JPS61237041A - Measurement of concentration of suspended pulp - Google Patents

Measurement of concentration of suspended pulp

Info

Publication number
JPS61237041A
JPS61237041A JP7802385A JP7802385A JPS61237041A JP S61237041 A JPS61237041 A JP S61237041A JP 7802385 A JP7802385 A JP 7802385A JP 7802385 A JP7802385 A JP 7802385A JP S61237041 A JPS61237041 A JP S61237041A
Authority
JP
Japan
Prior art keywords
pulp
measurement
concentration
measured
light intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7802385A
Other languages
Japanese (ja)
Other versions
JPH0459579B2 (en
Inventor
Taku Kadoya
門屋 卓
Kojiro Nakada
中田 幸次郎
Toshitaka Yokoyama
横山 寿孝
Teruo Makita
牧田 輝夫
Tomoyuki Kaneko
兼子 知行
Akitoshi Suzuki
鈴木 明利
Senzou Shinohara
篠原 占三
Takanori Morita
森田 孝則
Gunji Kawashima
川嶋 軍司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHIZUOKA PREF GOV
Shizuoka Prefecture
Takagi Sangyo KK
Original Assignee
SHIZUOKA PREF GOV
Shizuoka Prefecture
Takagi Sangyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHIZUOKA PREF GOV, Shizuoka Prefecture, Takagi Sangyo KK filed Critical SHIZUOKA PREF GOV
Priority to JP7802385A priority Critical patent/JPS61237041A/en
Publication of JPS61237041A publication Critical patent/JPS61237041A/en
Publication of JPH0459579B2 publication Critical patent/JPH0459579B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid
    • G01N21/51Scattering, i.e. diffuse reflection within a body or fluid inside a container, e.g. in an ampoule

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Paper (AREA)

Abstract

PURPOSE:To measure the concentration of pulp optically in a non-contact manner, by calculating the concentration of pulp according to a corresponding relationship between the intensity of the measured light at the front or rear position as measured with an optical measuring section and concentration of pulp. CONSTITUTION:An optical measuring section A is made up of a measuring light irradiator 1 for irradiating a pulp suspension L to be measured with a measuring light and an apparatus 2 for measuring the intensity of measuring light via the suspension L irradiated. The device 2 is so arranged that the measuring light can be measured at the front position (a) or the rear position (b) of the suspension L with the direction of irradiation thereof. Then, the intensity of measuring light is measured at the front position (a) or the rear position (b) at the measuring section A to calculate the concentration of pulp according to the corresponding relationship between the pulp concentration and the intensity of the measuring light at the front position (a) or the rear position (b). Thus, the pulp concentration can be measured optically in a non-contact manner.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は紙パルプ工業に於ける懸濁状パルプの状態測定
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for measuring the condition of suspended pulp in the pulp and paper industry.

(従来の技術及び発明の目的) 紙の原料であるパルプは、通常幅10〜50μm。(Prior art and purpose of the invention) Pulp, the raw material for paper, usually has a width of 10 to 50 μm.

長さ0.5〜3mの木材繊維であシ、かかるパルプは抄
紙工程でシートにする前に種々の処理が施こされる。そ
の代表的な処理は、叩解と称される機械処理であって、
繊維は叩解機によって圧潰、切断、膨潤等の処理を受け
ると共に、外部フィブリル化と称される繊維の開裂が行
なわれる。
The pulp is made of wood fibers with a length of 0.5 to 3 m, and is subjected to various treatments before being made into sheets in the papermaking process. The typical treatment is a mechanical treatment called beating,
The fibers are subjected to treatments such as crushing, cutting, and swelling by a beating machine, and the fibers are cleaved, which is called external fibrillation.

叩解とはこのような処理を繊維に施すものであるが、そ
の程度によって、得られた紙の性質は極度に変化する。
Beating is a process in which fibers are subjected to such treatment, and the properties of the resulting paper change dramatically depending on the degree of beating.

即ち、紙の性質を決める重要な因子は叩解処理であシ、
この処理を夫々どの程度節こすかくよって同じ原料のパ
ルプでも異なった性質の紙が出来、その80%以上が叩
解処理によって決まるとされている。
In other words, the beating process is an important factor that determines the properties of paper.
It is said that paper with different properties can be produced even from pulp made from the same raw material depending on the degree to which each of these treatments is applied, and it is said that more than 80% of this is determined by the beating process.

次に、紙の性質を変化させる、他の重要な因子としては
前記処理工程あるいは抄紙工程等に於けるパルプ濃度が
ある。従来パルプ濃度の測定方法としては、懸濁液の流
体抵抗が濃度に依存するという原理を用いたシ、懸濁液
の濃度とその光透過特性とが相関関係を有するという原
理を用いたもの等があるが、これらは様々な外乱因子も
同時に測定してしまい易く、真のパルプ濃度を得ること
が難かしい。こうして従来はパルプ濃度を監視するため
の適切な測定方法がなかったので、前記処理工程に於い
て一定の品質の処理パルプを得たシ、抄紙工程に於いて
一定の品質の紙を抄紙するのが難かしかった。
Another important factor that changes the properties of paper is the pulp concentration in the treatment process or papermaking process. Conventional methods for measuring pulp concentration include those that use the principle that the fluid resistance of a suspension depends on its concentration, and those that use the principle that there is a correlation between the concentration of a suspension and its light transmission characteristics. However, these methods tend to measure various disturbance factors at the same time, making it difficult to obtain the true pulp density. Thus, in the past, there was no suitable measuring method for monitoring pulp density, so it was difficult to obtain treated pulp of a certain quality in the treatment process and to make paper of a certain quality in the papermaking process. It was difficult.

本発明の目的は、かかるパルプ濃度を光学的に非接触に
測定し得る測定方法を提供することにある。
An object of the present invention is to provide a measuring method that can optically and non-contactly measure the pulp density.

(発明の構成及び作用) 本発明は前述の目的を達成するために、被測定パルプ懸
濁液に測定光を照射する測定光照射装置と、該懸濁液か
らの散乱光強度を、その前方または後方位置に於いて測
定する散乱光強度測定装置とから光学的測定部を構成し
、該光学的測定部に於いて前記前方または後方位置に於
ける測定光強度を測定し、パルプ濃度と該前方または後
方位置に於ける測定光強度との対応関係により、パルプ
濃度を算出することを要旨とするものである。以下実施
例に基づ埴て詳細に説明すると次の通シである。
(Structure and operation of the invention) In order to achieve the above-mentioned object, the present invention includes a measurement light irradiation device that irradiates measurement light onto a pulp suspension to be measured, and a measurement light irradiation device that irradiates measurement light to a pulp suspension to be measured. or a scattered light intensity measuring device that measures at the rear position, and the optical measuring unit measures the measured light intensity at the front or rear position, and measures the pulp density and The gist of this method is to calculate the pulp density based on the correspondence with the measured light intensity at the front or rear position. The following is a detailed explanation based on examples.

符号1は被測定パルプ懸濁液りに測定光を照射する測定
光照射装置であり、2は照射されて懸濁液りを経た測定
光の強度を測定する測定光強度測定装置である。これら
装置1,2から光学的測定部Aを構成する。前記測定装
置2は測定光の照射方向に対して、懸濁液りの前方位置
aまたは後方位置すに於いて測定し得るように構成する
。この測定装置2の具体例を説明すると、第1図に示す
ものは、懸濁液りから適宜距離隔てた円周上に於いて、
該懸濁液りの前方位置aから後方位置すに至る複数位置
に光強度センサ3を配設して、夫々の光強度センサ3に
よシ前記位置a、bの複数位置く於ける測定光強度を測
定するものである。この具体例のように複数位置に於け
る測定光強度を測定する他の例として一図示はしていな
いが、単一の光強度センサを移動させて前記前方位置a
から後方位置すに至る連続位置あるいは複数位置に於い
て測定するようにすることもできる。尚、測定光強度の
一定位置は、前方位置aまたは後方位置すに於ける適宜
1点を最少構成とするが、多くの点に於いて測定し得る
ように構成すること忙より後述の測定の自由度を大きく
することができる。
Reference numeral 1 is a measurement light irradiation device that irradiates measurement light onto the pulp suspension to be measured, and 2 is a measurement light intensity measuring device that measures the intensity of the measurement light that has been irradiated and passed through the suspension. These devices 1 and 2 constitute an optical measurement section A. The measuring device 2 is configured so as to be able to measure at the front position a or the rear position of the suspension with respect to the irradiation direction of the measurement light. To explain a specific example of this measuring device 2, the one shown in FIG.
Light intensity sensors 3 are arranged at a plurality of positions from the front position a to the rear position of the suspension, and each light intensity sensor 3 measures the measurement light at the plurality of positions a and b. It measures strength. As another example of measuring the measurement light intensity at a plurality of positions as in this specific example, although not shown, a single light intensity sensor is moved to the front position a.
It is also possible to measure at a continuous position from the rear position to the rear position, or at a plurality of positions. Note that the minimum constant position for measurement light intensity is one point at the front position a or the rear position, but since it is difficult to configure the structure so that measurements can be taken at many points, the measurements described later are The degree of freedom can be increased.

符号4は前記被測定懸濁液を収容する透明□な収容部で
あるが、この収容部4は独立した容器として構成しても
良いし、第2図に示すように配管系の一部に構成して、
流動している懸濁液を測定するようにしても良い。
Reference numeral 4 designates a transparent □ container that accommodates the suspension to be measured, but this container 4 may be configured as an independent container, or it may be configured as a part of the piping system as shown in FIG. Configure
A flowing suspension may also be measured.

しかして広葉樹晒クラフトパルプを叩解し、C8Fが2
17 、416 、437 、590の夫々に対して、
パルプ濃度が0.5〜1.5 (%)のパルプ懸濁液に
対する前述した測定光強度の分布を測定し、かかる測定
結果から夫々0.5 、0.7 、0.9 、1.1 
、1.3.1.5(%)の濃[K於ける測定光強度分布
を求めると第3図(a) 、(b) −(c) −(d
) 、(e) −(f)に示す如くなる。かかる測定結
果から、一定のパルプ濃度に於いては、C8Fの変化に
よシ測定光強度に差が生じ、例えばC8Fが少なくなシ
、即ち叩解が進むにつれて後方位置bK於いては測定光
強度が大となシ、前方位置arc於いては逆に小となる
ことがわかる。更に注目すべきこととして、パルプ濃度
が変化するととにより、前方位置aの測定光強度と後方
位置すの測定光強度が互いに逆方向に大幅に変化するこ
とがわかる。即ち、パルプ濃度が低くなると前方位置a
の測定光強度が大きくなり、逆圧後方位置゛bに′於い
ては小さくなる。そこでいま、以上の測定結果に基づき
、C8F 590 (mjりにつき、前方位置a(角度
10°゛)及び後方位置b(角度150°)の夫々に於
ける、パルプ濃度と測定光強度との関係を求めると、第
′4図(a) 、(b)に示す如くなる。第4図(a)
から、前方位置aに於いては、パルプ濃度と測定光強度
が指数関数的な対応関係にあること、また第4図ら)か
ら、後方位置すに於いてはほぼ直線的な対応関係にある
ことがわかる。次に第5図は第3図(a)〜(f)の曲
線をまとめて記載したもので、かかる図に示すように、
叩解程度の変化、即ちC3F590〜217(mjりの
変化九対する、測定光強度の変化幅は、パイプ濃度の0
.2%の変化幅よシも狭い。
However, by beating the bleached hardwood kraft pulp, C8F becomes 2
For each of 17, 416, 437, and 590,
The distribution of the measurement light intensity described above for a pulp suspension having a pulp concentration of 0.5 to 1.5 (%) was measured, and from the measurement results, 0.5, 0.7, 0.9, and 1.1, respectively.
, 1.3. The measured light intensity distribution at 1.5 (%) [K] is found in Figure 3 (a), (b) - (c) - (d
), (e) to (f). These measurement results show that at a constant pulp concentration, a difference occurs in the measured light intensity due to a change in C8F, for example, when C8F is low, that is, as beating progresses, the measured light intensity increases at the rear position bK. It can be seen that while it is large, it becomes small at the front position arc. It is also noteworthy that as the pulp concentration changes, the measured light intensity at the front position a and the measured light intensity at the rear position a significantly change in opposite directions. That is, when the pulp concentration becomes low, the forward position a
The measurement light intensity increases at the back pressure rear position 'b', and decreases at the back pressure position 'b'. Therefore, based on the above measurement results, the relationship between the pulp concentration and the measured light intensity at each of the front position a (angle 10°) and rear position b (angle 150°) for C8F 590 (mj) The result is as shown in Figure 4(a) and (b).Figure 4(a)
Therefore, at the front position a, there is an exponential correspondence between the pulp concentration and the measured light intensity, and from Figure 4, etc., there is an almost linear correspondence at the rear position. I understand. Next, FIG. 5 shows the curves of FIGS. 3(a) to (f) all together, and as shown in this figure,
The range of change in the measurement light intensity for the change in the degree of beating, that is, the change in C3F590~217 (mj), is 0 for the pipe concentration.
.. The range of change is narrower than 2%.

これらのことから、以上の対応関係を用いて測定光強度
からパルプ濃度が求め得ることがわかる。
From these facts, it can be seen that the pulp density can be determined from the measured light intensity using the above correspondence.

次に測定誤差について考察すると次の通りである。Next, the measurement error will be considered as follows.

第6図は後方位置b(角度150’)に於けるパルプ濃
度と測定光強度との関係を、C8F 590 (mi)
に加えて、前述した全ての残シのC8F 値JD チ4
37゜416 、217 (mJりについても示したも
のである。かかる図に於いて、同一測定光強度に対応す
る、叩解程度の差によるパルプ濃度の差を求めると、例
えばパルプ濃度1チ近傍に於いては、C8F 590〜
217(mjL)の範囲に於いて、約0.1チ程度であ
シ、中間の値を基準とすると約±0.05%程度となる
Figure 6 shows the relationship between the pulp density and the measured light intensity at rear position b (angle 150') at C8F 590 (mi).
In addition to the above-mentioned C8F value JD Chi 4 of all residuals
37゜416, 217 (mJ is also shown. In this figure, if we calculate the difference in pulp density due to the difference in degree of beating corresponding to the same measurement light intensity, for example, the pulp density is around 1 inch) In that case, C8F 590~
In the range of 217 (mjL), it is about 0.1 inch, and if the middle value is used as a reference, it is about ±0.05%.

これが測定誤差となるわけであるが、その値は叩解程度
の範囲が狭くなるとよシ小さくなり、よシ精度の高い測
定を行なうことができる。以上のことよシ、測定光強度
とパイプ濃度との対応関係を予め各種のパルプ懸濁液に
ついて測定して求めておくことにより、測定によって求
められた測定光強度からパルプ濃度が、かなシの精度で
算出し得ることがわかる。以上の演算は、マイクロコン
ピュータ等に於ける記憶装置に前記対応関係をデータテ
ーブルまたは関数式等として記憶させておくことによシ
容易に行なうことができる。
This results in a measurement error, but the value becomes smaller as the range of beating degree becomes narrower, allowing for highly accurate measurements. Based on the above, by determining the correspondence between the measured light intensity and the pipe concentration in advance by measuring various pulp suspensions, it is possible to determine the pulp concentration from the measured light intensity obtained by measurement. It can be seen that it can be calculated with high accuracy. The above calculations can be easily performed by storing the correspondence relationship as a data table or a function formula in a storage device of a microcomputer or the like.

ところで前述した通夛、測定光強度の測定位置は、前方
位置aまたは後方位置すに於ける適宜1点を最小構成と
するが、多くの点、即ち少なくとも前方位置a及び後方
位置すの各1点ずつ以上の点で測定し得るようにすれば
測定の自由度を大きくすることができる。即ち、パルプ
濃度と測定光強度との対応関係は前述した通夛、前方位
置aと後方位置すとで異なるので、これを利用して適切
な濃度測定を行なうことができる。例えば前方位置aの
対応関係では、パルプ濃度が低い側に於いては、パルプ
濃度パルプ濃度の変化に対しての測定光強度の変化が大
きいので、低濃度の測定には前方位置aが後方位置すよ
シも相対的に感度が高く、また濃度がより高くなるKっ
れて後方位置すの感度が前方位置aのそれよシも相対的
に高くなる。従ってパルプ濃度の高低に応じて、演算に
使用する測定光強度の位置を選択することにより、よシ
適切なパルプ濃度の測定を行なうことができる。
By the way, as for the measurement position of the above-mentioned measurement light intensity, the minimum configuration is one point at the front position a or the rear position, but there are many points, at least one at each of the front position a and the rear position. The degree of freedom in measurement can be increased by allowing measurement at more than one point at a time. That is, since the correspondence relationship between the pulp density and the measurement light intensity differs between the front position a and the rear position as described above, this can be used to perform appropriate density measurements. For example, in the correspondence relationship of front position a, on the side where the pulp density is low, the change in the measurement light intensity with respect to the change in pulp density is large, so for the measurement of low density, the front position a is the rear position. The sensitivity is also relatively high at the front position, and the sensitivity at the rear position (K), where the concentration is higher, is also relatively high at the front position (a). Therefore, by selecting the position of the measuring light intensity used for calculation depending on the level of the pulp density, it is possible to perform a more appropriate measurement of the pulp density.

(発明の効果) 本発明は以上の通り、被測定パルプ懸濁液に測定光を照
射する測定光照射装置と、該懸濁液を経た測定光強度を
、その前方または後方位置に於いて測定する散乱光強度
測定装置とから光学的測定部を構成し、該光学的測定部
に於いて測定した前記、前方位置または後方位置に於け
る測定光強度と、パルプ濃度との対応関係により、パル
プ濃度を算出するようKしたので、かかるパルプ濃度を
非接触式に従って回分式な測定は固より、連続式にも測
定することができ、製紙工程の各種処理工程に於ける制
御並びに品質の管理等に使用し得るという効果がある。
(Effects of the Invention) As described above, the present invention includes a measurement light irradiation device that irradiates measurement light onto a pulp suspension to be measured, and a measurement light irradiation device that measures the intensity of measurement light that has passed through the suspension at a position in front or behind the measurement light irradiation device. An optical measuring unit is constructed from a scattered light intensity measuring device, and the pulp density is determined by the correspondence between the measured light intensity at the front position or the rear position measured by the optical measuring unit and the pulp concentration. Since the density has been calculated, the pulp density can be measured not only batchwise but also continuously using a non-contact method, which is useful for control and quality control in various processing steps in the papermaking process. It has the advantage that it can be used for.

殊に測定光強度の測定位置を、少なくとも前方位置及び
後方位置の各1点ずつ以上の点とすれば、パルプ濃度の
高低に応じて、演算に使用する測定光強度の位置を、前
方または後方として選択することにより、よシ適切なパ
ルプ濃度の測定を行なうことができ、もって高感度、精
度の測定を行なえる効果がある。
In particular, if the measurement position of the measurement light intensity is set to at least one point each at the front position and the rear position, the position of the measurement light intensity used for calculation can be set to the front or rear position depending on the level of pulp concentration. By selecting this, it is possible to measure the pulp concentration more appropriately, which has the effect of making it possible to measure with high sensitivity and accuracy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図並びに第2図は本発明方法の測定系を示す説明図
、第3図(a) 、(b) −(c) 、(d) 、(
e) −(f)、は本発明の測定系を用いたLBKPの
光学特性測定結果図、第4図(a) 、 (b)は第3
図の測定結果図に基づいた夫々前方位置、後方位置に於
けるパルプ濃度と測定光強度との対応関係を示す説明図
、第5図は第3図(荀= (b) 、(e) 、(d)
 −(e) 、(f)の曲線をまとめて示した説明図、
第6図は第4図(b)の曲線に、他の叩解度の曲線を加
えて示した説明図である。 符号A・・・光学的測定部、B・・・音響的測定部、L
・・・パルプ懸濁液、1・・・測定光照射装置、2・・
・散乱光強度測定装置、3・・・光強度センサ、4・・
・収容部。
Figures 1 and 2 are explanatory diagrams showing the measurement system of the method of the present invention, and Figures 3 (a), (b) - (c), (d), (
e) - (f) are the results of measuring the optical properties of LBKP using the measurement system of the present invention, and FIGS.
An explanatory diagram showing the correspondence between the pulp density and the measured light intensity at the front position and the rear position, respectively, based on the measurement result diagram in the figure. (d)
- An explanatory diagram showing the curves of (e) and (f) together,
FIG. 6 is an explanatory diagram showing the curve of FIG. 4(b) plus other freeness curves. Symbol A: Optical measurement section, B: Acoustic measurement section, L
...Pulp suspension, 1...Measuring light irradiation device, 2...
・Scattered light intensity measuring device, 3...Light intensity sensor, 4...
・Accommodation department.

Claims (1)

【特許請求の範囲】[Claims] 被測定パルプ懸濁液に測定光を照射する測定光照射装置
と、該懸濁液を経た測定光強度を、その前方または後方
位置に於いて測定する散乱光強度測定装置とから光学的
測定部を構成し、該光学的測定部に於いて前記前方また
は後方位置に於ける測定光強度を測定し、パルプ濃度と
該前方または後方位置に於ける測定光強度との対応関係
により、パルプ濃度を算出することを特徴とする懸濁状
パルプの濃度測定方法。
An optical measurement unit consisting of a measurement light irradiation device that irradiates measurement light onto the pulp suspension to be measured, and a scattered light intensity measurement device that measures the measurement light intensity that has passed through the suspension at a position in front or behind the measurement light irradiation device. The optical measuring section measures the measured light intensity at the front or rear position, and determines the pulp density based on the correspondence between the pulp density and the measured light intensity at the front or rear position. A method for measuring the concentration of suspended pulp, characterized by calculating the concentration.
JP7802385A 1985-04-12 1985-04-12 Measurement of concentration of suspended pulp Granted JPS61237041A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7802385A JPS61237041A (en) 1985-04-12 1985-04-12 Measurement of concentration of suspended pulp

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7802385A JPS61237041A (en) 1985-04-12 1985-04-12 Measurement of concentration of suspended pulp

Publications (2)

Publication Number Publication Date
JPS61237041A true JPS61237041A (en) 1986-10-22
JPH0459579B2 JPH0459579B2 (en) 1992-09-22

Family

ID=13650208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7802385A Granted JPS61237041A (en) 1985-04-12 1985-04-12 Measurement of concentration of suspended pulp

Country Status (1)

Country Link
JP (1) JPS61237041A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017009564A (en) * 2015-06-26 2017-01-12 栗田工業株式会社 Method for analyzing pitch and method for processing pitch

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3758787A (en) * 1971-03-29 1973-09-11 W Sigrist Apparatus for determining the amount of the dispersed phase in a suspension
US3962581A (en) * 1975-10-06 1976-06-08 Westvaco Corporation Infra-red consistency meter

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3758787A (en) * 1971-03-29 1973-09-11 W Sigrist Apparatus for determining the amount of the dispersed phase in a suspension
US3962581A (en) * 1975-10-06 1976-06-08 Westvaco Corporation Infra-red consistency meter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017009564A (en) * 2015-06-26 2017-01-12 栗田工業株式会社 Method for analyzing pitch and method for processing pitch

Also Published As

Publication number Publication date
JPH0459579B2 (en) 1992-09-22

Similar Documents

Publication Publication Date Title
JP7305727B2 (en) Porous film measurement
CA1132364A (en) Method and apparatus for measuring the moisture content of paper
EP0062620A1 (en) Method of measuring the content of fibrillary particles in a pulp
JPS5877608A (en) Method of measuring mean radius and mean length of grain in fluid
DE69531776D1 (en) DEVICE AND METHOD FOR DETERMINING A FIRST PARAMETER OF AN OBJECT
US4052615A (en) Spherical cavity method and apparatus for measuring a sheet material property using infrared radiation
US6717675B1 (en) System and method for determining fiber orientation in fibrous material webs
FI68321B (en) FOERFARANDE Før by means of the ATT STRAOLNING UTSAEND AV ETT ROENTGENROER utan att FOERSTOERA sample was MAETA FOERDELNINGEN FYLLOCH AV / or BELAEGGNINGSMEDEL I TJOCKLEKSRIKTNINGEN audio PAPP ERARTONG or the like OCH Halten from these two MEDEL arranged RGAFOER TILLAEMPANDE audio FOERFARANDET SAMT ANVAENDNINGAR of devices for the AV ERFOARANDET OCH
US5501100A (en) Device for measuring the mass of fiber slivers
US4213708A (en) Graininess sensor
JPH02501407A (en) Surface roughness measuring device for crepe-like sheets
FI68320C (en) FOERFARANDE Før by means of the ATT STRAOLNING FRAON A RADIOISOTOPKAELLA utan att FOERSTOERA sample was MAETA FOERDELNINGEN fyll audio-and / or BELAEGGNINGSMEDEL I TJOCKLEKSRIKTNINGEN audio PAPP ERARTONG or the like OCH Halten from these two MEDEL arranged RGAFOER TILLAEMPANDE audio FOERFARANDET SAMT ANVAENDNINGAR of devices for the AV ERFOARANDET OCH
Antikainen et al. Simultaneous measurement of lathe check depth and the grain angle of birch (Betula pendula Roth) veneers using laser trans-illumination imaging
US4441960A (en) Method and apparatus for on-line monitoring of specific surface of mechanical pulps
JPS61237041A (en) Measurement of concentration of suspended pulp
DE69026817D1 (en) Method for detecting and measuring external influences
JPH0461301B2 (en)
JPH07280722A (en) Paper surface fiber orientation measuring method
Iskra et al. The influence of cutting parameters on the surface quality of routed paper birch and surface roughness prediction modeling
GB2592502A (en) Optical fibers for optically sensing through wound dressings
JPS61148349A (en) Measurement for condition of suspended pulp
JP2018096983A (en) Method and device for measuring slurry
JPH0465334B2 (en)
US4931659A (en) Device for calibrating an apparatus for measuring the formation index of a sheet of paper
US3662170A (en) Method and apparatus for measuring the thickness moisture profile of fibrous webs