を保持している。
"Effects of the Invention" FIGS. 18 and 19 show temperature increase characteristics. FIG. 18 shows a circular cross section, and Comparative Example 1 has a speed of 900 in 3.2 seconds.
℃, and the maximum temperature was about 1300℃, and the one in Comparative Example 3 with a biased heating resistor reached 900℃ in 4.2 seconds, indicating that the temperature rise time was slow. 2
The temperature reaches 900°C in seconds, and the temperature is maintained at about 1000°C even after afterglow. The one in Figure 19 has an oval cross section, and the one in Comparative Example 2 has a 3.0
It reaches 900°C in seconds, then rises to about 1300°C, and then rapidly drops. There are four heating resistors of Comparative Example 4. The temperature reached 900℃ in 4.2 seconds, and the temperature rise time was slow, and the device of the present invention reached 900℃ in 2 seconds.
The temperature reaches 0°C, the temperature rises quickly, and then the temperature is maintained at approximately 1000°C.

次に第20図および第21図にグロープラグビーク温度
とクランク発生率との関係を示す。第20図は円形断面
のものであって、比較例1のものは1100℃を超える
とクラックが生じ始め、1300℃ではほとんどのもの
にクランクが発生する。また、比較例3のものでは12
80℃程度からクランクが生じ始め、1500℃ではほ
とんどにクランクが生じるが、本発明の実施例1では1
460℃程度からクランクが生じ始め、1750℃程度
でほとんどにクランクが発生する。温度分布が極部に集
中し焼結体断面中において熱膨張差が発生しクランクが
発生し易い。また、第21図では小判形断面の発熱体で
比較例2では1300℃付近からクランクが生じ始め、
1520〜1530℃でほとんどにクランクが発生する
。また、比較例4では1370℃程度からクランクが生
じ始め、1600℃程度でほとんどにクラックが発生す
るのに対し、本発明の実施例2では1570℃程度から
クランクが発生し始め1800℃でほとんどのものにク
ランクが生じ、このように従来のものと比して顕著な効
果が現れている。
Next, FIGS. 20 and 21 show the relationship between the glow pump temperature and the crank occurrence rate. FIG. 20 shows a circular cross section, and the one of Comparative Example 1 starts to crack when the temperature exceeds 1100°C, and most of them start to crack at 1300°C. In addition, in Comparative Example 3, 12
Cracks start to occur at about 80°C, and at 1500°C, cranks almost always occur, but in Example 1 of the present invention, 1
Cranks begin to occur at about 460°C, and most of them occur at about 1750°C. The temperature distribution is concentrated in the extreme parts, and a difference in thermal expansion occurs in the cross section of the sintered body, making it easy for cranks to occur. In addition, in Fig. 21, a heating element with an oval cross section starts to crank at around 1300°C in Comparative Example 2.
Crank occurs in most cases at 1520-1530°C. In addition, in Comparative Example 4, cracks start to occur at about 1370°C and most cracks occur at about 1600°C, whereas in Example 2 of the present invention, cranks start to occur at about 1570°C and most of the cracks occur at about 1800°C. A crank appears in the product, and as you can see, it has a remarkable effect compared to conventional products.

本発明は上述のように、急速昇温特性の向上ができ、ま
た、温度飽和時の高温ピーク温度の抑制もできる。さら
に、温度飽和後(アフターグロー)の温度を高く維持す
ることができる。
As described above, the present invention can improve rapid temperature rise characteristics and can also suppress high temperature peak temperature at temperature saturation. Furthermore, the temperature after temperature saturation (afterglow) can be maintained high.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のグロープラグのシステム図、第2図は従
来の他のグロープラグのシステム図、第3図は従来のグ
ロープラグの縦断面図、第4図は第3図のIV−IV部
拡大断面図、第5図は本出願人が開発したグロープラグ
の縦断面図、第6図は第5図の■−v部拡大断面図、第
7図は円形断面のセラミック発熱体の縦断面図で発熱抵
抗体が偏った状態を示す比較例3を示す縦断面図、第8
図は小判形断面のセラミック発熱体内に発熱抵抗体が偏
った状態を示す比較例4の縦断面図、第9図および第1
0図はセラミックグロープラグの製造法を説明する図、
第11図は従来のセラミックグロープラグの平面断面図
、第12図は円形断面のセラミック発熱体内に2個の発
熱抵抗体が配置された状態を示す比較例1の縦断面図、
第13図は小判形断面のセラミック発熱体内に2個の発
熱抵抗体が配置された状態の比較例2の縦断面図、第1
4図はセラミックグロープラグの昇温状態を説明する図
、第15図は円形断面のセラミック発熱体中に4個の発
熱抵抗体が配置された実施例1の縦断面図、第16図は
小判形断面のセラミック発熱体中に4個の発熱抵抗体が
配置された実施例2の縦断面図、第17図は発熱抵抗線
表面のタングステンシリサイド生成層を示す図、第18
図は比較例1・3本発明との昇温状態を対比する図、第
19図は比較例2・4と本発明との昇温状態を対比する
図、第20図は比較例1・3と本発明とのクラック発生
率を比を比較した図、第21図は比較例2・4と本発明
とのクラックの発生率を比較した図である。
Figure 1 is a system diagram of a conventional glow plug, Figure 2 is a system diagram of another conventional glow plug, Figure 3 is a vertical cross-sectional view of a conventional glow plug, and Figure 4 is IV-IV of Figure 3. 5 is a longitudinal sectional view of a glow plug developed by the applicant, FIG. 6 is an enlarged sectional view of the part ■-v in FIG. 5, and FIG. 7 is a longitudinal sectional view of a ceramic heating element with a circular cross section. 8th longitudinal cross-sectional view showing Comparative Example 3 showing a state in which the heating resistor is biased in the plan view.
The figures are a longitudinal cross-sectional view of Comparative Example 4 showing a state in which the heating resistor is biased in the ceramic heating element with an oval-shaped cross section, Figure 9, and Figure 1.
Figure 0 is a diagram explaining the manufacturing method of ceramic glow plugs.
FIG. 11 is a plan sectional view of a conventional ceramic glow plug, and FIG. 12 is a vertical sectional view of Comparative Example 1 showing a state in which two heating resistors are arranged in a ceramic heating element with a circular cross section.
FIG. 13 is a vertical cross-sectional view of Comparative Example 2 in which two heating resistors are arranged in a ceramic heating element with an oval-shaped cross section;
Figure 4 is a diagram explaining the temperature increase state of the ceramic glow plug, Figure 15 is a vertical cross-sectional view of Example 1 in which four heating resistors are arranged in a ceramic heating element with a circular cross section, and Figure 16 is an oval diagram. FIG. 17 is a vertical cross-sectional view of Example 2 in which four heating resistors are arranged in a ceramic heating element with a shaped cross section, and FIG. 17 is a diagram showing a tungsten silicide generation layer on the surface of the heating resistance wire.
The figure is a diagram comparing the temperature increase state of Comparative Examples 1 and 3 with the present invention, Figure 19 is a diagram comparing the temperature increase state of Comparative Examples 2 and 4 with the present invention, and Figure 20 is a diagram comparing the temperature increase state of Comparative Examples 1 and 3 with the present invention. FIG. 21 is a diagram comparing the ratio of crack occurrence between Comparative Examples 2 and 4 and the present invention.

Claims (2)

【特許請求の範囲】[Claims] (1)棒状セラミック体中その長手方向にU字状の発熱
抵抗体を2本埋設し、該セラミック発熱体の断面におけ
る中心を原点としてXY軸座標とした場合、前記発熱抵
抗体がこの座標における第1象限、第2象限、第3象限
および第4象限に相当する領域に前記抵抗体が配置され
ているセラミック発熱体を有することを特徴とする急速
昇温−温度飽和型セラミックグロープラグ
(1) When two U-shaped heating resistors are embedded in the longitudinal direction of a rod-shaped ceramic body, and the center of the cross section of the ceramic heating element is set as the origin and the XY axis coordinates are set, the heating resistors are located at these coordinates. A rapid temperature rise-temperature saturation type ceramic glow plug characterized by having a ceramic heating element in which the resistor is arranged in areas corresponding to a first quadrant, a second quadrant, a third quadrant, and a fourth quadrant.
(2)棒状セラミック体の長手方向に垂直な断面におい
て、セラミック体の平均外径に対する前記原点を中心と
する発熱抵抗体の外接円の径との比率が0.5〜0.9
の範囲にある特許請求の範囲第1項記載の急速昇温−温
度飽和型セラミックグロープラグ
(2) In a cross section perpendicular to the longitudinal direction of the rod-shaped ceramic body, the ratio of the diameter of the circumscribed circle of the heating resistor centered at the origin to the average outer diameter of the ceramic body is 0.5 to 0.9.
A rapid temperature rise-temperature saturation type ceramic glow plug according to claim 1 falling within the scope of
JP7991285A 1985-04-15 1985-04-15 Quick raised temp.-saturated temp. type ceramic glow plug Pending JPS61237918A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7991285A JPS61237918A (en) 1985-04-15 1985-04-15 Quick raised temp.-saturated temp. type ceramic glow plug

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7991285A JPS61237918A (en) 1985-04-15 1985-04-15 Quick raised temp.-saturated temp. type ceramic glow plug

Publications (1)

Publication Number Publication Date
JPS61237918A true JPS61237918A (en) 1986-10-23

Family

ID=13703497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7991285A Pending JPS61237918A (en) 1985-04-15 1985-04-15 Quick raised temp.-saturated temp. type ceramic glow plug

Country Status (1)

Country Link
JP (1) JPS61237918A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007265893A (en) * 2006-03-29 2007-10-11 Kyocera Corp Ceramic heater

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5511763B2 (en) * 1975-07-21 1980-03-27
JPS5920987A (en) * 1982-07-26 1984-02-02 株式会社東芝 Sheathed heater
JPS5984025A (en) * 1982-11-08 1984-05-15 Ngk Spark Plug Co Ltd Ceramic glow plug

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5511763B2 (en) * 1975-07-21 1980-03-27
JPS5920987A (en) * 1982-07-26 1984-02-02 株式会社東芝 Sheathed heater
JPS5984025A (en) * 1982-11-08 1984-05-15 Ngk Spark Plug Co Ltd Ceramic glow plug

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007265893A (en) * 2006-03-29 2007-10-11 Kyocera Corp Ceramic heater

Similar Documents

Publication Publication Date Title
US5589091A (en) Glow plug with prestressed contact surfaces
US6610964B2 (en) Multi-layer ceramic heater
KR20100122071A (en) Ceramic heater and glow plug
US20110031231A1 (en) Ceramic Heater and Glow Plug Using the Same
US9288845B2 (en) Ceramic heater
US6396028B1 (en) Multi-layer ceramic heater
US4426568A (en) Glow plug for diesel engines
CN101933392A (en) Ceramic heater and glow plug
JPH04143518A (en) Self-regulative type ceramic glow plug
US6204481B1 (en) Glow plug with ceramic heating element having electrode attached thereto
CN102934515A (en) Heater and glow plug provided with same
JPS5475637A (en) Suction heater for internal combustion engine and method of manufacturing suction heater
KR20070089136A (en) Ceramic igniters
JP2792981B2 (en) High temperature heating element and method of manufacturing the same
JPS61237918A (en) Quick raised temp.-saturated temp. type ceramic glow plug
US20080116192A1 (en) Injection molding of ceramic elements
JP3751682B2 (en) Igniter plug
JPH031580B2 (en)
JP2003502613A (en) Electrically heated glow plug or glow rod for internal combustion engines
JP4253444B2 (en) Ceramic glow plug
JP2004061041A (en) Ceramic glow plug
JPH07282960A (en) Ceramic heater
KR0148449B1 (en) Ceramic glow plug with spiral heating tip
JPH037734Y2 (en)
JP2720033B2 (en) Self-control ceramic glow plug