JPS6123627Y2 - - Google Patents

Info

Publication number
JPS6123627Y2
JPS6123627Y2 JP5185381U JP5185381U JPS6123627Y2 JP S6123627 Y2 JPS6123627 Y2 JP S6123627Y2 JP 5185381 U JP5185381 U JP 5185381U JP 5185381 U JP5185381 U JP 5185381U JP S6123627 Y2 JPS6123627 Y2 JP S6123627Y2
Authority
JP
Japan
Prior art keywords
valve
combustion chamber
engine
cam
compression ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5185381U
Other languages
Japanese (ja)
Other versions
JPS57164224U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP5185381U priority Critical patent/JPS6123627Y2/ja
Publication of JPS57164224U publication Critical patent/JPS57164224U/ja
Application granted granted Critical
Publication of JPS6123627Y2 publication Critical patent/JPS6123627Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Valve Device For Special Equipments (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Description

【考案の詳細な説明】 本考案は可変圧縮比内燃機関に関する。[Detailed explanation of the idea] The present invention relates to a variable compression ratio internal combustion engine.

内燃機関の低負荷域での燃焼効率を高める目的
で高圧縮化すると、低負荷域では目的通り燃費特
性を向上できる。反面高負荷域ではノツキングを
発生する。この対策として高圧縮比化する以前よ
りも点火進角を遅角せざるを得ない。その結果、
機関出力の低下および燃費特性の悪化をまねくこ
とになる。
If compression is increased in order to increase combustion efficiency in the low load range of an internal combustion engine, fuel efficiency can be improved as intended in the low load range. On the other hand, knocking occurs in the high load range. As a countermeasure to this, the ignition advance angle has to be retarded compared to before the high compression ratio was achieved. the result,
This will lead to a decrease in engine output and deterioration of fuel efficiency characteristics.

一方、機関の圧縮比を機関の負荷状態または燃
焼室内圧力状態に応じて変える提案が従来からさ
れている。しかしこれらの従来から提案されれて
いる可変圧縮比機関では、例えば燃焼室内圧力に
よりばねを撓ませて燃焼室容積を変化させてい
る。このため低負荷時にも圧縮圧力がばねの設定
値を越えると燃焼室容積が変化し、高圧縮比とで
きない等の問題があり、十分実用し得ない。
On the other hand, there have been proposals in the past to change the compression ratio of the engine depending on the load state of the engine or the pressure state in the combustion chamber. However, in these conventionally proposed variable compression ratio engines, the volume of the combustion chamber is changed by, for example, bending a spring depending on the pressure within the combustion chamber. For this reason, even when the load is low, if the compression pressure exceeds the set value of the spring, the volume of the combustion chamber changes, causing problems such as not being able to achieve a high compression ratio, making it impossible to put it into practical use.

本考案は低負荷時に従来にない高圧縮比で吸入
混合気を燃焼させ燃焼効率を高めて燃費特性の向
上をはかるとともに、ノツキングを発生し易い高
負荷時には従来機関と同程度の圧縮比に切替えノ
ツキング対策をとるようにした可変圧縮比内燃機
関を提供することを目的とする。
This invention aims to improve fuel efficiency by combusting the intake air-fuel mixture at an unprecedentedly high compression ratio at low loads, increasing combustion efficiency, and at the same time switching to a compression ratio similar to that of conventional engines at high loads, where knocking is likely to occur. An object of the present invention is to provide a variable compression ratio internal combustion engine that takes countermeasures against knocking.

本考案はかかる目的を、内燃機関の燃焼室を第
三弁を介して副燃焼室に連通せしめ、該第三弁を
駆動するためのバルブ駆動機構が前記第三弁を機
関低負荷域では閉じたままとし、機関高負荷域で
は圧縮行程途中から排気行程後半まで開かせるよ
うに構成された可変圧縮比内燃機関により達成す
る。
The present invention achieves this purpose by communicating the combustion chamber of an internal combustion engine with an auxiliary combustion chamber via a third valve, and a valve drive mechanism for driving the third valve closes the third valve in a low engine load region. This is achieved by using a variable compression ratio internal combustion engine that is configured to open the engine from the middle of the compression stroke to the latter half of the exhaust stroke in high engine load ranges.

以下添付図面を参照して本考案の実施例を説明
する。第1図において、シリンダブロツク1にシ
リンダボア1aを穿設しピストン3を往復動可能
に密封嵌合している。燃焼室壁5aおよび該燃焼
室壁5aに連通する囲周された凹所からなる副燃
焼室5bをシリンダヘツド5に形成し、該シリン
ダヘツド5をシリンダブロツク1に載置固定して
いる。ピストン3の上面、シリンダボア1aおよ
び燃焼室壁5aにより囲周される空間として燃焼
室7が形成される。
Embodiments of the present invention will be described below with reference to the accompanying drawings. In FIG. 1, a cylinder bore 1a is formed in a cylinder block 1, and a piston 3 is hermetically fitted therein so as to be able to reciprocate. An auxiliary combustion chamber 5b consisting of a combustion chamber wall 5a and a circumferential recess communicating with the combustion chamber wall 5a is formed in the cylinder head 5, and the cylinder head 5 is mounted and fixed on the cylinder block 1. A combustion chamber 7 is formed as a space surrounded by the upper surface of the piston 3, the cylinder bore 1a, and the combustion chamber wall 5a.

シリンダヘツド5に穿設されかつ燃焼室7に開
口した吸気ポート5cからの混合気の流入を吸気
バルブ9により制御している。同様に第2図に示
すようにシリンダヘツド5に穿設されかつ燃焼室
7に開口した排気ポート5dへの概燃排気の流出
を排気バルブ11により制御している。13は点
火栓である。上記吸気バルブ9および排気バルブ
11は従来構造の動弁機構により開閉されるがそ
の構造は当業者に自明につき説明を省略する。
An intake valve 9 controls the inflow of air-fuel mixture from an intake port 5c formed in the cylinder head 5 and open to the combustion chamber 7. Similarly, as shown in FIG. 2, an exhaust valve 11 controls the outflow of the combusted exhaust gas to an exhaust port 5d formed in the cylinder head 5 and open to the combustion chamber 7. 13 is a spark plug. The intake valve 9 and the exhaust valve 11 are opened and closed by a conventional valve mechanism, but the structure is obvious to those skilled in the art and will not be described further.

上述の如く燃焼室7および副燃焼室5bは連通
しており、副燃焼室5bが燃焼室7に開口する部
位に第三弁15を設けている。
As described above, the combustion chamber 7 and the sub-combustion chamber 5b communicate with each other, and the third valve 15 is provided at a portion where the sub-combustion chamber 5b opens into the combustion chamber 7.

この第3弁15は燃焼室7側へ開くことができ
るものである。
This third valve 15 can be opened toward the combustion chamber 7 side.

第三弁15の弁ロツド15aにバルブリテーナ
17を止着し、該バルブリテーナ17およびシリ
ンダヘツド5の上面間に弁ばね19を装着して第
三弁を上向きに付勢し弁座21に着座させる。こ
こに第三弁15は耐熱性の高い材料で製作してい
る。油圧リフタ23および弁ロツド15a間にス
ウイングアーム25を設け、該スウイングアーム
25をカム27に衝接して弁ロツド15aを押圧
するようにしている。
A valve retainer 17 is fixed to the valve rod 15a of the third valve 15, and a valve spring 19 is installed between the valve retainer 17 and the upper surface of the cylinder head 5 to urge the third valve upward and seat it on the valve seat 21. let Here, the third valve 15 is made of a material with high heat resistance. A swing arm 25 is provided between the hydraulic lifter 23 and the valve rod 15a, and the swing arm 25 collides with a cam 27 to press the valve rod 15a.

次に第三弁駆動用バルブタイミング機構を説明
する。機関のクランク軸(図示せず)の回転に同
期して回転するカム軸31を設け、該カム軸31
に前記カム27を相対回転不能であるが軸方向移
動可能にリニアスライドベアリング33(第4
図)を介して支持している。すなわち、カム軸3
1に軸方向の溝31aを穿ち該溝31aにスライ
ドベアリング33のボール33aを嵌合し、該ボ
ール33aの周方向位置をリテーナ33bにより
保持している。より詳しくは、4気筒内燃機関で
は第4図に示すようにカム軸31に4組の溝を90
゜ずつずらせて等配的に形成している。従つて同
一形状に製作した4つのカム27、すなわち1番
から4番気筒用のカム27−1,27−2,27
−3,27−4を第4図に示すように向きを変え
て装着するだけでよく、製作、組立が容易とな
る。
Next, the valve timing mechanism for driving the third valve will be explained. A camshaft 31 that rotates in synchronization with the rotation of a crankshaft (not shown) of the engine is provided, and the camshaft 31
A linear slide bearing 33 (fourth
(Figure). That is, the camshaft 3
An axial groove 31a is bored in the groove 31a, and a ball 33a of a slide bearing 33 is fitted into the groove 31a, and the circumferential position of the ball 33a is held by a retainer 33b. More specifically, in a four-cylinder internal combustion engine, four sets of grooves are formed on the camshaft 31 at 90° as shown in Fig. 4.
They are evenly spaced and are shifted by 1. Therefore, four cams 27 manufactured in the same shape, namely cams 27-1, 27-2, 27 for cylinders No. 1 to No. 4
-3 and 27-4 as shown in FIG. 4 and simply attach them, making manufacturing and assembly easy.

第三弁15開閉用カム27は第4図に示すよう
に低負荷用カム27aおよび高負荷用カム27b
を含んでいる。ここに低負荷用カム27aはベー
スサークルのみからなり、従つて低負荷用カム2
7aがスウイングアーム25に衝接している間は
第三弁15は第5図に線Aで示すように閉じ続け
る。一方高負荷用カム27bは所定のリフトを有
し第5図に線Bで示すように第三弁を開弁する。
第3図に示すように、第三弁15駆動用の低負荷
用および高負荷用の両カム27a,27b間の揚
程部にばね鋼製の半円形ストツパ27cを設ける
とともに高負荷用カム27bの側面に円形の鍔2
7dを形成している。
The cam 27 for opening and closing the third valve 15 includes a low load cam 27a and a high load cam 27b, as shown in FIG.
Contains. Here, the low load cam 27a consists of only a base circle, and therefore the low load cam 27a consists of only a base circle.
While the third valve 7a is in contact with the swing arm 25, the third valve 15 remains closed as shown by line A in FIG. On the other hand, the high load cam 27b has a predetermined lift and opens the third valve as shown by line B in FIG.
As shown in FIG. 3, a semicircular stopper 27c made of spring steel is provided at the lifting area between the low-load and high-load cams 27a and 27b for driving the third valve 15, and the high-load cam 27b is provided with a semicircular stopper 27c. Circular tsuba 2 on the side
7d.

カム軸31に平行に設置したカム移動軸41に
鍔27dに係合したフオーク43を遊嵌し、カム
移動軸41に固着した板45,47およびフオー
ク43間に連結ばね49,51を装着している。
A fork 43 engaged with the collar 27d is loosely fitted onto a cam moving shaft 41 installed parallel to the cam shaft 31, and connecting springs 49, 51 are installed between the plates 45, 47 fixed to the cam moving shaft 41 and the fork 43. ing.

しかしてカム移動軸41を移動すると連結ばね
49または51が圧縮され移動エネルギが蓄積さ
れる。低負荷用カム27aおよび高負荷用カム2
7bの共通基礎円部がスウイングアーム25に位
置すると蓄積された移動エネルギによつてカム2
7がカム軸31に沿い高速で移動される。なおカ
ム27a,27bがストツパ27cの位置にある
とカム27の移動はストツパ27cにより妨げら
れ、またカム27a,27bの揚程部がスウイン
グアーム25に接触しているとその間に作用する
摩擦力によりカム27の移動が妨げられる。
When the cam movement shaft 41 is moved, the connecting spring 49 or 51 is compressed and movement energy is stored. Low load cam 27a and high load cam 2
When the common base circle part 7b is located on the swing arm 25, the cam 2 is moved by the accumulated movement energy.
7 is moved at high speed along the camshaft 31. Note that when the cams 27a and 27b are at the stopper 27c position, the movement of the cam 27 is blocked by the stopper 27c, and when the lift portions of the cams 27a and 27b are in contact with the swing arm 25, the frictional force acting between them causes the cams to move. 27 movement is obstructed.

なお、本考案の第三弁駆動用可変バルブタイミ
ング機構は公知の他の態様としてもよい。
Note that the variable valve timing mechanism for driving the third valve of the present invention may have other known embodiments.

以上の構成により、機関が低負荷状態にあると
きには、ベースサークルのみからなる低負荷用カ
ム27aをスウイングアーム25に衝接し第三弁
15を閉じ続ける。これにより、機関は高圧縮比
で運転される。この場合の圧縮比を通常の圧縮比
より遥かに高く設定して燃焼効率を高め燃費特性
を向上することができる。次に機関が高負荷状態
になると低負荷用カム27aから高負荷用カム2
7bに切換え第三弁15を開閉させる。この場合
に第三弁15の開弁時期VTは圧縮行程の途中か
ら排気行程の後半までとする(第6図参照)。但
しその最適タイミングは燃焼改善効果およびノツ
キング抑止効果を考慮し実験により決めることが
できる。なお、第6図中VI,VEは吸気バルブ9
および排気バルブ11の開弁時期を示す。
With the above configuration, when the engine is in a low load state, the low load cam 27a consisting only of a base circle collides with the swing arm 25 to keep the third valve 15 closed. This causes the engine to operate at a high compression ratio. The compression ratio in this case can be set much higher than the normal compression ratio to increase combustion efficiency and improve fuel efficiency. Next, when the engine is in a high load state, the low load cam 27a is changed to the high load cam 2.
7b to open and close the third valve 15. In this case, the opening timing V T of the third valve 15 is set from the middle of the compression stroke to the latter half of the exhaust stroke (see FIG. 6). However, the optimum timing can be determined through experiments, taking into consideration the combustion improvement effect and the knocking suppression effect. In addition, V I and V E in Fig. 6 indicate the intake valve 9.
and the opening timing of the exhaust valve 11.

第三弁5を上述のように開くことにより燃焼室
容積が主燃焼室7および副燃焼室5bの和に増
す。この際の機関の圧縮比を従来の機関の圧縮比
と同程度に設定することにより、ノツキング発生
のない健全な熱サイクルを描く。また第三弁15
の開閉により前サイクルの燃焼ガスが副燃焼室5
bに頂留されこれが次サイクルに吸入混合気に入
る。このため、シリンダ内混合気中の既燃ガス割
合が増し、所謂内部EGR効果により、NOXの発
生が低減されかつ異常燃焼の発生が抑制される。
また第三弁を開閉し、弁座に着座することによつ
て燃焼による高温にさらされた第三弁を冷却する
効果も生じる。
By opening the third valve 5 as described above, the combustion chamber volume increases to the sum of the main combustion chamber 7 and the auxiliary combustion chamber 5b. By setting the compression ratio of the engine at this time to the same level as that of conventional engines, a healthy thermal cycle is created without knocking. Also third valve 15
The combustion gas from the previous cycle enters the sub-combustion chamber 5 by opening and closing.
b is added to the top, and this goes into the suction mixture in the next cycle. Therefore, the proportion of burned gas in the cylinder air-fuel mixture increases, and the so-called internal EGR effect reduces the generation of NOx and suppresses the occurrence of abnormal combustion.
Furthermore, by opening and closing the third valve and seating it on the valve seat, there is also the effect of cooling the third valve, which has been exposed to high temperatures due to combustion.

また、第三弁のバルブタイミングの選定の仕方
によつては、副燃焼室内に貯留された既燃ガスが
混合気に混合する際に乱れを付与することがで
き、乱れにより燃焼が改善される。
Additionally, depending on how the valve timing of the third valve is selected, turbulence can be imparted to the burned gas stored in the auxiliary combustion chamber when it is mixed into the air-fuel mixture, and the turbulence improves combustion. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の実施例の断面正面図、第2図
は第1図のシリンダヘツドの底面図、第3図は第
1図の第三弁のバルブタイミング切替機構の平面
図、第4図は部分正面図、第5図は第三弁のバル
ブリフト線図、第6図は第1図に示す実施例のバ
ルブタイミング線図である。 7……燃焼室、5a……副燃焼室、9……吸気
バルブ、11…排気バルブ、15……第三弁、2
7……カム、27a……低負荷用カム、27b…
…高負荷用カム。
Fig. 1 is a sectional front view of an embodiment of the present invention, Fig. 2 is a bottom view of the cylinder head of Fig. 1, Fig. 3 is a plan view of the valve timing switching mechanism of the third valve of Fig. 1, and Fig. 4 is a plan view of the valve timing switching mechanism of the third valve of Fig. 1. The figure is a partial front view, FIG. 5 is a valve lift diagram of the third valve, and FIG. 6 is a valve timing diagram of the embodiment shown in FIG. 7...Combustion chamber, 5a...Sub-combustion chamber, 9...Intake valve, 11...Exhaust valve, 15...Third valve, 2
7...Cam, 27a...Low load cam, 27b...
...High load cam.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 内燃機関の燃焼室を第三弁を介して副燃焼室に
連通せしめ、該第三弁を駆動するためのバルブ駆
動機構が前記第三弁を機関低負荷域では閉じたま
まとし、機関高負荷域で圧縮行程途中から排気行
程後半まで開かせるよう構成されたことを特徴と
する可変圧縮比内燃機関。
The combustion chamber of the internal combustion engine is communicated with the auxiliary combustion chamber via a third valve, and a valve drive mechanism for driving the third valve keeps the third valve closed in a low engine load range and in a high engine load range. A variable compression ratio internal combustion engine characterized by being configured to open the engine from the middle of the compression stroke to the latter half of the exhaust stroke.
JP5185381U 1981-04-13 1981-04-13 Expired JPS6123627Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5185381U JPS6123627Y2 (en) 1981-04-13 1981-04-13

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5185381U JPS6123627Y2 (en) 1981-04-13 1981-04-13

Publications (2)

Publication Number Publication Date
JPS57164224U JPS57164224U (en) 1982-10-16
JPS6123627Y2 true JPS6123627Y2 (en) 1986-07-15

Family

ID=29848565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5185381U Expired JPS6123627Y2 (en) 1981-04-13 1981-04-13

Country Status (1)

Country Link
JP (1) JPS6123627Y2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60233308A (en) * 1984-05-07 1985-11-20 Honda Motor Co Ltd Controlling method of decompression device for engine
JP4556877B2 (en) * 2006-01-23 2010-10-06 トヨタ自動車株式会社 Variable compression ratio internal combustion engine
JP5400684B2 (en) * 2010-03-31 2014-01-29 本田技研工業株式会社 Internal combustion engine with sub chamber

Also Published As

Publication number Publication date
JPS57164224U (en) 1982-10-16

Similar Documents

Publication Publication Date Title
US4286552A (en) Variable compression ratio internal combustion engine
Kreuter et al. Strategies to improve SI-engine performance by means of variable intake lift, timing and duration
US5957096A (en) Internal combustion engine with variable camshaft timing, charge motion control valve, and variable air/fuel ratio
US5269270A (en) Four-stroke cycle internal-combustion engine
US7377249B1 (en) Outward-opening gas-exchange valve system for an internal combustion engine
JPH06129271A (en) Four-cycle engine
EP2314841B1 (en) Spark-ignition internal combustion engine
US8418663B2 (en) Cam actuation mechanism with application to a variable-compression internal-combustion engine
JPS6123627Y2 (en)
Kreuter et al. The META VVH system-A continuously variable valve timing system
US4664077A (en) Reciprocating internal combustion engine
JP3198772B2 (en) Cam switching mechanism in a valve train of an internal combustion engine
JPS62253919A (en) Valve control mechanism
US20030140877A1 (en) Four-stroke gasoline engine with direct injection and method for valve control
US4998513A (en) 4-stroke, stratified gas engine
JPH0635834B2 (en) Double intake valve engine
US6659059B1 (en) Variable displacement valve seat for internal combustion engines
JPS6211178B2 (en)
JPS6034726Y2 (en) Internal combustion engine intake control device
JP3163587B2 (en) Valve train control device for internal combustion engine
JP3213039B2 (en) Variable compression ratio engine
JPH059610B2 (en)
JP2588362B2 (en) Multi-cylinder internal combustion engine
JPS5910357Y2 (en) Intake air amount control device
JPH08260925A (en) Intake system of engine