JPS61237367A - Manufacture of positive electrode for alkaline storage battery - Google Patents
Manufacture of positive electrode for alkaline storage batteryInfo
- Publication number
- JPS61237367A JPS61237367A JP60076972A JP7697285A JPS61237367A JP S61237367 A JPS61237367 A JP S61237367A JP 60076972 A JP60076972 A JP 60076972A JP 7697285 A JP7697285 A JP 7697285A JP S61237367 A JPS61237367 A JP S61237367A
- Authority
- JP
- Japan
- Prior art keywords
- solvent
- nickel
- water
- solution
- nickel hydroxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
【発明の詳細な説明】
(イ)産業上の利用分野
本発明はアルカリ蓄電池用のニッケル陽極の製造方法に
関し、特に水酸化ニッケル陽極活物質の製造方法に関す
る。DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a method for producing a nickel anode for an alkaline storage battery, and more particularly to a method for producing a nickel hydroxide anode active material.
(ロ)従来の技術
水酸化ニッケルを活物質として用いるアルカリ蓄電池用
ニッケル陽極(以下陽極と称する)は、主に焼結式が使
われていた。これはその高率放電性能、サイクル寿命、
活物質利用率が優れているためであるが、一方コストが
高い、製造所要時間が長いなどの問題点がある。近年、
活物質粉末を導電材、バインダー及び水と混合してなる
ペーストを集電板に塗着乾燥した陽極、及びスポンジ状
あるいはフェルト状の金属多孔体に粉末状活物質を充填
した陽極など、活物質粉末をそのまま使用して作製する
非焼結式陽極に対する関心が高まっている。(b) Prior Art Nickel anodes (hereinafter referred to as anodes) for alkaline storage batteries that use nickel hydroxide as an active material have mainly been of the sintered type. This is due to its high rate discharge performance, cycle life,
This is because the active material utilization rate is excellent, but on the other hand, there are problems such as high cost and long manufacturing time. recent years,
Active materials such as an anode made by mixing active material powder with a conductive material, binder, and water and drying it on a current collector plate, and an anode made by filling a sponge-like or felt-like porous metal body with powdered active material. There is growing interest in non-sintered anodes that are fabricated using raw powder.
特に非焼結式陽極においては、活物質である水酸化ニッ
ケルの特性の良否が極板性能を決定づける大きな要因と
なるが、この活物質の基本的製造方法は、特公昭44−
28415号公報、特公昭4g−2385号公報及び特
公昭52−2094号公報に示きれるように、硝酸ニッ
ケルや硫酸ニッケルなどのニッケル塩水溶液を水酸化ナ
トリウムや水酸化カリウムなどの苛性アルカリ水溶液に
作用許せて沈澱物として得るもの(中和法)で、この後
脱液、水洗、乾燥、粗粉砕、水洗、乾燥、粉砕などの工
程を経て完成活物質となる。この活物質の製造方法はニ
ッケル塩と苛性アルカリとを作用浮せて得られる沈澱物
がゲル状であるため濾過・脱液に長時間を要゛するとい
う問題があった。Particularly in the case of non-sintered anodes, the quality of the properties of the active material nickel hydroxide is a major factor in determining the performance of the electrode plate, but the basic manufacturing method for this active material is
As shown in Japanese Patent Publication No. 28415, Japanese Patent Publication No. 4G-2385, and Japanese Patent Publication No. 2094-1989, aqueous solutions of nickel salts such as nickel nitrate and nickel sulfate are applied to aqueous caustic alkaline solutions such as sodium hydroxide and potassium hydroxide. It is obtained as a precipitate (neutralization method), which is then subjected to processes such as deliquification, water washing, drying, coarse pulverization, water washing, drying, and pulverization to become a finished active material. This method of producing an active material has a problem in that the precipitate obtained by floating the nickel salt and caustic alkali is gel-like and requires a long time for filtration and deliquification.
(ハ)発明が解決しようとする問題点
本発明は中和法によって生成された水酸化ニッケルの濾
過及び脱液を容易に行なえ、製造時間が短縮できるアル
カリ蓄電池用陽極の製造方法を提供しようとするもので
ある。(c) Problems to be Solved by the Invention The present invention seeks to provide a method for producing an anode for an alkaline storage battery, in which nickel hydroxide produced by a neutralization method can be easily filtered and deliquified, and the production time can be shortened. It is something to do.
(ニ) 問題点を解決するための手段本発明のアルカ
リ蓄電池用陽極の製造方法は、水より粘度の低い有機溶
媒中あるいは該有機溶媒と水との混合溶媒中でニッケル
塩と苛性アルカリを作用させることにより、活物質とし
て使用する水酸化ニッケルを生成せしめるものである。(d) Means for Solving the Problems The method for producing an anode for an alkaline storage battery of the present invention involves reacting a nickel salt and a caustic alkali in an organic solvent having a lower viscosity than water or in a mixed solvent of the organic solvent and water. By doing so, nickel hydroxide used as an active material is generated.
(ホ) 作用
上記手段により生成した水酸化ニッケルは、溶媒が従来
の水のみであった場合に比べて粘度が低いものであるの
で、水酸化ニッケルと溶媒とを濾過により容易に分離す
ることができる。尚、使用する有機溶媒は水より粘度の
低いものであればよいが、性質及び価格など工業的観点
からメタノール、エタノールが適当である。(E) Effect The nickel hydroxide produced by the above method has a lower viscosity than the conventional case where the solvent is only water, so the nickel hydroxide and the solvent can be easily separated by filtration. can. Incidentally, the organic solvent to be used may be one having a lower viscosity than water, but methanol and ethanol are suitable from industrial viewpoints such as properties and cost.
(へ)実施例
〔実施例1〕
溶媒に100%エタノールを用い、この溶媒1りに2m
olの苛性ソーダを溶解して苛性ソーダ溶液を得、30
al/winの流速で充分に攪拌を行なっている該溶液
に、1!の溶媒に1molの硝酸ニッケルを溶解した硝
酸ニッケル溶液を加えて水酸化ニッケルを生成させ、し
かる後該水酸化ニッケルを濾過により溶媒と分離した。(F) Example [Example 1] Using 100% ethanol as the solvent, 2 m
ol of caustic soda to obtain a caustic soda solution, 30
Add 1! to the solution which is being sufficiently stirred at a flow rate of al/win. A nickel nitrate solution containing 1 mol of nickel nitrate was added to the solvent to produce nickel hydroxide, and the nickel hydroxide was then separated from the solvent by filtration.
〔実施例2〕
溶媒に100%エタノールに水を加えて得た50%エタ
ノールを用い、実施例1と同様の操作で水酸化ニッケル
を生成させ濾過を行なった。[Example 2] Using 50% ethanol obtained by adding water to 100% ethanol as a solvent, nickel hydroxide was produced and filtered in the same manner as in Example 1.
溶媒に水を用い、実施例1と同様の操作で水酸化ニッケ
ルを生成させ、濾過を行なった。Using water as a solvent, nickel hydroxide was produced in the same manner as in Example 1, and filtered.
前記実施例及び比較例で濾過に要した時間は、実施例1
が約40分、実施例2が約1時間、比較例が約2時間で
あり、実施例1及び2は何れも比較例に比べて大幅に濾
過に要する時間を短縮することができた。この濾過時間
の短縮は溶媒の粘度の差に起因するものであり、実施例
2で明らかなように有機−溶媒と水との混合溶媒であっ
ても、濾過時間の短縮を行なうことが可能である。The time required for filtration in the above Examples and Comparative Examples is as in Example 1.
The time required for filtration was about 40 minutes, about 1 hour in Example 2, and about 2 hours in Comparative Example, and both Examples 1 and 2 were able to significantly shorten the time required for filtration compared to Comparative Example. This reduction in filtration time is due to the difference in the viscosity of the solvents, and as is clear from Example 2, it is possible to shorten the filtration time even with a mixed solvent of an organic solvent and water. be.
尚、前記実施例及び比較例に於ける濾過後の水酸化ニッ
ケルを水洗、乾燥、粗粉砕、水洗、本乾燥及び粉砕を行
なって完成活物質とし、該活物質の利用率を測定したが
、何れの活物質も利用率には大差はなかった。In addition, the nickel hydroxide after filtration in the above Examples and Comparative Examples was washed with water, dried, coarsely pulverized, washed with water, main dried and pulverized to obtain a completed active material, and the utilization rate of the active material was measured. There was no significant difference in the utilization rate of any of the active materials.
(ト)発明の効果
本発明のアルカリ蓄電池用陽極の製造方法は、ニッケル
塩と苛性アルカリとを、水より粘度の低い有機溶媒中あ
るいは該有機溶媒と水との混合溶媒中で作用きせて水酸
化ニッケルを生成させることを特徴とするものであり、
−溶媒の粘度が低いため水酸化ニッケルの溶媒からの濾
過及び脱液に要する時間が短縮でき、活物質の製造が容
易となる。(G) Effects of the Invention The method for producing an anode for an alkaline storage battery of the present invention is to react a nickel salt and a caustic alkali in an organic solvent having a lower viscosity than water or in a mixed solvent of the organic solvent and water. It is characterized by producing nickel oxide,
- Since the viscosity of the solvent is low, the time required for filtration and removal of nickel hydroxide from the solvent can be shortened, making it easier to manufacture the active material.
Claims (1)
有機溶媒あるいは該有機溶媒と水との混合溶媒中で作用
させて水酸化ニッケルを生成せしめ、該水酸化ニッケル
を活物質として使用することを特徴とするアルカリ蓄電
池用陽極の製造方法。(1) Making nickel salt and caustic alkali react in an organic solvent with a lower viscosity than water or a mixed solvent of the organic solvent and water to produce nickel hydroxide, and using the nickel hydroxide as an active material. A method for producing an anode for an alkaline storage battery, characterized by:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60076972A JPH0646564B2 (en) | 1985-04-11 | 1985-04-11 | Method for manufacturing anode for alkaline storage battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60076972A JPH0646564B2 (en) | 1985-04-11 | 1985-04-11 | Method for manufacturing anode for alkaline storage battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61237367A true JPS61237367A (en) | 1986-10-22 |
JPH0646564B2 JPH0646564B2 (en) | 1994-06-15 |
Family
ID=13620695
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60076972A Expired - Lifetime JPH0646564B2 (en) | 1985-04-11 | 1985-04-11 | Method for manufacturing anode for alkaline storage battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0646564B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0589897A (en) * | 1991-09-26 | 1993-04-09 | Mitsubishi Electric Corp | Electrolyte for impregnation of phosphoric acid type fuel cell |
-
1985
- 1985-04-11 JP JP60076972A patent/JPH0646564B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0589897A (en) * | 1991-09-26 | 1993-04-09 | Mitsubishi Electric Corp | Electrolyte for impregnation of phosphoric acid type fuel cell |
Also Published As
Publication number | Publication date |
---|---|
JPH0646564B2 (en) | 1994-06-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2000508289A (en) | Method for producing lithium manganese oxide spinel | |
CN111029572A (en) | Prussian-like blue derivative and preparation method and application thereof | |
CN102745662B (en) | Preparation method of amorphous iron phosphate | |
CN114725357B (en) | Method for reducing residual sodium content of sodium ion positive electrode material | |
KR20040095707A (en) | Lithium phosphate aggregates, a process for preparing thereof and a process for preparing lithium iron phosphor system complex oxides | |
CN107565124B (en) | Nickel cobalt lithium manganate precursor and preparation method thereof | |
CN113830792A (en) | Anhydrous prussian white material, preparation method and application | |
CN101709374A (en) | Method for preparing precursors of lithium titanate and lithium iron phosphate by comprehensively using ilmenite | |
CN109037613B (en) | Ruthenium dioxide coated spinel lithium-rich lithium manganate and preparation method thereof | |
JP5136004B2 (en) | Electrolytic manganese dioxide, method for producing the same, and use thereof | |
CN113896255A (en) | Annular-pore ternary positive electrode precursor and preparation method thereof | |
CN105206800A (en) | Lead-acid cell positive electrode with lead sulfate as active material and method for preparing lead-acid cell through positive electrode | |
JPH0350384B2 (en) | ||
JPS61237367A (en) | Manufacture of positive electrode for alkaline storage battery | |
CN101944606A (en) | Super-alkaline secondary battery anode and preparation method thereof | |
JPS61181074A (en) | Manufacture of alkaline battery positive electrode | |
KR20190021070A (en) | Coating method for Ni―Co―Mn composite precursor with hetrogeneous metal using sol-gel synthesizing process of the heterogeneous metal | |
JP2835282B2 (en) | Nickel hydroxide for nickel electrode, method for producing the same, nickel electrode, and alkaline secondary battery incorporating the same | |
JPH10284075A (en) | Manufacture of positive electrode active material for alkaline battery | |
JPH0514382B2 (en) | ||
CN112573590A (en) | Ternary electrode material and preparation method and application thereof | |
JPS62222566A (en) | Nickel electrode for alkaline battery | |
JPS59128765A (en) | Nonaqueous electrolyte battery | |
JP2004296360A (en) | Nickel hydroxide particle for alkaline secondary battery cathode active substance and its manufacturing method | |
JPS61239564A (en) | Manufacture of positive electrode of alkaline storage battery |