JPS61236399A - Rotor brake device - Google Patents

Rotor brake device

Info

Publication number
JPS61236399A
JPS61236399A JP7591285A JP7591285A JPS61236399A JP S61236399 A JPS61236399 A JP S61236399A JP 7591285 A JP7591285 A JP 7591285A JP 7591285 A JP7591285 A JP 7591285A JP S61236399 A JPS61236399 A JP S61236399A
Authority
JP
Japan
Prior art keywords
soft iron
electromagnetic soft
flywheel
iron plate
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7591285A
Other languages
Japanese (ja)
Inventor
Hiroshi Inoue
寛 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP7591285A priority Critical patent/JPS61236399A/en
Publication of JPS61236399A publication Critical patent/JPS61236399A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P15/00Arrangements for controlling dynamo-electric brakes or clutches

Abstract

PURPOSE:To enable to apply the prescribed brake torque irrespective of the rotating speed of a rotor by providing a supporting plate for supporting a permanent magnet disposed near the rotor having a conductor in engagement with the rotational shaft of the rotor. CONSTITUTION:A ring-shaped conductive electromagnetic soft iron ring 5' is engaged integrally with a collar 5a of a flywheel 5. A disc-shaped electromagnetic soft iron plate 8 is provided at an ultrafine gap from the wheel 5, permanent magnets 11 are provided at an equal interval on the circumference of the plate 8, and an electromagnetic soft iron plate 7 is provided on the magnets 11. When the flywheel 5 is rotated, a brake torque is generated between the ring 5' and the plate 8. When the torque becomes larger than the torque value for stopping the plate 8 on the basis of a load 13, the plate 8 is rotated in the same direction as the wheel 5 to reduce the brake torque.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は回転慣性を有する回転体に一定の制動トルクを
与える回転体制動装置に関し特に定置型運動装置に適用
できるものに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a rotating body motion device that applies a constant braking torque to a rotating body having rotational inertia, and particularly to one that can be applied to a stationary motion device.

〔従来の技術〕[Conventional technology]

従来、回転体に制動を加える、すなわち制動トルクを与
える第1の手段として、ディスク式、ベルト式等の機械
的摩擦ブレーキを用いるものがある。
BACKGROUND ART Conventionally, as a first means for applying braking to a rotating body, that is, applying a braking torque, there are methods that use a mechanical friction brake such as a disc type or a belt type.

第2の手段としては発電機を設は出力電流を調節して所
定制動トルクを発生させるものがある。
A second method is to set up a generator and adjust the output current to generate a predetermined braking torque.

第3の手段として回転体を導電体でつくり、導電体を挟
んでコイルにより磁気回路を形成し、磁束が回転する導
電体を交鎖することによって生ずるうず電流により制動
トルクを加えるものがある。
As a third method, there is a method in which the rotating body is made of a conductor, a magnetic circuit is formed by a coil sandwiching the conductor, and braking torque is applied by the eddy current generated when the magnetic flux crosses the rotating conductor.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述の従来の回転体制動装置のうち。 Among the above-mentioned conventional rotary body motion devices.

第1の手段ではブレーキ部分の摩耗を生ずるため耐久性
に乏しく又摺動音を騒音として発生するという欠点があ
る。
The first method has the disadvantage that it is poor in durability because it causes wear of the brake part, and also generates sliding noise as noise.

第2の手段は非接触で騒音を発生することもなく精度の
良い制動トルク、を発生させ得るが発生した電流を抵抗
器に流して制動トルクを発生させるので定置型運動装置
に適用しようとすると300〜400Wの発電機及び大
型の可変抵抗器や冷却器等を要し、コストの上で不利と
なる。
The second method can generate accurate braking torque without contact and without generating noise, but since the generated current is passed through a resistor to generate braking torque, it is difficult to apply it to a stationary exercise device. This requires a 300 to 400 W generator, a large variable resistor, a cooler, etc., and is disadvantageous in terms of cost.

更に第3の手段も第2の手段と同様、非接触で。Furthermore, like the second means, the third means is also non-contact.

騒音を発生することなく精度の良い制動トルクを発生さ
せ得るがコイルに電流を流すための電源を必要とし、コ
ストの上で不利となる欠点を有する。
Although it is possible to generate braking torque with high accuracy without generating noise, it requires a power source to supply current to the coil, which has the drawback of being disadvantageous in terms of cost.

ヌ回転体の回転速度に拘らず一定の制動トルクを与える
ためには第2の手段では定電流負荷回路、第3の手段で
はストレインゲージ等を用いてコイル電流を制御する回
路を要し装置が複雑化すると本発明は前記問題点を解決
するものであって以下にその内容を第1図乃至第3図を
用いて説明する。
In order to apply a constant braking torque regardless of the rotational speed of the rotating body, the second method requires a constant current load circuit, and the third method requires a circuit that controls the coil current using a strain gauge, etc. The present invention is intended to solve the above-mentioned problem, and its contents will be explained below with reference to FIGS. 1 to 3.

フライホイール5はチェーン2.タイミングベルト4を
介してペダル回転部1、変速器3と連結される。又、フ
ライホイール5はベアリング16を介してシャフト18
のまわりに回転する。フライホイール5の鍔部5aには
厚さがフライホイール5の回転軸方向に徐々に増加又は
減少するリング状の導電性の電磁軟鉄軸5′がはめ込ま
れ一体化される。
The flywheel 5 is a chain 2. It is connected to the pedal rotating section 1 and the transmission 3 via a timing belt 4. Further, the flywheel 5 is connected to a shaft 18 via a bearing 16.
rotate around. A ring-shaped conductive electromagnetic soft iron shaft 5' whose thickness gradually increases or decreases in the direction of the rotational axis of the flywheel 5 is fitted and integrated into the flange 5a of the flywheel 5.

電磁軟鉄軸5と微小間隙をもって円板状の電磁軟鉄板8
が設けられ、電磁軟鉄板8の円周部には複数個リング状
フェライトより成る永久磁石11が等間隔に設けられ、
この永久磁石11の上に電磁軟鉄板7が設けられ永久磁
石11と電磁軟鉄板7.8は非磁性体ビス20で一体化
される。電磁軟鉄板8はネジ部10aでシャフト1oに
螺合(ネジ結合)し、電磁軟鉄板8は回転可能にして且
つフライホイール5の回転軸方向に移動可能である。電
磁軟鉄板8のロープ巻付部8aにはワイヤロープ15の
一旦が固定され他端には一定の制動トルクを与える荷重
13が設けられる。
A disc-shaped electromagnetic soft iron plate 8 with a small gap between the electromagnetic soft iron shaft 5
A plurality of permanent magnets 11 made of ring-shaped ferrite are provided at equal intervals around the circumference of the electromagnetic soft iron plate 8.
An electromagnetic soft iron plate 7 is provided on the permanent magnet 11, and the permanent magnet 11 and the electromagnetic soft iron plate 7.8 are integrated with non-magnetic screws 20. The electromagnetic soft iron plate 8 is screwed (screwed) onto the shaft 1o at a threaded portion 10a, and the electromagnetic soft iron plate 8 is rotatable and movable in the direction of the rotation axis of the flywheel 5. A wire rope 15 is once fixed to the rope winding portion 8a of the electromagnetic soft iron plate 8, and a load 13 for applying a constant braking torque is provided at the other end.

〔作 用〕[For production]

磁石11がつくる磁束は電磁軟鉄板7から出て空隙を通
って電磁軟鉄軸5′を通り再び空隙を通って電磁軟鉄板
8に戻る。このとき電磁軟鉄板7,8の存在によりもれ
磁束が防げる。
The magnetic flux generated by the magnet 11 exits the electromagnetic soft iron plate 7, passes through the air gap, passes through the electromagnetic soft iron shaft 5', returns to the electromagnetic soft iron plate 8 through the air gap again. At this time, leakage of magnetic flux can be prevented by the presence of the electromagnetic soft iron plates 7 and 8.

フライホイール5がベルトによって回転させられると電
磁軟鉄軸5′にうず電流が生じ、電磁軟鉄軸5′と電磁
軟鉄板8との間に電磁軟鉄軸5′と電磁軟鉄板8との相
対速度を減少させようとする制動トルクが生ずる。
When the flywheel 5 is rotated by the belt, an eddy current is generated in the electromagnetic soft iron shaft 5', and the relative speed between the electromagnetic soft iron shaft 5' and the electromagnetic soft iron plate 8 is changed between the electromagnetic soft iron shaft 5' and the electromagnetic soft iron plate 8. A braking torque is created which is to be reduced.

この制動トルクの強さは電磁軟鉄軸5′の回転方向に垂
直な磁束密度の2乗と、電磁軟鉄軸5′と電磁軟鉄板8
との相対的な回転速度の2乗に比例する。そしてこの制
動トルクが荷重13に基づいて電磁軟鉄板8を停止させ
ておけるトルク値より大きくなると電磁軟鉄板8はフラ
イホイール5と同一方向に回転させられる。そして電磁
軟鉄板8はシャフト10に切られたねじによってフライ
ホイール5から離れる方向に移動する。
The strength of this braking torque is determined by the square of the magnetic flux density perpendicular to the rotation direction of the electromagnetic soft iron shaft 5' and the electromagnetic soft iron shaft 5' and the electromagnetic soft iron plate 8.
It is proportional to the square of the relative rotational speed. When this braking torque becomes larger than a torque value that can stop the electromagnetic soft iron plate 8 based on the load 13, the electromagnetic soft iron plate 8 is rotated in the same direction as the flywheel 5. Then, the electromagnetic soft iron plate 8 is moved in a direction away from the flywheel 5 by a screw cut in the shaft 10.

この移動によって電磁軟鉄板8、電磁軟鉄軸5′との空
隙量が大きくなり、磁気抵抗の増加によりうず電流が小
さくなって制動トルクが減少する。
This movement increases the amount of air gap between the electromagnetic soft iron plate 8 and the electromagnetic soft iron shaft 5', which increases magnetic resistance, reduces eddy current, and reduces braking torque.

そしてこの制動トルクが荷重13に基づく一定の逆回転
トルクと等しくなった位置で電磁軟鉄板8は回転が止ま
り静止する。
Then, at a position where this braking torque becomes equal to a constant reverse rotation torque based on the load 13, the electromagnetic soft iron plate 8 stops rotating and stands still.

このようにしてフライホイール5の回転数の如何に係ら
ず、フライホイールの制動トルクは荷重13に基づく逆
回転トルクに等しくなるので常に一定の制動トルクとな
る。なお荷重を適宜選択することにより一定の制動トル
クの絶対値を変え得る。
In this way, regardless of the rotational speed of the flywheel 5, the braking torque of the flywheel is equal to the reverse rotation torque based on the load 13, so that the braking torque is always constant. Note that the absolute value of the constant braking torque can be changed by appropriately selecting the load.

〔実施例〕〔Example〕

以下、本発明の詳細な説明する。 The present invention will be explained in detail below.

第2図は本発明が適用する定置型自動車運動装置の概略
図である。1はペダル回転部、2はチェーン、3は増速
用プーリーより成る変速器、4はタイミングベルト、5
はフライホイール、6はタイミングベルト4の駆動力を
受ける歯車である。
FIG. 2 is a schematic diagram of a stationary motor vehicle motion device to which the present invention is applied. 1 is a pedal rotation part, 2 is a chain, 3 is a transmission consisting of a speed increasing pulley, 4 is a timing belt, 5
is a flywheel, and 6 is a gear receiving the driving force of the timing belt 4.

なお図では変速器3が介在するが、フライホイール5を
直接、ペダル回転部1がらチェーン又はベルトで駆動し
ても良い。
Although the transmission 3 is shown in the figure, the flywheel 5 may be directly driven by a chain or belt from the pedal rotating section 1.

第3図はフライホイール5の側面図で、フライホイール
5は鋳鉄製の円板より成り、鍔部5aには電磁軟鉄軸5
′がはめ込まれる。電磁軟鉄板7.8に挟まれて非磁性
体ビス2oで固定される永久磁石11はリング型でフェ
ライトより成り電磁軟鉄板8の周辺部に複数個(例えば
円周方向等間隔に8債)設けられる。
FIG. 3 is a side view of the flywheel 5. The flywheel 5 is made of a cast iron disc, and the flange 5a has an electromagnetic soft iron shaft 5.
' is inserted. The permanent magnets 11, which are sandwiched between the electromagnetic soft iron plates 7 and 8 and fixed with non-magnetic screws 2o, are ring-shaped and made of ferrite, and a plurality of them are arranged around the electromagnetic soft iron plate 8 (for example, 8 magnets are arranged at equal intervals in the circumferential direction). provided.

第1図(a)(b)は第3図のA−A断面を示ス、5′
はフライホイール5の鍔部5aの内側のはめ込まれた電
磁軟鉄軸でフライホイール5が鋳鉄の場合に磁気特性を
良好にする。フライホイール5と電磁軟鉄軸5′と歯車
6は一体化し、ベアリング16を介して固定のシャフト
10のまわりに回転される。なおベアリング16により
フライホイール5の回転軸方向位置は固定される。
Figures 1 (a) and (b) show the A-A cross section in Figure 3, 5'
is an electromagnetic soft iron shaft fitted inside the flange 5a of the flywheel 5, which improves magnetic properties when the flywheel 5 is made of cast iron. The flywheel 5, the electromagnetic soft iron shaft 5', and the gear 6 are integrated and rotated around a fixed shaft 10 via a bearing 16. Note that the position of the flywheel 5 in the rotation axis direction is fixed by the bearing 16.

8は電磁軟鉄板でシャツ)10のねじ部10aと螺合(
ねじ結合)する、すなわち電磁軟鉄板8は回転されると
シャツ)10の軸方向に移動する。
8 is an electromagnetic soft iron plate that is screwed into the threaded part 10a of the shirt 10 (
When the electromagnetic soft iron plate 8 is rotated, it moves in the axial direction of the shirt 10.

なお電磁軟鉄板8がスラストベアリング18と接する位
置が軸方向の初期位置である。電磁軟鉄板8の移動の方
向はフライホイール5の回転方向と同方向に電磁軟鉄板
8が回転する場合フライホイール5から離れるような方
向である。
Note that the position where the electromagnetic soft iron plate 8 contacts the thrust bearing 18 is the initial position in the axial direction. The direction of movement of the electromagnetic soft iron plate 8 is such that when the electromagnetic soft iron plate 8 rotates in the same direction as the rotating direction of the flywheel 5, it moves away from the flywheel 5.

電磁軟鉄板8の円周部には複数個の永久磁石11が固定
され電磁軟鉄板7,8、永久磁石11が非磁性体ビス2
0で一体化される。
A plurality of permanent magnets 11 are fixed to the circumference of the electromagnetic soft iron plate 8, and the electromagnetic soft iron plates 7, 8 and the permanent magnets 11 are connected to the non-magnetic screws 2.
It is unified at 0.

そして永久磁石11がつくる磁束は電磁軟鉄板7の先端
から出て空隙部を介して電磁軟鉄軸5′を通って再び空
隙部を介し電磁軟鉄板8の先端に至る磁路を形成する。
The magnetic flux generated by the permanent magnet 11 exits from the tip of the electromagnetic soft iron plate 7, passes through the gap, passes through the electromagnetic soft iron shaft 5', and forms a magnetic path that reaches the tip of the electromagnetic soft iron plate 8 via the gap.

なお電磁軟鉄軸5′は図に示す如くシャフト10の軸方
向に厚さが徐々に増加又は減少するテーバ状に形成され
ており電磁軟鉄板7.8の先端部と電磁軟鉄軸5′との
空隙量が電磁軟鉄板8の回転に伴い変化するようになて
いる。
As shown in the figure, the electromagnetic soft iron shaft 5' is formed in a tapered shape whose thickness gradually increases or decreases in the axial direction of the shaft 10, and the tip of the electromagnetic soft iron plate 7.8 and the electromagnetic soft iron shaft 5' The amount of air gap changes as the electromagnetic soft iron plate 8 rotates.

八 電磁軟鉄板8のロープ巻き付は部8aには止め具17で
一端を固定されたワイヤロープ12が1回転以上巻き付
けられていてワイヤーロープ12の他端に荷重13が設
けられる。なお電磁軟鉄板8は荷重13によりフライホ
イール5に近づくよう回転されるが初期状態ではスラス
トベアリング18によってその回転が規制される。そし
て電磁軟鉄板8が後述するようにフライホイール5と同
方向に回転する場合、ワイヤーロープ12はロープ巻付
部8aにならって並列に巻きつけられ荷重13が引上げ
られて電磁軟鉄板8に一定の逆回転トルクを加える。
Regarding the rope winding of the eight electromagnetic soft iron plates 8, a wire rope 12 with one end fixed by a stopper 17 is wound around the part 8a for one or more turns, and a load 13 is provided at the other end of the wire rope 12. The electromagnetic soft iron plate 8 is rotated by the load 13 so as to approach the flywheel 5, but its rotation is regulated by the thrust bearing 18 in the initial state. When the electromagnetic soft iron plate 8 rotates in the same direction as the flywheel 5 as described later, the wire rope 12 is wound in parallel following the rope winding part 8a, and the load 13 is pulled up and fixed on the electromagnetic soft iron plate 8. Add reverse rotation torque.

さてフライホイール5がベルトによって回転させられる
と電磁軟鉄軸5′にうず電流が生じ電磁軟鉄軸5′と電
磁軟鉄板8との間に電磁軟鉄軸5′と電磁軟鉄板8との
相対速度を減少させようとする制動トルクが生ずる。
Now, when the flywheel 5 is rotated by the belt, an eddy current is generated in the electromagnetic soft iron shaft 5' and the relative speed between the electromagnetic soft iron shaft 5' and the electromagnetic soft iron plate 8 is generated between the electromagnetic soft iron shaft 5' and the electromagnetic soft iron plate 8. A braking torque is created which is to be reduced.

この制動トルクの強さは電磁軟鉄軸5′の回転方向に垂
直な磁束密度の2乗と、電磁軟鉄軸5′と電磁軟鉄板8
との相対的な回転速度の2乗に比例する。
The strength of this braking torque is determined by the square of the magnetic flux density perpendicular to the rotation direction of the electromagnetic soft iron shaft 5' and the electromagnetic soft iron shaft 5' and the electromagnetic soft iron plate 8.
It is proportional to the square of the relative rotational speed.

従ってフライホイールの回転数を上昇させた場合大きな
制動トルクが生ずる。
Therefore, when the rotational speed of the flywheel is increased, a large braking torque is generated.

上述の制動トルクは電磁軟鉄板8をフライホイール5と
同一方向に回転させようとするので、もし電磁軟鉄板8
の回転を止める荷重13に基づく逆回転トルクより大き
な制動トルクが生じた場合電磁軟鉄板8はフライホイー
ル5と同一方向に回転させられる。
The above braking torque tries to rotate the electromagnetic soft iron plate 8 in the same direction as the flywheel 5, so if the electromagnetic soft iron plate 8
When a braking torque larger than the reverse rotation torque based on the load 13 that stops the rotation of the electromagnetic soft iron plate 8 is caused to rotate in the same direction as the flywheel 5.

電磁軟鉄板8がフライホイール5と同一方向に回転する
とシャフト10のねじ部10aにより電磁軟鉄板8はフ
ライホイール5から離れる方向に移動する。
When the electromagnetic soft iron plate 8 rotates in the same direction as the flywheel 5, the electromagnetic soft iron plate 8 is moved away from the flywheel 5 by the threaded portion 10a of the shaft 10.

この移動によって電磁軟鉄板7.8の先端と電磁軟鉄軸
5′との空隙量が大きくなり磁束密度の低下に伴ってう
ず電流の発生が小さくなるので制動トルクが減少する。
This movement increases the amount of air gap between the tip of the electromagnetic soft iron plate 7.8 and the electromagnetic soft iron shaft 5', and as the magnetic flux density decreases, the generation of eddy current becomes smaller, so that the braking torque decreases.

そしてこの制動トルクが荷重13による逆回転トルクと
等しくなった位置で電磁軟鉄板8は回転が止まり静止す
る。
Then, at a position where this braking torque becomes equal to the reverse rotation torque due to the load 13, the electromagnetic soft iron plate 8 stops rotating and stands still.

この状態はフライホイール5に逆回転トルクに等しい制
動トルクを加えていることになる。
In this state, a braking torque equal to the reverse rotation torque is applied to the flywheel 5.

フライホイール5の回転数を更に上げると、うず電流が
増大し制動トルクが逆回転トルクを上まわり、電磁軟鉄
板8は回転して更にフライホイール5から離れ、逆回転
トルクとつり合った位置で静止する。
When the rotation speed of the flywheel 5 is further increased, the eddy current increases and the braking torque exceeds the reverse rotation torque, and the electromagnetic soft iron plate 8 rotates further away from the flywheel 5 and reaches a position balanced with the reverse rotation torque. Stand still.

な・おフライホイールの回転数を下げると荷重13に基
づく逆回転トルクの方が制動トルクを上まわり電磁軟鉄
板8は回転してフライホイール5に近づきこれにより制
動トルクが増して荷重13に基ツ<逆回転トルクとつり
合った位置で電磁軟鉄板8は静止する。
Note that when the rotational speed of the flywheel is lowered, the reverse rotation torque based on the load 13 exceeds the braking torque, and the electromagnetic soft iron plate 8 rotates and approaches the flywheel 5, thereby increasing the braking torque and increasing the braking torque based on the load 13. The electromagnetic soft iron plate 8 comes to rest at a position balanced with the reverse rotation torque.

従って電磁軟鉄板8が静止した状態ではフライホイール
5の回転数の如何に係らず、フライホイール5の制動ト
ルクは荷重13による逆回転トルクに等しくなり一定の
制動トルクを与えることになる。
Therefore, when the electromagnetic soft iron plate 8 is stationary, the braking torque of the flywheel 5 is equal to the reverse rotational torque due to the load 13, and a constant braking torque is provided regardless of the rotational speed of the flywheel 5.

そして荷重13の重量を適宜選択することにより、任意
の一定制動トルクを与えることができる。
By appropriately selecting the weight of the load 13, any constant braking torque can be applied.

〔変形例〕[Modified example]

以上の実施例において、ワイヤロープ12の替わりにバ
ネ等を用いても良い。
In the above embodiments, a spring or the like may be used instead of the wire rope 12.

又、電磁軟鉄輪5′の回転軸方向の厚さを不均一とした
が、これを一定としても良く、この場合、電磁軟鉄板7
の外側端面を電磁軟鉄輪5′の外側端面より突出させる
ことにより空隙量を増して制動トルクを減少させること
となる。
In addition, although the thickness of the electromagnetic soft iron ring 5' in the direction of the rotation axis is made non-uniform, it may be constant; in this case, the thickness of the electromagnetic soft iron plate 7
By making the outer end surface of the electromagnetic soft iron ring 5' protrude from the outer end surface of the electromagnetic soft iron ring 5', the amount of air gap is increased and the braking torque is reduced.

又、上記実施例において永久磁石11はリング状フェラ
イトとしたが、リング状の替わりに角状のものやフェラ
イトの替わりにアルニコを用いても良い。
Further, in the above embodiment, the permanent magnet 11 is made of ring-shaped ferrite, but a square-shaped one may be used instead of the ring-shaped one, or alnico may be used instead of ferrite.

但しリング状フェライト磁石はスピーカー用に多量に生
産されており安価である。
However, ring-shaped ferrite magnets are produced in large quantities for use in speakers and are inexpensive.

なお上記実施例では定置型運動装置として自動車を例示
したがボード等であっても良いことは明らかである。
In the above embodiments, an automobile was used as an example of the stationary exercise device, but it is clear that a board or the like may also be used.

なお運動装置以外にもモーター等の原動機の特性試験機
にも応用可能であってフライホイールを被測定モーター
で駆動して電流−トルク特性の測定ができる。
In addition to exercise equipment, the present invention can also be applied to a characteristic testing machine for prime movers such as motors, and the current-torque characteristics can be measured by driving the flywheel with the motor to be measured.

又フライホイールにタコメータを取り付けて回転数とト
ルクの積である仕事量を算出することも可能である。
It is also possible to attach a tachometer to the flywheel and calculate the amount of work, which is the product of rotation speed and torque.

C発明の効果〕 以上、本発明によれば回転体の回転数゛に拘らず一定の
制動トルクを与えることができ、しかも回転体に非接触
で制動を与えることができ摩耗、騒音が無く、長寿命化
が達成される。
C Effects of the Invention As described above, according to the present invention, a constant braking torque can be applied regardless of the rotation speed of the rotating body, and braking can be applied without contacting the rotating body, causing no wear and noise. Longer life is achieved.

又、外部からの電力を必要としないため、可搬型として
野外で用いる定置型運動装置に適する。
In addition, since no external power is required, it is suitable for use as a stationary exercise device that is portable and used outdoors.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)(b)は本発明の一実施例の図、第2図は
定置型自動車の概略図、 第3図はフライホイール部の側面図、 図中 1はペダル回転部、3は変速器、5はフライホイール、
5′は電磁軟鉄輪、7,8は電磁軟鉄板、8aはロープ
巻付部、10はシャフト、10aはねじ部、11は永久
磁石、12はワイヤロープ。 13は荷重、20は非磁性体ビス、である。
Figures 1 (a) and (b) are diagrams of one embodiment of the present invention, Figure 2 is a schematic diagram of a stationary vehicle, Figure 3 is a side view of the flywheel section, 1 is a pedal rotation section, 3 is the transmission, 5 is the flywheel,
5' is an electromagnetic soft iron ring, 7 and 8 are electromagnetic soft iron plates, 8a is a rope winding part, 10 is a shaft, 10a is a threaded part, 11 is a permanent magnet, and 12 is a wire rope. 13 is a load, and 20 is a non-magnetic screw.

Claims (1)

【特許請求の範囲】 所定動力によって回転され少なくとも導電体部を備える
回転体と、該回転体の近傍に配される永久磁石を有し、
うず電流発生により回転体に制動トルクを加える回転体
制動装置において、 前記永久磁石を支持して回転可能な支持板を前記回転体
の回転軸と螺合するように設け、且つ該支持板に一定荷
重を備えたことを特徴とする回転体制動装置。
[Scope of Claims] A rotating body that is rotated by a predetermined power and includes at least a conductor portion, and a permanent magnet arranged near the rotating body,
In a rotating body moving device that applies braking torque to a rotating body by generating an eddy current, a support plate that supports the permanent magnet and is rotatable is provided so as to be threadedly engaged with the rotating shaft of the rotating body, and a constant force is attached to the support plate. A rotating body motion device characterized by being equipped with a load.
JP7591285A 1985-04-09 1985-04-09 Rotor brake device Pending JPS61236399A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7591285A JPS61236399A (en) 1985-04-09 1985-04-09 Rotor brake device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7591285A JPS61236399A (en) 1985-04-09 1985-04-09 Rotor brake device

Publications (1)

Publication Number Publication Date
JPS61236399A true JPS61236399A (en) 1986-10-21

Family

ID=13590013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7591285A Pending JPS61236399A (en) 1985-04-09 1985-04-09 Rotor brake device

Country Status (1)

Country Link
JP (1) JPS61236399A (en)

Similar Documents

Publication Publication Date Title
US6084325A (en) Brake device with a combination of power-generating and eddy-current magnetic resistance
US3845339A (en) Permanent magnet rotor electric motor
US8932185B2 (en) Brake device with built-in power generation mechanism and permanent magnetism eddy current
US4283644A (en) DC Motor
US4517505A (en) Varible force, eddy-current or magnetic damper
JPS63198558A (en) Adjustable permanent magnet ac machine
JPH08136558A (en) Rotational speed detector
JPH07505957A (en) Device for measuring rotational movements
US20210379728A1 (en) Balancing device for rotating pieces
US6598490B2 (en) Apparatus for contact-less measuring the value of a difference angle between two parts rotating about a common axis
JP2004308903A (en) Electromagnetic friction clutch
JPS6367140B2 (en)
US2398156A (en) Testing device
US4602373A (en) Variable reactive force exercise device
US7592727B1 (en) Quiet load for motor testing
US6282961B1 (en) Permanent magnet rotary accelerometer
JPS61236399A (en) Rotor brake device
US4730516A (en) Drive apparatus for auxiliary equipment responsive to a charging generator speed representing signal
JP4798598B2 (en) Wind power generator
JPH0238883B2 (en)
JPS61236400A (en) Rotor brake device and stationary moving device used therefor
JP2543854Y2 (en) motor
JPH01234071A (en) Ultrasonic motor provided with magnetic encoder
RU2050533C1 (en) Device for diagnostics and rejection of ball bearings
US3825780A (en) Synchronous hysteresis motor