JPS6123748B2 - - Google Patents

Info

Publication number
JPS6123748B2
JPS6123748B2 JP14041878A JP14041878A JPS6123748B2 JP S6123748 B2 JPS6123748 B2 JP S6123748B2 JP 14041878 A JP14041878 A JP 14041878A JP 14041878 A JP14041878 A JP 14041878A JP S6123748 B2 JPS6123748 B2 JP S6123748B2
Authority
JP
Japan
Prior art keywords
detection device
concentration
gas
rotating electrical
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14041878A
Other languages
Japanese (ja)
Other versions
JPS5568843A (en
Inventor
Kyoshi Narato
Keizo Ootsuka
Sadahiko Niwa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP14041878A priority Critical patent/JPS5568843A/en
Publication of JPS5568843A publication Critical patent/JPS5568843A/en
Publication of JPS6123748B2 publication Critical patent/JPS6123748B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Motor Or Generator Cooling System (AREA)

Description

【発明の詳細な説明】 本発明は回転電機の局部過熱診断装置に係り、
特にガス冷却式回転電気において、熱的に劣化す
る有機絶縁材で被覆される部分、例えば固定子鉄
心の局部過熱を診断する装置に関する。
[Detailed Description of the Invention] The present invention relates to a local overheating diagnosis device for a rotating electrical machine,
In particular, the present invention relates to a device for diagnosing local overheating of a portion covered with a thermally deteriorating organic insulating material, such as a stator core, in gas-cooled rotating electrical equipment.

大型のガス冷却式回転電気、例えばタービン発
電機において、固定子鉄心に局部過熱が生じる
と、鉄心が損焼し、大きな事故につながる虞れが
ある。すなわち、固定子鉄心に局部過熱が生じる
と、各成層鉄板の表面にコーテイングされている
有機絶縁材が熱分解して各成層鉄板間の絶縁が破
壊される。この結果、各成層鉄板間が短絡し、機
械に負荷が与えられている場合は大電流が流れ、
抵抗加熱が生じ、この際の発熱量は鉄心を溶解す
るのに充分な熱量となる。この種の事故は現実に
起こる可能性が有り、従つて、これを未然に防止
する必要がある。
BACKGROUND ART If local overheating occurs in a stator core in a large gas-cooled rotating electric generator, such as a turbine generator, there is a risk that the core will burn out and lead to a major accident. That is, when local overheating occurs in the stator core, the organic insulating material coated on the surface of each laminated iron plate is thermally decomposed, and the insulation between the laminated iron plates is destroyed. As a result, a short circuit occurs between each laminated steel plate, and a large current flows when the machine is under load.
Resistance heating occurs, and the amount of heat generated at this time is sufficient to melt the iron core. Accidents of this kind may actually occur, and therefore it is necessary to prevent them from occurring.

現状では、鉄心の各部に熱電対を直接備えつけ
て温度分布を測定することは困難であり、間接的
に知る方式が検討されている。その一つに、発電
機の冷媒ガス(大型発電機の場合、通常還元ガス
である水素ガスが使われる)に、前記有機絶縁材
の熱分解時に超微粒子が発生し、これが拡散され
ることから、この微粒子を検出して局部過熱を知
る方式が提案されている。この様な検出方式は、
米国特許3,427,880号にも見られる。この特許
では、検出器は冷媒ガスの抽出された部分をたえ
ず監視する。この検出器は通常、イオン室粒子検
出器であつて、放射線源を収容するイオン化部、
及びイオンをコレクタ電極に集める電極部から構
成される。前記冷媒ガスの一部を抽出してこのイ
オン室粒子検出器を通過させることにより、冷媒
ガス中の微粒子はイオン化され、次いでコレクタ
電極に集められてイオン電流が流れ、このイオン
電流の変化量から冷媒ガス中の微粒子濃度の変
化、すなわち有機絶縁材の熱分解を知ることがで
きる。
Currently, it is difficult to measure the temperature distribution by directly installing thermocouples in each part of the iron core, and methods of indirectly measuring temperature distribution are being considered. One of the reasons is that ultrafine particles are generated in the generator's refrigerant gas (in the case of large generators, hydrogen gas, which is a reducing gas, is usually used) during the thermal decomposition of the organic insulating material, and these particles are diffused. A method has been proposed to detect local overheating by detecting these particles. This kind of detection method is
Also found in US Pat. No. 3,427,880. In this patent, a detector constantly monitors the extracted portion of refrigerant gas. The detector is typically an ion chamber particle detector comprising an ionization section containing a radiation source;
and an electrode section that collects ions to a collector electrode. By extracting a portion of the refrigerant gas and passing it through this ion chamber particle detector, the particles in the refrigerant gas are ionized, and then collected at the collector electrode, causing an ionic current to flow, and from the amount of change in this ionic current. Changes in the concentration of particulates in the refrigerant gas, that is, the thermal decomposition of organic insulating materials, can be detected.

しかし、この検出方式は次の様な問題がある。
第1に有機絶縁材には若干の水分が含まれ、これ
が蒸発して冷媒ガス中に拡散されること、ならび
に機械シヤフトのシール部分に用いられている油
から与えられる油粒子が同様に冷媒ガス中に拡散
されることから、一部の冷却ガスを前記イオン室
粒子検出器に抽気した場合、これら水粒子ならび
に油粒子をも熱分解生成粒子と同様に分析してし
まう。そのため、局部過熱に基づく熱分解物を判
定するイオン室粒子検出器の所望の動作が悪影響
をこうむる。したがつて、これら熱分解物による
微粒子と類似した信号を生じ、この結果、機械を
早すぎるかまたは不必要な時期に停止することに
なる。また油粒子等が冷却ガスに含まれている
と、イオン室粒子検出器の読み取り値が不正確に
なり、局部過熱を表示する正しい信号が検出しに
くくなる。他方、これらの油粒子等をフイルタ等
を通過させて除去し、微細な粒子のみをイオン室
粒子検出器に導びく方式も考えられるが、上記し
た問題を完全に解決することは困難である。した
がつて、米国特許第3427880号では、いつもこの
問題点が存在するので、正確に局部過熱を判定す
ることができない。
However, this detection method has the following problems.
First, organic insulation materials contain some moisture, which evaporates and diffuses into the refrigerant gas, and oil particles from the oil used in the seals of mechanical shafts also absorb into the refrigerant gas. Therefore, when some of the cooling gas is extracted to the ion chamber particle detector, these water particles and oil particles will be analyzed in the same way as particles produced by thermal decomposition. Therefore, the desired operation of the ion chamber particle detector to determine pyrolysis products based on local overheating is adversely affected. These pyrolysates therefore produce a signal similar to that of particulates, resulting in premature or unnecessary shutdown of the machine. Also, if oil particles or the like are present in the cooling gas, the readings of the ion chamber particle detector will be inaccurate, making it difficult to detect the correct signal indicating local overheating. On the other hand, a method can be considered in which these oil particles are removed by passing through a filter or the like and only the fine particles are guided to the ion chamber particle detector, but it is difficult to completely solve the above-mentioned problems. Therefore, in US Pat. No. 3,427,880, local overheating cannot be accurately determined because this problem always exists.

本発明の目的は、上記した従来技術の問題点を
解消し、局部過熱を正確に診断して事故を未然に
防止することのできる回転電機の局部過熱診断装
置を提供するにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a local overheat diagnosis device for a rotating electrical machine that can solve the problems of the prior art described above, accurately diagnose local overheating, and prevent accidents.

この目的を達成するため、本発明は、有機絶縁
材の熱分解時に水素ガス雰囲気中での生成ガスを
ガスクロマトグラフイを用いて分析した結果、一
酸化炭素(CO)や、メタン系炭化水素、オレフ
イン系炭化水素等の炭化水素(HC)等が生成し
ていることを突きとめ、これらのうち、後者の炭
化水素の量が大半を占めていることに着目し、有
機絶縁材の熱分解を検出するために、冷媒ガス中
の炭化水素濃度を監視するようにしたことを特徴
とする。
To achieve this objective, the present invention analyzes the gas generated in a hydrogen gas atmosphere during thermal decomposition of organic insulating materials using gas chromatography, and as a result, carbon monoxide (CO), methane hydrocarbons, They found that hydrocarbons (HC) such as olefinic hydrocarbons were being generated, and focused on the fact that the latter accounted for the majority of these hydrocarbons. The present invention is characterized in that the hydrocarbon concentration in the refrigerant gas is monitored for detection.

固定子鉄心を構成する各成層鉄板等にコーテイ
ングする有機絶縁材として、フエノールレジン、
カーボンおよびミネラルテレピンを主成分とする
ものが用いられるが、このような被覆物を水素雰
囲気中で加熱し、その生成ガスをガスクロマトグ
ラフイーで分析した結果、一酸化炭素(CO)、二
酸化炭素(CO2)の発生量は極めて少なく、発生
量の大半がCnH2n+2またはCnHnで表わされる炭
化水素であることが判明した。他方、冷媒ガスと
して水素ガスを発電機内に充填する場合、最初に
二酸化炭素(CO2)によつて空気を追い出した
後、水素ガスを封入する。通常運転時の水素純度
は約98%以上で、残りは置換前のCO2が1%程度
残存し、前記した有機絶縁材の熱分解によつて生
成する一酸化炭素(CO)、二酸化炭素(CO2)の
量は冷媒ガス中に拡散されると、ppbのオーダで
検出は不可能である。また、冷媒ガスは運転時は
40〜50℃の温度で、この温度ゾーンで冷媒ガス中
の炭化水素は皆無に等しい。従つて、有機絶縁材
の熱分解時の炭化水素濃度を検出すれば、局部過
熱を知ることができる。なお、この炭化水素濃度
は有機絶縁材の熱分解した部分の大きさによつて
異なるが、絶縁が破壊されない程度の比較的小さ
な部分で熱分解が生じても数十〜数百ppmのオ
ーダーで検知できる。
Phenol resin,
Carbon and the mineral turpentine are used as the main components, but as a result of heating such a coating in a hydrogen atmosphere and analyzing the resulting gas by gas chromatography, it was found that carbon monoxide (CO), carbon dioxide ( It was found that the amount of CO 2 ) generated was extremely small, and most of the amount generated was hydrocarbons represented by CnH 2 n +2 or CnHn. On the other hand, when filling a generator with hydrogen gas as a refrigerant gas, the air is first driven out with carbon dioxide (CO 2 ), and then the hydrogen gas is sealed. The purity of hydrogen during normal operation is approximately 98% or higher, with approximately 1% remaining CO 2 before replacement, carbon monoxide (CO), carbon dioxide ( Once diffused into the refrigerant gas, the amount of CO 2 ) is on the order of ppb and impossible to detect. Also, the refrigerant gas is
At a temperature of 40-50°C, there are almost no hydrocarbons in the refrigerant gas in this temperature zone. Therefore, local overheating can be detected by detecting the hydrocarbon concentration during thermal decomposition of the organic insulating material. Note that this hydrocarbon concentration varies depending on the size of the thermally decomposed part of the organic insulating material, but even if thermal decomposition occurs in a relatively small part that does not destroy the insulation, it will be on the order of tens to hundreds of ppm. Can be detected.

以下、本発明を添付図面に例示された実施例に
ついて詳細に説明する。
Hereinafter, the present invention will be described in detail with reference to embodiments illustrated in the accompanying drawings.

第1図は本発明を水素ガス冷却式発電機に適用
した場合の実施例を示す立面図である。発電機1
に本発明の一実施例に係る局部過熱診断装置を組
合せたもので、発電機1は固定子2、回転子3よ
り構成されることは周知の通りである。固定子2
および回転子3はすべて、冷却ガス(水素)が充
填された気密ケーシング4内に納められている。
回転子3に装着されたフアン5により、気密ケー
シング4内に配置された通路に沿つて冷却ガスを
循環させる。冷却ガスは熱交換器6で冷却され、
フアン5の吸気側に戻る。
FIG. 1 is an elevational view showing an embodiment in which the present invention is applied to a hydrogen gas-cooled power generator. generator 1
It is well known that the generator 1 is composed of a stator 2 and a rotor 3. Stator 2
and rotor 3 are all housed in an airtight casing 4 filled with cooling gas (hydrogen).
A fan 5 mounted on the rotor 3 circulates cooling gas along a passage arranged in the airtight casing 4. The cooling gas is cooled by a heat exchanger 6,
Return to the intake side of fan 5.

冷却ガスの一部を抽出管7を経て発電機1から
取り出す。抽出管7は発電機1の高圧力側に取り
付けられ、分析試料ガスは分析装置を経て低圧力
側に取付けられた戻り管8により発電機1へ戻る
ように構成されている。抽出管7と戻り管8は粒
子状物質を検出する粒子検出器11と炭化水素検
出器12により相互に連結されている。他方、粒
子検出器11と炭化水素検出器12の回路(流
路)にはバイパス管9と10が備えつけられてい
る。一般に分析試料ガスを分析装置に流して分析
を開始する当初においては、分析装置の配管系統
の温度は発電機1の機内の温度(約40℃)に比べ
て低いため、この温度の低い配管系統中を発電機
1内からの暖かい冷却ガスの一部が試料ガスとし
て流通すると、この試料ガスが冷されてその中に
含まれている水分が配管系統の内部に水滴となつ
て付着し、各検出器11,12の動作に悪影響を
及ぼす。このような悪影響を除くため、本実施例
では、分析を開始する前に、各検出器11,12
の前後に設けられた各バルブを閉じ、バイパス管
9,10に設けられた各バルブを開いて、試料ガ
スを抽出管7からバイパス管9,10を経て戻り
管8に流通させる。その後、試料ガスの流通によ
つて分析装置の配管系統が暖められ、その内部に
付着した水滴も試料ガスに同伴されて除去される
ので、その時点でバイパス管9,10に設けられ
た各バルブを閉じ、各検出器11,12の前後に
設けられた各バルブを開く。
A portion of the cooling gas is taken out of the generator 1 via an extraction pipe 7. The extraction pipe 7 is attached to the high pressure side of the generator 1, and the analysis sample gas is configured to pass through the analyzer and return to the generator 1 via the return pipe 8 attached to the low pressure side. The extraction pipe 7 and the return pipe 8 are interconnected by a particle detector 11 for detecting particulate matter and a hydrocarbon detector 12. On the other hand, the circuits (flow paths) of the particle detector 11 and the hydrocarbon detector 12 are equipped with bypass pipes 9 and 10. Generally, at the beginning of flowing analysis sample gas to the analyzer and starting analysis, the temperature of the piping system of the analyzer is lower than the temperature inside the generator 1 (approximately 40°C), so this low-temperature piping system When a part of the warm cooling gas from inside the generator 1 flows as a sample gas, this sample gas is cooled and the moisture contained in it becomes water droplets and adheres to the inside of the piping system, causing each This adversely affects the operation of the detectors 11 and 12. In order to eliminate such adverse effects, in this embodiment, each detector 11, 12 is
The valves provided before and after the sample gas are closed, and the valves provided in the bypass pipes 9 and 10 are opened to allow the sample gas to flow from the extraction pipe 7 to the return pipe 8 via the bypass pipes 9 and 10. Thereafter, the piping system of the analyzer is warmed by the flow of the sample gas, and the water droplets adhering inside it are removed along with the sample gas, so at that point each valve installed in the bypass pipes 9 and 10 is closed, and each valve provided before and after each detector 11, 12 is opened.

従つて前記した抽出管7から抽気した冷却ガス
の一部は、粒子検出器11と炭化水素検出器12
とに分岐して導入され発電機が正常な状態での冷
媒ガス中の粒子状物質濃度及び炭化水素濃度の分
析が開始される。仮に発電機1の固定子鉄心に局
部過熱が生じた場合、有機絶縁材が熱分解して超
微粒子ならびに炭化水素を発生し、これらが水素
ガス中に同伴され、抽出管7から抽気した分析試
料中にも同伴されるため、粒子検出器11と炭化
水素検出器12に異状信号が現われる。この各々
の検出器11,12からの出力信号は記録計13
に送られて記録される。この記録計13は集積装
置14に接続されており、この集積装置14にお
いて記録計13で記録された分析結果が常時監視
されているので、前記したように各検出器11,
12から異常信号が同時に現われると、集積装置
14は警報器15に指示を与え発電機1が異状で
あることを示す警報を発する。この警告と共に発
電機への電源はしや断器16によつてしや断さ
れ、発電機は停止する。この実施例では、各検出
器11,12のいずれか一方のみに異常信号が現
われるだけでは局部過熱が生じたと診断せず、各
検出器11,12の両方から異常信号が同時に現
われるときのみ局部過熱が生じたと診断するの
で、各検出器11,12自体の誤動作や故障によ
る誤つた診断を防ぎ、監視の信頼性を高めること
ができる。
Therefore, a portion of the cooling gas extracted from the extraction pipe 7 is transmitted to the particle detector 11 and the hydrocarbon detector 12.
Analysis of the particulate matter concentration and hydrocarbon concentration in the refrigerant gas is started when the generator is in a normal state. If local overheating occurs in the stator core of the generator 1, the organic insulating material will thermally decompose and generate ultrafine particles and hydrocarbons, which will be entrained in the hydrogen gas and the analysis sample extracted from the extraction tube 7. Since the particles are also entrained inside, an abnormal signal appears on the particle detector 11 and the hydrocarbon detector 12. The output signals from each of these detectors 11 and 12 are sent to a recorder 13.
is sent to and recorded. This recorder 13 is connected to an accumulating device 14, and the analysis results recorded by the recorder 13 are constantly monitored in this accumulating device 14, so that each detector 11,
When abnormal signals appear simultaneously from generator 12, integrated device 14 instructs alarm 15 to issue an alarm indicating that generator 1 is abnormal. Along with this warning, the power supply to the generator is cut off by the disconnector 16, and the generator is stopped. In this embodiment, local overheating is not diagnosed only when an abnormal signal appears in either one of the detectors 11 and 12, but only when abnormal signals appear from both detectors 11 and 12 at the same time. Since it is diagnosed that this has occurred, it is possible to prevent erroneous diagnosis due to malfunction or failure of each detector 11, 12 itself, and improve the reliability of monitoring.

ここで使用される粒子検出器11及び炭化水素
検出器12は連続分析型である。その理由として
は局部過熱が生じた場合、有機絶縁材は熱分解
し、この熱分解は時間が経過すると共に進行し、
最後には絶縁が破壊されることになるため、絶縁
破壊が起こる前に発電機1を停止させる必要があ
る。従つて、常時水素ガス中の粒子状物質濃度と
炭化水素濃度を連続的に分析する必要が有り、異
状信号が出た場合、即座に発電機の電源をトリツ
プできる構成でなければならない。仮に粒子状物
質濃度だけを監視して、ガス分析を粒子状物質濃
度が増加した後併用して異状を判定するために分
析する操作を行なうことは、その間に前記した熱
分解が進行して絶縁破壊においやられる危険性が
有り不適当である。従つて、連続的に分析を行う
ことのできない非連続分析型のガスクロマトグラ
フイをガス分析に併用することは適さない。そこ
で本実施例では、粒子検出器11と並行して炭化
水素検出器12を配置し、炭化水素検出器12は
赤外線吸収波長を利用した分析計又はこれと類似
した連続測定型の分析計を用いている。
The particle detector 11 and hydrocarbon detector 12 used here are of continuous analysis type. The reason for this is that when local overheating occurs, the organic insulating material thermally decomposes, and this thermal decomposition progresses over time.
Since the insulation will eventually break down, it is necessary to stop the generator 1 before the insulation breaks down. Therefore, it is necessary to continuously analyze the particulate matter concentration and hydrocarbon concentration in the hydrogen gas at all times, and the configuration must be such that the generator power can be immediately tripped if an abnormal signal is generated. If we were to monitor only the concentration of particulate matter and perform gas analysis to determine abnormalities after the concentration of particulate matter has increased, it would be a problem if the above-mentioned thermal decomposition progressed during that time and the insulation It is inappropriate as there is a risk of damage due to destruction. Therefore, it is not suitable to use discontinuous analysis type gas chromatography, which cannot perform continuous analysis, in conjunction with gas analysis. Therefore, in this embodiment, a hydrocarbon detector 12 is placed in parallel with the particle detector 11, and the hydrocarbon detector 12 is an analyzer that uses infrared absorption wavelength or a similar continuous measurement type analyzer. ing.

次に、第2図を用いて本実施例で使用する粒子
検出器11について詳細に説明する。米国特許
3,427,880号に記載されているイオン室粒子検
出器とは異なり、冷媒ガス中の粒子状物質をイオ
ン化する粒子荷電部17は同軸円筒型の電極で構
成され、外筒電極は接地され、内部電極は絶縁さ
れて直流電源19から数kVの高電圧が印加され
ることによつてコロナ放電を起こさせる。このコ
ロナ放電場では無数のイオンが生成され、この粒
子荷電部17を冷媒ガスが通過するとガス中の粒
子状物質にイオンが射突してイオン化される。次
に粒子検出部18に送られ、ここで前記イオン化
された粒子状物質はコレクタ電極に集められ、そ
のイオン電流が検出される。粒子検出部18から
のイオン電流は10-12(A)オーダの微小電流
で、これはエレクトロメータ20で増巾され、電
圧信号に変換されて記録計13に記録される構成
になつている。米国特許3,427,880号では放射
線(α線)を用いてイオン化するため、安全性、
取扱い上問題が有り、本実施例の構成の一つであ
る粒子検出器のイオン化方法はこの問題を解決し
た点に特徴がある。
Next, the particle detector 11 used in this example will be explained in detail using FIG. 2. Unlike the ion chamber particle detector described in U.S. Pat. It is grounded, the internal electrodes are insulated, and a high voltage of several kV is applied from a DC power supply 19 to cause corona discharge. Countless ions are generated in this corona discharge field, and when the refrigerant gas passes through this particle charging section 17, the ions collide with particulate matter in the gas and are ionized. Next, the ionized particulate matter is sent to the particle detection section 18, where the ionized particulate matter is collected on a collector electrode, and its ionic current is detected. The ion current from the particle detection section 18 is a minute current on the order of 10 -12 (A), which is amplified by an electrometer 20, converted into a voltage signal, and recorded on a recorder 13. U.S. Patent No. 3,427,880 uses radiation (α rays) to ionize, so safety and
There is a problem in handling, and the ionization method of the particle detector, which is one of the configurations of this embodiment, is characterized by solving this problem.

なお、前記実施例においては、炭化水素検出器
12のみの監視では、検出器自体の誤動作および
故障の可能性があるため、粒子検出器11を併用
して、監視の信頼性を高めているが、炭化水素検
出器12のみでも、局部過熱を十分検出できるこ
とは勿論である。
In the embodiment described above, since monitoring only the hydrocarbon detector 12 may cause malfunction or failure of the detector itself, the particle detector 11 is also used to increase the reliability of monitoring. Of course, local overheating can be sufficiently detected using only the hydrocarbon detector 12.

以上説明したように、本発明によれば、高温に
さらされると熱分解する有機絶縁材で被覆された
部分を備え、かつ還元ガスを冷媒とする回転電機
において、冷媒ガス中の炭化水素濃度を検出する
検出装置を設け、この検出装置で検出された炭化
水素濃度が所定値以上になつたとき、局部過熱が
生じたと診断するので、粒子状物質濃度を検出す
る場合のように、水粒子、油粒子等の影響を受け
ることなく、局部過熱を正確に診断し、事故を未
然に防止することができる。
As explained above, according to the present invention, in a rotating electric machine that includes a portion covered with an organic insulating material that thermally decomposes when exposed to high temperatures and uses reducing gas as a refrigerant, the concentration of hydrocarbons in the refrigerant gas can be reduced. A detection device is provided for detection, and when the hydrocarbon concentration detected by this detection device exceeds a predetermined value, it is diagnosed that local overheating has occurred. It is possible to accurately diagnose local overheating and prevent accidents without being affected by oil particles, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に係る局部過熱診断
装置を備えた水素ガス冷却式発電気の概略構成
図、第2図は第1図に示した粒子検出器の構成を
示すブロツク図である。 1…水素ガス冷却式発電機、7…抽出管、8…
戻り管、9,10…バイパス管、11…粒子検出
器、12…炭化水素検出器。
FIG. 1 is a schematic configuration diagram of a hydrogen gas-cooled power generation system equipped with a local overheating diagnostic device according to an embodiment of the present invention, and FIG. 2 is a block diagram showing the configuration of the particle detector shown in FIG. 1. be. 1...Hydrogen gas cooling type generator, 7...Extraction pipe, 8...
Return pipe, 9, 10... Bypass pipe, 11... Particle detector, 12... Hydrocarbon detector.

Claims (1)

【特許請求の範囲】 1 高温にさらされると熱分解する有機絶縁材で
被覆された部分を備え、かつ還元ガスからなる冷
媒を前記有機絶縁材で被覆された部分と接触させ
て機内に循環させる回転電機において、前記冷媒
ガス中の炭化水素の濃度を検出する検出装置を設
け、この検出装置で検出された炭化水素の濃度が
所定値以上になつたとき、回転電機に局部過熱が
生じたと診断することを特徴とする回転電機の局
部過熱診断装置。 2 特許請求の範囲第1項において、前記検出装
置は連続分折型であることを特徴とする回転電機
の局部過熱診断装置。 3 特許請求の範囲第2項において、前記連続分
折型の検出装置は赤外線吸収波長を利用した分折
計であることを特徴とする回転電機の局部過熱診
断装置。 4 高温にさらされると熱分解する有機絶縁材で
被覆された部分を備え、かつ還元ガスからなる冷
媒を前記有機絶縁材で被覆された部分と接触させ
て機内に循環させる回転電機において、前記冷媒
ガス中の炭化水素の濃度を検出する第1の検出装
置と、前記冷媒ガス中の粒子状物質の濃度を検出
する第2の検出装置とを設け、前記第1の検出装
置で検出された炭化水素の濃度が所定値以上にな
り、かつ前記第2の検出装置で検出された粒子状
物質の濃度が所定値以上になつたとき、回転電機
に局部過熱が生じたと診断することを特徴とする
回転電機の局部過熱診断装置。 5 特許請求の範囲第4項において、前記第1お
よび第2の検出装置は連続分折型であることを特
徴とする回転電機の局部過熱診断装置。 6 特許請求の範囲第5項において、前記第1の
連続分折型の検出装置は赤外線吸収波長を利用し
た分析計であり、前記第2の連続分折型の検出装
置は、コロナ放電により生成されるイオンを前記
粒子状物質に射突してこれをイオン化し、このイ
オン化された粒子状物質のイオン電流を検出する
装置であることを特徴とする回転電機の局部過熱
診断装置。
[Scope of Claims] 1. A refrigerant comprising a part covered with an organic insulating material that thermally decomposes when exposed to high temperatures, and a refrigerant made of a reducing gas is brought into contact with the part covered with the organic insulating material and circulated within the machine. The rotating electrical machine is provided with a detection device that detects the concentration of hydrocarbons in the refrigerant gas, and when the concentration of hydrocarbons detected by the detection device exceeds a predetermined value, it is diagnosed that local overheating has occurred in the rotating electrical machine. A local overheating diagnostic device for a rotating electrical machine, which is characterized by: 2. The local overheat diagnosis device for a rotating electric machine according to claim 1, wherein the detection device is of a continuous spectroscopy type. 3. The local overheat diagnosis device for a rotating electric machine according to claim 2, wherein the continuous analysis type detection device is a spectrometer that uses infrared absorption wavelength. 4. A rotating electrical machine that includes a portion covered with an organic insulating material that thermally decomposes when exposed to high temperatures, and in which a refrigerant made of reducing gas is brought into contact with the portion covered with the organic insulating material and circulated within the machine, wherein the refrigerant A first detection device that detects the concentration of hydrocarbons in the gas and a second detection device that detects the concentration of particulate matter in the refrigerant gas are provided, and the carbonization detected by the first detection device is provided. When the concentration of hydrogen exceeds a predetermined value and the concentration of particulate matter detected by the second detection device exceeds a predetermined value, it is diagnosed that local overheating has occurred in the rotating electric machine. Local overheating diagnostic device for rotating electrical machines. 5. The local overheat diagnosis device for a rotating electrical machine according to claim 4, wherein the first and second detection devices are of a continuous spectroscopy type. 6 In claim 5, the first continuous spectroscopy type detection device is an analyzer that uses infrared absorption wavelength, and the second continuous spectroscopy type detection device is an analyzer that uses infrared absorption wavelength A device for diagnosing local overheating of a rotating electrical machine, characterized in that the device is a device for projecting ions into the particulate matter to ionize it, and detecting an ion current of the ionized particulate matter.
JP14041878A 1978-11-16 1978-11-16 Diagnostic device for local overheating of rotary machine Granted JPS5568843A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14041878A JPS5568843A (en) 1978-11-16 1978-11-16 Diagnostic device for local overheating of rotary machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14041878A JPS5568843A (en) 1978-11-16 1978-11-16 Diagnostic device for local overheating of rotary machine

Publications (2)

Publication Number Publication Date
JPS5568843A JPS5568843A (en) 1980-05-23
JPS6123748B2 true JPS6123748B2 (en) 1986-06-07

Family

ID=15268247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14041878A Granted JPS5568843A (en) 1978-11-16 1978-11-16 Diagnostic device for local overheating of rotary machine

Country Status (1)

Country Link
JP (1) JPS5568843A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6360632A (en) * 1986-08-29 1988-03-16 Nippon Denso Co Ltd Remote operation equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6360632A (en) * 1986-08-29 1988-03-16 Nippon Denso Co Ltd Remote operation equipment

Also Published As

Publication number Publication date
JPS5568843A (en) 1980-05-23

Similar Documents

Publication Publication Date Title
US3807218A (en) Sampling device for dynamoelectric machine
JP5653922B2 (en) Method and device for detecting degradation of insulators in rotating machinery
US3427880A (en) Overheating detector for gas cooled electric machine
EP0335351B1 (en) Method for monitoring unusual signs in gas-charged apparatus and gas-charged apparatus including unusual sign monitor
US4121458A (en) Reliable dynamoelectric machine condition monitor
CN103765167B (en) The combination of hydrogen and pressure sensor
CN205003132U (en) Dissolved gas on -line monitoring device in high accuracy oil
CA2244040C (en) Method for diagnosis of components inside turbine generator
JPS6242455B2 (en)
KR101209428B1 (en) An apparatus for generator condition monitoring using vocs sensor
JPS6123748B2 (en)
US3978732A (en) Sampling system for power generators
CN110514976B (en) GIS insulation defect monitoring device, system and detection method
US4101277A (en) Detection of incipient faults in hydrogen-cooled generators
JP2001296218A (en) Analytical equipment and analysis method for organic substance in internal gas of power apparatus and power apparatus with the analytical equipment
Carson et al. Immediate warning of local overheating in electric machines by the detection of pyrolysis products
CN105067947A (en) Power transformer equipment state dynamic monitoring system
CN114184911A (en) Method and device for detecting defect type of equipment and electronic equipment
TW201814288A (en) Ester oil-filled electric apparatus, ester oil-filled transformer, and method for analyzing aldehyde compound contained in ester oil
JPH0511008A (en) Monitoring device for gas-insulated transforming equipment
JPS6026525Y2 (en) In-machine abnormality monitoring device for rotating electrical machines
KR840000164Y1 (en) Local overheating detecting system of rotating electrical equipment
US4373376A (en) Method and apparatus for diagnosing overheating of an electric machine
JPS6352071A (en) Insulation diagnosing device for oil-immersed electric equipment
CN218180663U (en) Generator insulation overheat monitoring device