JPS6123673B2 - - Google Patents

Info

Publication number
JPS6123673B2
JPS6123673B2 JP52004171A JP417177A JPS6123673B2 JP S6123673 B2 JPS6123673 B2 JP S6123673B2 JP 52004171 A JP52004171 A JP 52004171A JP 417177 A JP417177 A JP 417177A JP S6123673 B2 JPS6123673 B2 JP S6123673B2
Authority
JP
Japan
Prior art keywords
valve
inner tank
valve body
tank
superconducting magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52004171A
Other languages
Japanese (ja)
Other versions
JPS5389695A (en
Inventor
Tooru Saima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP417177A priority Critical patent/JPS5389695A/en
Publication of JPS5389695A publication Critical patent/JPS5389695A/en
Publication of JPS6123673B2 publication Critical patent/JPS6123673B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)
  • Safety Valves (AREA)

Description

【発明の詳細な説明】 本発明は超電導マグネツトの冷却装置に関し、
特に超電導マグネツトを収納する内槽に真空容器
である外槽外から接続して液体ヘリウムの注入或
いはヘリウムガスの回収を行う連通管を設けた超
電導マグネツトの冷却装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a cooling device for a superconducting magnet,
In particular, the present invention relates to a cooling device for a superconducting magnet, which is provided with a communication pipe connected to an inner tank housing the superconducting magnet from outside the outer tank, which is a vacuum container, for injecting liquid helium or recovering helium gas.

一般に、超電導マグネツトは液体ヘリウムと共
に内槽に収納されて超低温に冷却され、その内槽
は真空容器である熱遮断用外槽内に断熱支持され
て外熱の侵入が防止されている。またその内槽内
に外部から液体ヘリウムを適宜補給するための液
体ヘリウム供給用の連通管が外部から外槽壁を貫
通して該内槽に接続するように配管されていると
共に、その液体ヘリウム供給用連通管を共用する
か又はこれと別に並列配置したヘリウムガス抜き
連通管を介して該内槽内で気化したヘリウムガス
を外部に流出させて回収或いは大気中に放出する
ように構成されている。
Generally, a superconducting magnet is housed in an inner tank together with liquid helium and cooled to an extremely low temperature, and the inner tank is insulated and supported in a heat-insulating outer tank, which is a vacuum container, to prevent external heat from entering. In addition, a communication pipe for supplying liquid helium for appropriately replenishing liquid helium from the outside into the inner tank is connected to the inner tank by penetrating the wall of the outer tank from the outside, and the liquid helium The helium gas vaporized in the inner tank is configured to be collected or released into the atmosphere by flowing out the helium gas vaporized in the inner tank through a common supply communication pipe or a separate helium gas vent communication pipe arranged in parallel. There is.

ところで、こうした超電導マグネツトの冷却装
置では、上述した液体ヘリウム供給用並びにヘリ
ウムガス抜き用の連通管を介して内槽が常時外部
と連通状態にあると、外槽外の熱が該連通管内を
介して内槽内に侵入して、超電導マグネツトの冷
却性能の低下を招くことになる。この為に運転時
中等では上記連通管を塞いで内槽を外部から封じ
切つておき、そして液体ヘリウムの供給時及びヘ
リウムガス抜き時のみに該連通管を開くようにし
て、出来るだけ外熱の内槽への侵入を防止するこ
とが必要である。そこで上記液体ヘリウム供給用
或いは気化ヘリウムガス抜き用の連通管に開閉操
作可能な封じ切り弁を設けることが考えられる
が、しかしその弁自体の取付位置並びに構造に難
があり、外槽外に導出する配管部位に弁を取付け
たのでは、その弁自体並びに外槽外の配管部壁か
ら外熱が配管内に伝わつて内槽に侵入してしま
い、また外槽内の真空空間の配管部に弁を取付け
ると、その弁開閉操作部の外槽壁貫通部から外気
が侵入して、外槽内の真空層の真空保持ができな
くなる問題があつた。
By the way, in such a cooling device for a superconducting magnet, if the inner tank is constantly in communication with the outside via the above-mentioned communication pipes for supplying liquid helium and degassing helium, heat from outside the outer tank is transferred through the communication pipes. This will cause the superconducting magnet to enter the inner tank, resulting in a decrease in the cooling performance of the superconducting magnet. For this reason, during operation, etc., the inner tank is sealed off from the outside by closing the communication pipe, and the communication pipe is opened only when supplying liquid helium or venting helium gas, thereby reducing external heat as much as possible. It is necessary to prevent entry into the inner tank. Therefore, it is possible to install a shutoff valve that can be opened and closed in the communication pipe for supplying liquid helium or venting vaporized helium gas, but there are difficulties in the mounting position and structure of the valve itself, and it is necessary to lead it out of the outer tank. If a valve is installed in a piping section that is exposed to heat, external heat will be transmitted from the valve itself and the wall of the piping section outside the outer tank into the piping and enter the inner tank, and the piping section in the vacuum space inside the outer tank will be exposed to external heat. When the valve was installed, there was a problem in that the outside air entered through the outer tank wall penetration part of the valve opening/closing operation part, making it impossible to maintain the vacuum layer in the outer tank.

本発明は上記事情に鑑みなされたもので、液体
ヘリウム供給時やヘリウムガス抜き時以外は内槽
を外部に対して封じ切ることができて、外槽外の
配管部からの熱侵入を防止できると共に、外槽内
の真空層の真空保持に悪影響を与えるようなこと
が無い非常に冷却性能に優れた超電導マグネツト
の冷却装置を提供することを目的とする。
The present invention was developed in view of the above circumstances, and the inner tank can be sealed off from the outside except when liquid helium is supplied or helium gas is vented, and heat can be prevented from entering from the piping section outside the outer tank. Another object of the present invention is to provide a cooling device for a superconducting magnet that has extremely excellent cooling performance and does not adversely affect the maintenance of the vacuum layer in the outer tank.

つまり本願の超電導マグネツトの冷却装置は、
外部から外槽壁を気密に貫通して前記内槽に連通
し液体ヘリウムの注入或いは気化ヘリウムガスの
流出を行う連通管の途中である該外槽内の内槽と
の間の真空空間部位に介在する状態に封じ切り弁
を設け、しかもその封じ切り弁は、弁本体内に配
した弁座及び該弁座に接離可能な弁体と、前記弁
体内から前記連通管の外部導出側部内を長く亘つ
て通り外槽壁外位置にて該管部壁を気密に貫通し
て外部操作可能に導出した弁開閉用操作レバーと
からなる構成として、外熱の侵入防止と共に外槽
内の真空層の真空保持ができるようにしたもので
ある。
In other words, the superconducting magnet cooling device of the present application is
In the vacuum space between the outer tank and the inner tank, which is in the middle of a communication pipe that airtightly penetrates the outer tank wall from the outside and communicates with the inner tank to inject liquid helium or discharge vaporized helium gas. A shutoff valve is provided in an intervening state, and the shutoff valve includes a valve seat disposed within a valve body, a valve body that can be moved into and out of contact with the valve seat, and a valve that is connected to an external outlet side portion of the communication pipe from the valve body. The structure consists of a valve opening/closing control lever that passes through the pipe wall for a long time and is led out to the outside by passing through the pipe wall airtightly at a position outside the wall of the outer tank to prevent external heat from entering and to reduce the vacuum inside the outer tank This allows the layer to be kept under vacuum.

以下本発明の一実施例を第1図及び第2図によ
り説明する。第1図において、超電導マグネツト
1は液体ヘリウムを満たした内槽3内に収納され
ている。この内槽3は真空層4及び図示しないス
ーパーインシユレーシヨン断熱材を含む外槽5に
囲まれ、且つその真空容器である外槽5内に断熱
支持部材6により保持されている。
An embodiment of the present invention will be described below with reference to FIGS. 1 and 2. In FIG. 1, a superconducting magnet 1 is housed in an inner tank 3 filled with liquid helium. This inner tank 3 is surrounded by a vacuum layer 4 and an outer tank 5 containing a superinsulation heat insulating material (not shown), and is held by a heat insulating support member 6 within the outer tank 5, which is the vacuum container.

こうした外槽5の壁を外部から気密に貫通して
内槽3に接続する連通管20が設けられている。
この連通管20は外部あら上記内槽3内に液体ヘ
リウムを供給したり、逆に該内槽3内で気化した
ヘリウムガスを外部に抜き出したりするものであ
る。なおこの連通管20は液体ヘリウム供給専用
とし、気化ヘリウムガスは別途該連通管20と同
様にして並列配置したガス回収用連通管(図示せ
ず)により外部に抜き出すようにしても良い。
A communication pipe 20 is provided that airtightly penetrates the wall of the outer tank 5 from the outside and connects to the inner tank 3.
This communication pipe 20 is used to supply liquid helium from the outside into the inner tank 3, and conversely to extract helium gas vaporized in the inner tank 3 to the outside. Note that this communication pipe 20 may be used exclusively for supplying liquid helium, and the vaporized helium gas may be separately extracted to the outside through a gas recovery communication pipe (not shown) arranged in parallel with the communication pipe 20.

こうした連通管20の上記外槽5内で内槽3と
の間の真空層4の空間部位途中に介在する状態で
封じ切り弁7Aが設けられている。つまり封じ切
り弁7Aは弁本体(ケーシング)7の一端を上記
連通管20の内槽接続側管部8を介して内槽3に
連通し他端を同連通管20の外槽5壁を気密に貫
通する外部導出管部9を介して外部に連通した状
態で設けられている。その封じ切り弁7Aの弁本
体7内部には第2図に示す如く一端側寄りに弁座
11が固設され、この弁座11に対して他端側か
ら接離可能に弁体10が装置されて、その弁体1
0が後述する弁開閉用操作レバー14の操作によ
り弁座11に当接(弁閉成)すると上記内槽接続
側管部8と外部導出側管部9との間を遮断し、弁
座11から離問(弁開放)すると該両管部8,9
間を連通するようになつている。ここで上記弁開
閉操作レバー14は基端部を弁体10の背面に固
定して他端方に長く突出した丸棒状のもので、そ
の基端寄り部途中に雄ねじ部15を有し、弁本体
7内にリブ12を介して設けた雌ねじ付きボス部
13に螺合してねじ送り作用を受ける状態に支持
されている。またその弁開閉操作レバー14は弁
本体7内から上記連通管20の外部導出側管部9
内中心を長く亘つて通り、そのまま真直ぐに伸び
て該外部導出側管部9の外槽5外の配管部分であ
る屈曲部壁に貫通して外部に延出されている。つ
まり弁開閉操作レバー14は直接外槽5壁に貫通
することなく、連通管20の外部導出側管部9内
を通つて外槽5外に導出されている。その弁開閉
操作レバー14が貫通する外部導出側管部9合屈
曲部壁にはシール座16が形成され、このシール
座16内にパツキン等のシール17が押えねじ1
8により取付けられて、該弁開閉操作レバー14
の貫通部の気密を保持するようになつている。ま
たその弁開閉操作レバー14の外部延出端には操
作ハンドル19が取付けられ、このハンドルを介
して外部から弁開閉操作レバー14を回転操作す
ることにより、このレバー14のボス部13との
螺合によるねじ送作用で弁体10を弁座11に当
接したり離間したりして弁開閉ができるようにな
つている。なお、実際には上記内槽43内の超電
導マグネツト1に電力を供給するリード線やその
他の配管が内外槽を貫通して設けられるが、本発
明の要脂に関係ないので図示省略している。
A shutoff valve 7A is provided in the outer tank 5 of the communication pipe 20 so as to be interposed in the space between the inner tank 3 and the vacuum layer 4. In other words, the shutoff valve 7A has one end of the valve body (casing) 7 connected to the inner tank 3 via the inner tank connection side pipe part 8 of the communication pipe 20, and the other end of the valve body (casing) 7 airtightly connects the wall of the outer tank 5 of the communication pipe 20. It is provided in a state where it communicates with the outside via an external lead-out pipe section 9 that penetrates through it. Inside the valve body 7 of the shutoff valve 7A, a valve seat 11 is fixedly installed near one end as shown in FIG. and the valve body 1
0 comes into contact with the valve seat 11 (valve closing) by operating the valve opening/closing operation lever 14, which will be described later. When released from the valve (opening the valve), both pipe parts 8 and 9
It is designed to communicate between the two. Here, the valve opening/closing operation lever 14 has a base end fixed to the back surface of the valve body 10 and has a round rod shape that protrudes long toward the other end, and has a male threaded portion 15 in the middle of the base end. It is screwed into a female threaded boss portion 13 provided within the main body 7 via a rib 12 and is supported in a state where it receives a screw feeding action. Further, the valve opening/closing operation lever 14 is connected to the external outlet side pipe portion 9 of the communication pipe 20 from inside the valve body 7.
It passes through the inner center for a long time, extends straight, penetrates the wall of the bent part which is the piping part outside the outer tank 5 of the external outlet side pipe part 9, and is extended to the outside. That is, the valve opening/closing operation lever 14 is led out of the outer tank 5 through the inside of the external outlet side pipe portion 9 of the communication pipe 20 without directly penetrating the wall of the outer tank 5. A seal seat 16 is formed on the wall of the bent portion of the external outlet side pipe portion 9 through which the valve opening/closing operation lever 14 passes, and a seal 17 such as a packing is inserted into the seal seat 16.
8, the valve opening/closing operation lever 14
It is designed to maintain airtightness of the penetration part. Further, an operating handle 19 is attached to the externally extending end of the valve opening/closing operating lever 14, and by rotating the valve opening/closing operating lever 14 from the outside via this handle, the lever 14 is threaded with the boss portion 13. The valve body 10 can be brought into contact with and separated from the valve seat 11 by the screw feeding action caused by the engagement, thereby opening and closing the valve. Note that lead wires and other piping for supplying power to the superconducting magnet 1 in the inner tank 43 are actually provided passing through the inner and outer tanks, but they are not shown because they are not relevant to the essentials of the present invention. .

而して、こうした構成の超電導マグネツトの冷
却装置であれば、連通管20の途中である外槽5
内の内槽3との真空空間部位に封じ切り弁7Aを
配設したにも係わらず、該連通管20の外部導出
側管部9内を通つて外部に延出した弁開閉操作レ
バー14のハンドル19を外部から回転操作する
ことで、弁体10を移動して弁開閉できて、連通
管20の内槽接続側管部8と外部導出側管部9と
の間を連通したり遮断したりできる。従つて液体
ヘリウムの供給時及び気化ヘリウムガス抜き時以
外は内槽3を外部から完全に封じ切つておけて、
連通管20内をストレートに通つて来る外熱の内
槽3への侵入を防止できる。また該封じ切り弁7
Aが上述の如く連通管20途中の外槽5内の内槽
3との真空空間部位にあるので、外部導出管部9
の外槽外の配管部分壁から伝わつて来た外熱がガ
ス対流等によりそのまま内槽接続側管部8方に侵
入するのを防止できると共に、回転移動せしめら
れる弁開閉操作レバー14が直接外槽5壁に貫通
することなく、連通管20の外部導出側管部9内
を通つて外槽5外に導出されているので、外槽5
内に外気が侵入するようなことが無く、その真空
層4の真空保持が確実に図れる。即ち、弁の操作
機構にに起因する冷却装置内への外熱の侵入を確
実に防止できて、冷却性能のアツプが図れるよう
になる。また外熱の侵入を防止できれば、それだ
け内槽3の封じ切り時間を延長することが可能で
更に冷却性能の向上が図れるなる。
In a superconducting magnet cooling device having such a configuration, the outer tank 5 located in the middle of the communication pipe 20
Although the shutoff valve 7A is disposed in the vacuum space between the inner tank 3 and the inner tank 3, the valve opening/closing operation lever 14 extending to the outside through the outside outlet side pipe part 9 of the communication pipe 20 does not work. By rotating the handle 19 from the outside, the valve body 10 can be moved to open and close the valve, thereby communicating or blocking communication between the inner tank connection side pipe section 8 and the external outlet side pipe section 9 of the communication pipe 20. You can Therefore, the inner tank 3 can be completely sealed off from the outside except when supplying liquid helium and degassing vaporized helium.
External heat that passes straight through the communication pipe 20 can be prevented from entering the inner tank 3. Also, the shutoff valve 7
Since A is located in the vacuum space between the outer tank 5 and the inner tank 3 in the middle of the communication pipe 20, the external lead-out pipe part 9
It is possible to prevent the external heat transmitted from the wall of the piping section outside the outer tank from directly invading the inner tank connection side pipe section 8 due to gas convection, etc., and the valve opening/closing operation lever 14, which can be rotated, The outer tank 5 is led out through the outside outlet side pipe part 9 of the communication pipe 20 without penetrating the wall of the tank 5.
There is no possibility that outside air will enter the interior, and the vacuum layer 4 can be maintained in a vacuum. That is, it is possible to reliably prevent external heat from entering into the cooling device due to the valve operating mechanism, thereby improving cooling performance. Moreover, if the intrusion of external heat can be prevented, the time for sealing off the inner tank 3 can be extended accordingly, and the cooling performance can be further improved.

第3図は本発明の他の実施例を示すもので、弁
体10に安全弁10aを設けた構成で、その安全
弁10aは常時スプリング21により図示左方向
に付勢されていて、内槽封じ切り期間中(弁体1
0が閉じられている時)何らかの異常原因によつ
て内槽内の圧力が所定値を超過した場合には、そ
の内圧即ち、内槽接続側管部8内と外部導出側管
部9内との差圧によりスプリング21に抗して図
示右方に押されて開き、内槽内のヘリウムガスを
外部に放出して減圧により安全を図れるようにし
てある。
FIG. 3 shows another embodiment of the present invention, in which a safety valve 10a is provided on the valve body 10, and the safety valve 10a is always urged to the left in the figure by a spring 21, and the inner tank is sealed off. During the period (valve body 1
0 is closed) If the pressure in the inner tank exceeds a predetermined value due to some abnormal cause, the internal pressure, that is, the internal pressure inside the inner tank connection side pipe part 8 and the external outlet side pipe part 9. Due to the pressure difference between the inner tank and the inner tank, the inner tank is pushed to the right in the figure against the spring 21 and opened, and the helium gas in the inner tank is released to the outside, thereby reducing the pressure and ensuring safety.

第4図は本発明の更に他の実施例を示すもの
で、外部導出側管部9内を真空にしてガス対流に
よる外熱の侵入を少なくすべく、管内減圧手段を
設けた構成で、外部導出側管部9の外槽5外の配
管部分に真空ポンプ(図示せず)を接続するため
の真空コツク22及び安全弁23が設けられ、ま
た該外部導出側管部9と外部装置を遮断するため
の弁24が設けられている。これにて内槽封じ切
り時に、弁24を閉じ、真空コツク22を開いて
真空ポンプにより外部導出管部9内のガスを放出
して真空にすれば、そのガスの対流により外熱が
該外部導出管部9内を通つて冷却装置内方に侵入
して来るのを防止できるようになる。
FIG. 4 shows still another embodiment of the present invention, in which a pressure reducing means inside the pipe is provided in order to evacuate the inside of the external outlet side pipe part 9 and reduce the intrusion of external heat due to gas convection. A vacuum tank 22 for connecting a vacuum pump (not shown) and a safety valve 23 are provided to the piping portion of the outlet side pipe section 9 outside the outer tank 5, and also to cut off the external device from the external outlet side pipe section 9. A valve 24 is provided for this purpose. When the inner tank is sealed off, the valve 24 is closed, the vacuum chamber 22 is opened, and the vacuum pump releases the gas inside the external outlet pipe section 9 to create a vacuum. It is possible to prevent the air from entering the cooling device through the inside of the outlet pipe portion 9.

本発明は上述した如く、外部から外槽壁を気密
に貫通して前記内槽に液体ヘリウムの注入或いは
気化ヘリウムガスの流出を行う連通管途中の該外
槽内の内槽との間の真空空間部位に介在する状態
に封じ切り弁を設け、しかもその封じ切り弁は、
弁本体内に配した弁座及び該弁座に接離可能な弁
体と、前記弁本体内から前記連通管の外部導出側
管部を長く亘つて通り外槽壁外位置にて該管部壁
を気密に貫通して外部操作可能に導出した弁開閉
用操作レバーとからなる構成としたから、液体ヘ
リウム供給時やヘリウムガス抜き時以外は内槽を
外部に対して封じ切ることができて、外槽外の配
管部からの熱侵入を防止できると共に、外槽内の
真空層の真空保時に悪影響を与えるようなことが
無い非常に冷却性能に優れた超電導マグネツトの
冷却装置となる。
As described above, the present invention provides a vacuum between the outer tank and the inner tank in the middle of the communication pipe that airtightly penetrates the outer tank wall from the outside and injects liquid helium into the inner tank or discharges vaporized helium gas. A shutoff valve is provided interposed in the space, and the shutoff valve is
A valve seat disposed within the valve body, a valve body that can be moved into and out of contact with the valve seat, and a pipe portion that extends from the valve body through an external outlet side pipe portion of the communication pipe at a position outside the outer tank wall. The structure consists of a valve opening/closing control lever that penetrates the wall airtight and can be operated externally, so the inner tank can be sealed off from the outside except when supplying liquid helium or venting helium gas. This provides a cooling device for a superconducting magnet that can prevent heat from entering from the piping section outside the outer tank, and has extremely excellent cooling performance without adversely affecting the vacuum maintenance of the vacuum layer inside the outer tank.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す断面図、第2
図は同要部拡大断面図、第3図は本発明の他の実
施例を示す要部分の断面図、第4図は更に本発明
の他の実施例を示す要部分の断面図である。 1……超電導マグネツト、2……液体ヘリウ
ム、3……内槽、4……真空層、5……外槽、6
……断熱支持部材、7A……封じ切り弁、7……
弁体(ケーシング)、20……連通管、8……連
通管の内槽接続側管部、9……連通管の外部導出
側管部、10……弁体、11……弁座、12……
リブ、13……雌ねじ付きボス部、14……弁開
閉操作レバー、15……雄ねじ、16……シール
座、17……シール、18……押えねじ、19…
…操作ハンドル、10a……安全弁、21……ス
プリング、22,23,24……管内減圧手段
(22……真空ポンプ、23……安全弁、24…
…弁)。
FIG. 1 is a cross-sectional view showing one embodiment of the present invention, and FIG.
3 is a sectional view of the essential part showing another embodiment of the present invention, and FIG. 4 is a sectional view of the essential part showing another embodiment of the present invention. 1...Superconducting magnet, 2...Liquid helium, 3...Inner tank, 4...Vacuum layer, 5...Outer tank, 6
...Insulation support member, 7A...Sealing valve, 7...
Valve body (casing), 20... Communication pipe, 8... Inner tank connection side pipe part of the communication pipe, 9... External outlet side pipe part of the communication pipe, 10... Valve body, 11... Valve seat, 12 ……
Rib, 13... Female threaded boss portion, 14... Valve opening/closing operation lever, 15... Male thread, 16... Seal seat, 17... Seal, 18... Holding screw, 19...
...Operation handle, 10a...Safety valve, 21...Spring, 22, 23, 24...Pipe pressure reduction means (22...Vacuum pump, 23...Safety valve, 24...
…valve).

Claims (1)

【特許請求の範囲】 1 超電導マグネツトを液体ヘリウムと共に収納
する内槽と、この内槽を囲んで断熱支持する真空
容器である熱遮断用外槽と、この外槽外から該外
槽壁を気密に貫通して前記内槽に連通し液体ヘリ
ウムの注入或いは気化ヘリウムガスの流出を行う
連通管とを含む超電導マグネツトの冷却装置にお
いて、前記連通管の外槽内で内槽との間の真空空
間部位途中に介在する状態に配した弁本体と、こ
の弁本体内に配した弁座及び該弁座に接離可能な
弁体と、前記弁本体内から前記連通管の外部導出
側管部内を長く亘つて通り外槽壁外位置にて該管
部壁を気密に貫通して外部操作可能に導出した弁
開閉用操作レバーとからなる封じ切り弁を設けて
構成したことを特徴とする超電導マグネツトの冷
却装置。 2 封じ切り弁は、弁体内に連通管の内槽接続側
管部内と外部導出側管部内との差圧が一定以上と
なると自動開放して該内槽内の気化したヘリウム
ガスを外部に流出せしめる安全弁を有しているこ
とを特徴とする特許請求の範囲第1項記載の超電
導マグネツトの冷却装置。 3 連通管は、封じ切り弁の弁体閉成時に外部導
出側管部内を真空化してガスの対流による外熱の
侵入を防止する管内減圧手段を有していることを
特徴とする特許請求の範囲第1項記載の超電導マ
グネツトの冷却装置。
[Scope of Claims] 1. An inner tank that stores a superconducting magnet together with liquid helium, an outer heat-insulating tank that is a vacuum container that surrounds and insulates and supports this inner tank, and a wall of the outer tank that is airtight from the outside of the outer tank. In a cooling device for a superconducting magnet, the cooling device includes a communication pipe that penetrates the inner tank and injects liquid helium or discharges vaporized helium gas, the vacuum space between the inner tank and the outer tank of the communication pipe. A valve body interposed in the middle of the valve body, a valve seat disposed within the valve body, a valve body that can be moved into and out of contact with the valve seat, and an external outlet side pipe portion of the communication pipe from within the valve body. A superconducting magnet characterized in that a shutoff valve is provided at a position outside the outer tank wall for a long time, and includes a valve opening/closing operation lever that airtightly penetrates the pipe wall and is led out for external operation. cooling system. 2. The shutoff valve automatically opens when the differential pressure between the inner tank connection side pipe of the communication pipe and the external outlet side pipe inside the valve body exceeds a certain level, and the vaporized helium gas in the inner tank flows out to the outside. 2. A cooling device for a superconducting magnet according to claim 1, further comprising a safety valve for reducing the temperature of the superconducting magnet. 3. The communication pipe has an internal pressure reducing means that evacuates the outside outlet side pipe section when the valve body of the shutoff valve is closed to prevent external heat from entering due to gas convection. A cooling device for a superconducting magnet according to scope 1.
JP417177A 1977-01-18 1977-01-18 Cooling device of superconductive magnet Granted JPS5389695A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP417177A JPS5389695A (en) 1977-01-18 1977-01-18 Cooling device of superconductive magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP417177A JPS5389695A (en) 1977-01-18 1977-01-18 Cooling device of superconductive magnet

Publications (2)

Publication Number Publication Date
JPS5389695A JPS5389695A (en) 1978-08-07
JPS6123673B2 true JPS6123673B2 (en) 1986-06-06

Family

ID=11577278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP417177A Granted JPS5389695A (en) 1977-01-18 1977-01-18 Cooling device of superconductive magnet

Country Status (1)

Country Link
JP (1) JPS5389695A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0431547B2 (en) * 1986-10-28 1992-05-26
JPH0548048Y2 (en) * 1987-12-11 1993-12-20

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59139686A (en) * 1984-01-20 1984-08-10 Hitachi Ltd Cryogenic container

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0431547B2 (en) * 1986-10-28 1992-05-26
JPH0548048Y2 (en) * 1987-12-11 1993-12-20

Also Published As

Publication number Publication date
JPS5389695A (en) 1978-08-07

Similar Documents

Publication Publication Date Title
US4230142A (en) Vent/vacuum breaker float valve assembly
JPS62501406A (en) Devices for limiting the filling of containers, especially automobile fuel tanks, and for venting and venting
CA2096419A1 (en) Process for regenerating a cryopump and suitable cryopump for implementing this process
BRPI0618016A2 (en) control element for filling and / or drawing a pressure gas, reservoir and circuit fitted with such element
ZA200509179B (en) Liquefied gas storage installation
US3585807A (en) Method of and apparatus for pumping gas under cryogenic conditions
JPH0634832B2 (en) Filling device for anesthetic vaporizer with temperature sensitive control member
JPS6123673B2 (en)
US2673707A (en) Safety cutoff valve having bellows controlled trip
US2806644A (en) Vacuum system apparatus
EP0059599A1 (en) Valve mechanism for low temperature applications
US3260061A (en) Flow system for cryogenic materials
JPS58183851A (en) Percolation preventing system for carburetor
US5900058A (en) Apparatus for producing single crystal
US3097498A (en) Apparatus for handling liquefied cases
JP3250223B2 (en) Liquefied natural gas storage device
RU2737960C1 (en) System for cryogenic storage and supply of reagents for power plant with electrochemical generators
US2400570A (en) Liquefied petroleum gas dispensing system
KR100596172B1 (en) A vaporizer using steam and heating
CN116293405B (en) Low-temperature dewar bottle and use method thereof
US2360491A (en) Water cooler
CN212899947U (en) Petroleum machinery breather valve
JPH03130968U (en)
JP2674930B2 (en) Decaborane evaporator
JP2000291892A (en) Bulk feeder