JPS6123602B2 - - Google Patents

Info

Publication number
JPS6123602B2
JPS6123602B2 JP57131908A JP13190882A JPS6123602B2 JP S6123602 B2 JPS6123602 B2 JP S6123602B2 JP 57131908 A JP57131908 A JP 57131908A JP 13190882 A JP13190882 A JP 13190882A JP S6123602 B2 JPS6123602 B2 JP S6123602B2
Authority
JP
Japan
Prior art keywords
oil
electrical insulating
alkylbenzene
basic nitrogen
mineral oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57131908A
Other languages
Japanese (ja)
Other versions
JPS5923404A (en
Inventor
Mitsufumi Matsunaga
Sanho Kusayanagi
Masamitsu Takano
Yutaka Kato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP13190882A priority Critical patent/JPS5923404A/en
Priority to US06/478,946 priority patent/US4542246A/en
Priority to EP83301706A priority patent/EP0091249B1/en
Priority to DE8383301706T priority patent/DE3368802D1/en
Publication of JPS5923404A publication Critical patent/JPS5923404A/en
Publication of JPS6123602B2 publication Critical patent/JPS6123602B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Organic Insulating Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、酸化安定性をとくに改良した電気絶
縁油に係り、より詳しくはアルキルベンゼン系基
油に非塩基性窒素分及び塩基性窒素分を特定の範
囲に含有させた電気絶縁油である。更に詳しく
は、アルキルベンゼン又はアルキルベンゼンと鉱
油から成る基油中に非塩基性窒素分を規定量以上
含有させ、一方塩基性窒素分は規定量以下に制限
した電気絶縁油である。 電気絶縁油はトランス、高圧ケーブル、高圧遮
断器、コンデンサー等の高電圧機器に長期充填使
用されるが、最近経済的な大容量送電を行うため
に、50万ボルト超高圧乃至100万ボルト超々高圧
送電技術が導入されるに伴い、従来以上に酸化安
定性と流動帯電防止性がすぐれた電気絶縁油が要
望されている。アルキルベンゼン又はアルキルベ
ンゼンと鉱油の混合物を基油とする電気絶縁油
は、流動点の改良以外に、流動帯電防止効果があ
ること、及びアルキルベンゼン自身は鉱油に比べ
酸化安定性が著るしく劣るが、両者の混合により
アルキルベンゼンの欠点を補完出来ることは公知
である。しかしながら、従来までに知られている
アルキルベンゼン系電気絶縁油の酸化安定度試験
(JIS―C―2101)後の全酸価の値(以下単に酸価
という)は、約0.2mgKOH/gにすぎず、JIS規
定値を満足するが、高圧送電用電気絶縁油として
は不満足であり、より優れた酸化安定性能が要求
されている。 原油から蒸留分離された潤滑油留分中には、例
えば中東原油の場合、全窒素分が約350〜
450ppm含有されるのであるが、従来潤滑油基油
にとつて窒素化合物は好ましくない成分とされ、
水素化精製、溶剤抽出精製及び固体吸着精製もし
くは硫酸洗浄精製の組み合せにより、窒素分を可
能な限り除去する手段が採用されてきた。したが
つて、従来公知の酸化安定度の良い電気絶縁油中
の全窒素分は、数ppm以下に制限されたものが
多くみられる(例えば、特開昭52―40799号公
報)し、米国特許3759817号公報には全窒素分が
20ppm以下でしかも塩基性窒素分を5ppm以下に
制限すべきことも開示されている。しかしながら
非塩基性窒素分を積極的に含有させることにより
酸化安定性を改良する思想は見当らない。本発明
者の詳細な研究によると塩基性窒素分は低下さ
せ、一方非塩基性窒素分を残存させることが、ア
ルキルベンゼンの如く、酸化安定性の悪い基油で
さえ、きわめてすぐれた性能を発揮させるのに効
果的であることが判明した。 本発明は上記背景にもとづき研究を進めた結果
完成された。即ち本発明者は、原油中に含有され
る窒素分のうち非塩基性窒素分を選択的に含有さ
せ、一方塩基性窒素分を除去することにより、酸
化安定度が優れた電気絶縁油が得られることを発
見し本発明の完成に到つた。本発明の目的は、酸
化安定性が格段に優れた電気絶縁油を提供するこ
とにある。 本発明はアルキルベンゼン又はアルキルベンゼ
ンと精製鉱油との混合物を基油とする電気絶縁油
において、該基油中に非塩基性窒素分を少なくと
も16ppm以上含有し、しかも塩基性窒素分を前
記非塩基性窒素分の6%以下に制限したことを特
徴とする電気絶縁油である。 以下に本発明の内容を詳述する。 本発明の電気絶縁油を構成する基油はアルキル
ベンゼン又はアルキルベンゼンと精製鉱油との混
合物である。しかしながらポリα―オレフイン、
ボリブデン、アルキルナフタレン、アルキルジフ
エニルエタン、シリコーン油等公知の合成基油が
補助的に混合されても効果は十分に発揮する。 本発明の電気絶縁油中の非塩基性窒素分(以下
Nnと略す)は少なくとも16ppm以上とし、しか
も塩基性窒素分(以下Nbと略す)は出来るだけ
低く制限すべきである。NnとNbの合計量は全窒
素分(以下Ntと略す)と称され、本発明ではNt
の主体はNnであり、Nbは極力制限されるべきで
ある。Nn,Nb,Ntは次に示す方法で測定され、
本発明においても該方法で測定された値が採用さ
れる。 全窒素分(Nt); JIS―K―2609―1980「原油及び石油製品窒素
分試験方法」に規定の方法で測定される値であ
り、トータル窒素乃至は単に窒素分と通称され
る。 塩基性窒素分(Nb); 米国UOP(ユーオーピー)社試験法(UOP
Method)No.313―70「Nitrogen Bases in
Petroleum Distillates by Color Indicator
Titration」で規定される方法で測定される値で
ある。この測定法は試料油を氷酢酸に溶解し、内
部指示薬としてクリスタルバイオレツトを用い、
氷酢酸中で過塩素分によつて滴定する方法であ
る。 非塩基性窒素分(Nn); 前記Nt及びNbから次式によつて求められる。 Nn=Nt−Nb Nnとは、前記のとおり強酸により滴定され得
ない窒素分であるから、塩基性がきわめて弱いあ
るいは塩基性を示さない有機窒素化合物である。
Nnの効果は、鉱油から分離されたNn濃縮物のア
ルキルベゼンへの添加あるいは精製手段により
Nn,Nbを変化させた精製鉱油のアルキルベンゼ
ンへの混合及び活性白土によるNbの除去によつ
て確認されることが出来る。 本発明で使用されるアルキルベンゼンは、側鎖
アルキル基の合計炭素数が9個以上のモノ,ジ又
はトリアルキルベンゼンの単体又は混合物であ
り、通常合成洗剤用の直鎖(ソフト)又は分岐
(ハード)アルキルベンゼンの合成のためにベン
ゼンに軽質オレフイン、例えばプロピレンオリゴ
マーを、又はベンゼンに長鎖α―オレフイン又は
長鎖ハロゲン化ノルマルパラフインを反応させる
ことにより製造される。アルキルベンゼンを潤滑
油基油として使用することは、例えば特公昭49―
19084号公報に開示されている。本発明の絶縁油
基油用には、粘度(40℃)5乃至30cStの範囲の
ものが好適であり、たとえば重質のアルキルベン
ゼンボトム油(釜残油)が用いられる。高粘度の
ものは、低粘度の精製鉱油と混合し、一方低粘度
のものは高粘度精製鉱油と混合することにより適
切な粘度の電気絶縁油が得られる。上記方法で合
成されたアルキルベンゼンのJIS―C―2101の酸
化安定度後の酸価は通常約5乃至9mgKOH/g
であり、精製鉱油のそれの約10〜20倍高いためそ
の改良が必要である。 アルキルベンゼンと混合されて使用される精製
鉱油は通常の原油から分離された潤滑油留分であ
る。原油種としてパラフイン基、ナフテン基、混
合基のいずれでも良いが、安定入手の面から混合
基系が好ましく使用される。混合使用される精製
鉱油は、上記原油から蒸留により分離された粘度
約7〜30cSt(@40℃)の潤滑油留分を精製した
ものである。 アルキルベンゼンと精製鉱油との混合割合は
20:80〜100:0(容量%)の範囲にするとアル
キルベンゼンの特性が有効に発揮される。即ち、
アルキルベンンゼンは基油全体の20vol%以上に
することによつて流動帯電防止性、耐コロナ性、
低温特性が効果的に発揮される。超高圧又は超々
高圧送電トランスに充填使用されるトランス油の
ように、冷却放熱のために高速循環を要する電気
絶縁油では流動帯電しやすく、苛酷条件で使用さ
れるためアルキルベンゼンの使用が重要となる。 第1図は、アルキルベンゼンに鉱油から分離さ
れたNn濃縮物を添加しNnを含有させた電気絶縁
油の酸化安定性を酸素吸収方法で測定した例であ
るが、Nn44ppmの油は12時間後においても圧力
低下は約20mmHgにすぎなかつた。適切な精製手
段でNnを選択的に含有させた精製鉱油をアルキ
ルベンゼンに混合してNnを高めた電気絶縁油も
きわめて優れた酸化安定度を有し、例えばアルキ
ルベンゼン30vol%と精製鉱油70vol%より成る電
気絶縁油であつて、Nn25.3ppm、Nb0.7ppmとし
た場合そのJIS―C―2101による酸化安定度試験
後の酸価は0.04mgKOH/gに達し得た。精製条
件によりNbを変化させた鉱油をアルキルベンゼ
ンに混合した場合、Nbの存在は酸価の上昇をも
たらした。 本発明の電気絶縁中のNnは16ppm以上であ
り、その根拠は実用的な酸化安定性能の見地に基
づくものであつて、JIS―C―2101の酸価0.20mg
KOH/g以下を確保する目的で定められた。即
ち、Nnが16ppm未満であつても、Nbをきわめて
低濃度に制限すれば相当の性能例えば酸価0.25〜
0.30mgKOH/gは達成できるが、苛酷条件で安
定使用可能な電気絶縁油として不十分である。
Nnを504ppmまで変化させた電気絶縁油を調整し
たところによるとNn10ppm〜12ppmでは目的の
性能が発揮されずNnを16ppm以上にすることに
より、これを達成出来る。しかも約100ppmまで
の範囲では、誘導期間はNnの増大につれ延長さ
れ100〜200ppmの範囲では平衡状態になり、
200ppm以上では誘導期間が若干低下した。しか
しながら、JIS―C―2101試験の酸価はNn16ppm
乃至504ppmの範囲において安定的に0.20mg
KOH/g以下を達成し、0.05mgKOH/g以下の
性能をも発揮した。 Nnが規定量以上存在していても、Nbが少量存
在すると目的の電気絶縁油は得られない。したが
つてNbは可能な限り存在させるべきでない。Nn
とNbとを変化させた試料油による酸化安定度試
験結果にもとづくとNnが低濃度であればNbは
2ppm以下、より好ましくは1.5ppm以下、更に好
ましくは1.0ppm以下が酸化安定性能以上必要で
あり、Nnが数十ppm〜100ppmであればNb2〜
3ppmが上限であり、Nnが200〜500ppmにおいて
もNb3〜5ppmが上限とすべきことを認めた。し
たがつてNbは極力低濃度とすべきであるが、Nn
との関連において上限値は多少変化し、概して
Nnが約50ppm以下であればNbはNnの6%以下、
より好ましくは5%以下、更に好ましくは4%以
下に、Nnが50〜100pmでは5%以下、より好ま
しくは4%以下、更に好ましくは3%以下、Nn
が100ppmを超えた範囲ではNbは5ppm以下、よ
り好ましくは3%以下、即ちNbはNnの4%以
下、より好ましくは3%以下に制限する必要があ
る。 本発明の電気絶縁油の製造には、以下の各手段
のいずれかが採用される。 (イ) 鉱油から分離されたNn濃縮物の基油への配
合。 (ロ) 精製手段によりNnを選択的に残存させ、し
かもNbを除去した精製鉱油の混合。 (ハ) (イ)と(ロ)の手段の組合せ。 (イ)の手段は、アルキルベンゼン又はアルキルベ
ンゼンと高度に精製した鉱油との混合物を基油と
する場合に適用すると良い。即ち、Nn,Nbとも
に含有しないか、極く低濃度しか含有しない基油
にNn濃縮物を添加剤として添加配合し、Nnを規
定量含有させた電気絶縁油を製造する手段であ
る。 前記(ロ)の手段は、精製手段によりNnを選択的
に残存させ、Nbを除去した精製鉱油を基油と
し、これをアルキルベンゼンに混合し、混合後の
基油中のNnを規定量含有させた電気絶縁油とす
る手段である。 (ハ)の手段は、(ロ)の手段で製造されたものにNn
濃縮物を配合し、Nnを規定量含有させた電気絶
縁油とする手段である。 鉱油から分離されたNn濃縮物は、好ましい酸
化安定性向上作用を示す。該濃縮物は原油の真空
蒸留留出油又はこれを水素化精製した油を原料と
し、活性白土で処理し、次いでシリカゲル処理
し、該シリカゲルをペンタン等軽質炭化水素溶
剤、塩化メチレン/ペンタン混合溶剤で順次洗浄
し、次いでメタノール/塩化メチレン混合溶剤で
溶出し、溶出液中の溶剤を蒸発させて得られる。 該Nn濃縮物は好ましい溶解性を示す。該濃縮
物中のNnは高濃度であるから微量の添加で十分
である。 従来精製された鉱油系潤滑油基油を得るには、
溶剤抽出(EXと略す)、水素化処理(HFと略
す)、溶剤脱ろう(DWと略す)、固体吸着処理
(CAと略す)、硫酸洗浄(SWと略す)、溶剤脱れ
き(SDと略す)等の手段の2以上の組合せによ
り行われて来た。 Nnを選択的に含有する精製鉱油は第2図に示
すいずれかのフローに基づいて得られる。同図に
おいて、V・Oは原油から蒸留分離された潤滑油
留分、即ち原油の常圧蒸留残油を更に真空蒸留
し、粘度区分に応じ1側油、2側油、3側油等に
分別されたものあるいは真空蒸留残油をプロパン
等軽質炭化水素により脱れきされた脱れき油が該
当する。低粘度絶縁油製造用には1側油を更に蒸
留し分割すれば良い。同図に示されている各フロ
ーにおける上段側、例えばフローでの(V・
O)→HF→EX→DW→CAは、従来の精製鉱油
(基油)を得る手段であり、この工程ではNbのみ
ならずNnをも高度に除去した精製基油(第1の
精製鉱油という)しか得られない。 各フロー(〜)の下段は、EX工程を経な
い精製工程であるが、これにより得られた精製基
油(第2の精製鉱油という)を第1の精製鉱油と
適当な混合割合で、少なくともEX工程後に混合
することにより、Nnを選択的に含有し、Nbを除
去した精製鉱油が得られる。前記EX工程を経な
いとは、脱硫を苛酷にしないとの意味であり、エ
キストラクト収率が約30vol%以下の範囲で行う
温和な抽出条件であれば第2の精製鉱油を得る上
でEX工程処理にも支障ない。第2図において
DWは流動点降下を目的とするにすぎず、Nnの調
整には関与しないから本発明の目的には重要でな
い。第2図の方法で得られる精製鉱油はアルキル
ベンゼンと混合使用される。精製鉱油中のNnの
値は、第1及び第2精製鉱油の混合割合、HF,
EX及び又はCAの処理条件で任意に設定でき、ま
た精製鉱油中の硫黄分も主としてHF及び/又は
EX処理条件で任意に設定できる。HF工程では、
Ni,Ti,Mo,Co,W等の1種以上が担持された
公知の水素化触媒下で水素圧20〜100Kg/cm2(ゲ
ージ)、280〜380℃の温度条件下で接触処理さ
れ、EX工程では、フルフラール、N―メチル―
2ピロリドン、フエノール等公知の芳香族炭化水
素に親和力を有する溶剤により、好ましくない成
分がエキストラクトとして抽出除去される。HF
及びEX工程では、硫黄及び窒素分が相当程度除
去されるが、Nbのみを選択的に除去することは
出来ない。EX工程を経た油中のNtは通常約20〜
70ppm、Nb約10〜60ppm、Sは約0.1〜0.6wt%
程度であり、さらにCA処理を行うことによりNb
はほぼ完全に除去され、CA処理後の油中のNnは
約10ppmもしくはこれ以下に高度精製されたも
のになる。この精製鉱油はアルキルベンゼンに混
合使用出来るが、Nnを規定量以上含有させるた
めにNn濃縮物を添加し調整する必要がある。Nn
を選択的に含有する精製鉱油を得るには、第2の
精製鉱油を第1の精製鉱油に混合することにより
達成できる。第2の精製鉱油は第2図各フローに
示すごとく、EX処理を行わずしてもしくは温和
な条件で得られた精製鉱油であるから、Nnを高
度に含有し、しかも適度に精製されているため第
1の精製鉱油との混合により、Nn分を選択的に
含有する精製鉱油が得られる。よつて、該精製鉱
油をアルキルベンゼンに混合することにより、得
られる電気絶縁中のNnは16ppm以上になり、好
ましい性能を発揮する。 Nnを選択的に含有し、Nbを制限した精製鉱油
は、そのまま又は中間過程においてアルキルベン
ゼンと混合使用に供されるが、本発明の電気絶縁
油を製造する他の方法として、例えば第2図フロ
ーに示す第2の精製鉱油又はV・Oのみをアル
キルベンゼンに混合し、次いでCA処理を苛酷に
行い、Nbを除去する方法が採用される。この場
合、合によつてはCA処理において固体吸着剤を
多量必要とするが、アルキルベンゼン中の不安定
成分をも同時的に除去できるため優れた酸化安定
性の電気絶縁油が得られる。精製鉱油とアルキル
ベンゼンとの混合系電気絶縁油中のNnを精製鉱
油との混合により調整する場合、精製鉱油の混合
割合は、精製鉱油中のNn分にもよるが、例えば
Nnが約200ppmであれば約7〜8vol%以上アルキ
ルベンゼンに混合すれば良く、Nnが約50ppmで
あれば約30vol%以上混合すれば良い。 本発明の電気絶縁油中の硫黄分は、鉱油の精製
度合及びアルキルベンゼンとの混合割合により、
0.02〜0.7wt%の範囲に任意に設定できる。従来
の電気絶縁油は、Nnを選択的に残存させる思想
でなく、Ntを減少させる思想であつたため、
HF,EXいずれも苛酷条件で処理され、したがつ
て、硫黄分も低濃度に窃定されて来たのである
が、本発明においては、金属の腐食性を起さない
限り、硫黄分の制限に格別配慮する必要はなく、
0.02〜0.7wt%の範囲で何ら問題となる点は無
い。また例えばフエノール系あるいはアミン系の
合成酸化防止剤の添加が行われてもかまわない。 以下に本発明の内容を実施例にもとづき説明す
る。 実施例 1 ハード型アルキルベンゼン(三菱油化製、商品
名パンソルブH)と、次の方法で塩基性窒素分
(Nb)及び非塩基性窒素分(Nn)を調整した精
製鉱油とをそれぞれ30:70(容量比)に混合して
電気絶縁油を得た。 精製鉱油を製造方法; クウエート原油の真空蒸留留出油(粘度@40℃
12.49cSt、硫黄分2.46wt%、Nt420ppm、
Nb158ppm)をNi―Co―Mo担持のアルミナ触媒
を用い、水素圧35Kg/cm2(ゲージ圧)、温度335
℃、空間速度(LHSV)1.5hr-1の条件で水素化精
製(HF)してHF油とし、次いでフルフラール溶
剤を用い、溶剤抽出(溶剤比250%、温度45℃)
してEX油を得た。次に先に得たHF油とEX油を
20:80(容量比)に混合し、これをメチルエチル
ケトン/トルエン存在下で−40℃に冷却して脱ろ
う処理したあと、活性白土(白土量は油に対し
1.5wt%)処理して、精製鉱油(Nt36ppm、
Nb1ppm以下、硫黄分0.36wt%)を得た。 第1表に本実施例による電気絶縁油の性能及び
性状を示す。同時に市販されている電気絶縁油
(アルキルベンゼンと鉱油混合型であり、アルキ
ルベンゼンが30容量%含有されている)の性能も
併記する。
The present invention relates to an electrical insulating oil with particularly improved oxidation stability, and more specifically to an electrical insulating oil in which an alkylbenzene base oil contains a non-basic nitrogen content and a basic nitrogen content within a specific range. More specifically, it is an electrical insulating oil in which a base oil consisting of alkylbenzene or alkylbenzene and mineral oil contains a non-basic nitrogen content of a specified amount or more, while the basic nitrogen content is limited to a specified amount or less. Electrical insulating oil is used for long-term filling in high-voltage equipment such as transformers, high-voltage cables, high-voltage circuit breakers, and capacitors, but recently, in order to carry out economical large-capacity power transmission, electrical insulating oil has been used to fill high-voltage equipment such as transformers, high-voltage cables, high-voltage circuit breakers, and capacitors. With the introduction of power transmission technology, there is a demand for electrical insulating oils that have better oxidation stability and flow antistatic properties than ever before. Electrical insulating oils based on alkylbenzene or a mixture of alkylbenzene and mineral oil have an antistatic effect in addition to improving the pour point, and although alkylbenzene itself has significantly lower oxidation stability than mineral oil, both It is known that the drawbacks of alkylbenzene can be compensated for by mixing them. However, the total acid value (hereinafter simply referred to as acid value) after the oxidation stability test (JIS-C-2101) of the previously known alkylbenzene-based electrical insulating oil is only about 0.2 mgKOH/g. Although it satisfies the JIS standard values, it is unsatisfactory as an electrical insulating oil for high-voltage power transmission, and better oxidation stability performance is required. In the lubricating oil fraction distilled from crude oil, for example, in the case of Middle Eastern crude oil, the total nitrogen content is about 350~
Nitrogen compounds are traditionally considered to be undesirable components in lubricating base oils.
A combination of hydrorefining, solvent extraction refining, solid adsorption refining, or sulfuric acid washing refining has been employed to remove as much nitrogen as possible. Therefore, the total nitrogen content in conventionally known electrical insulating oils with good oxidation stability is often limited to several ppm or less (for example, Japanese Patent Application Laid-open No. 40799/1983), and the U.S. patent Publication No. 3759817 states that the total nitrogen content is
It is also disclosed that the basic nitrogen content should be limited to 20 ppm or less, and the basic nitrogen content should be limited to 5 ppm or less. However, no idea has been found to improve oxidation stability by actively incorporating non-basic nitrogen. The inventor's detailed research has shown that reducing the basic nitrogen content while leaving the non-basic nitrogen content allows even base oils with poor oxidation stability, such as alkylbenzene, to exhibit extremely excellent performance. It was found to be effective. The present invention was completed as a result of research based on the above background. That is, the present inventors have found that an electrical insulating oil with excellent oxidation stability can be obtained by selectively containing non-basic nitrogen among the nitrogen contained in crude oil and removing basic nitrogen. This discovery led to the completion of the present invention. An object of the present invention is to provide an electrical insulating oil with significantly superior oxidation stability. The present invention provides an electrical insulating oil based on alkylbenzene or a mixture of alkylbenzene and refined mineral oil, which contains at least 16 ppm or more of non-basic nitrogen in the base oil, and in which the basic nitrogen is replaced by the non-basic nitrogen. This electrical insulating oil is characterized by being limited to 6% or less. The content of the present invention will be explained in detail below. The base oil constituting the electrical insulating oil of the present invention is an alkylbenzene or a mixture of an alkylbenzene and a refined mineral oil. However, poly α-olefin,
Even if a known synthetic base oil such as bolybdenum, alkylnaphthalene, alkyl diphenylethane, or silicone oil is mixed as an auxiliary, the effect is sufficiently exhibited. Non-basic nitrogen content (hereinafter referred to as
Nn) should be at least 16 ppm or more, and the basic nitrogen content (hereinafter Nb) should be limited as low as possible. The total amount of Nn and Nb is called the total nitrogen content (hereinafter abbreviated as Nt), and in the present invention, Nt
The main body of is Nn, and Nb should be limited as much as possible. Nn, Nb, Nt are measured by the following method,
The values measured by this method are also used in the present invention. Total nitrogen content (Nt): A value measured by the method specified in JIS-K-2609-1980 "Nitrogen content testing method for crude oil and petroleum products", and is commonly referred to as total nitrogen or simply nitrogen content. Basic nitrogen content (Nb); American UOP company test method (UOP
Method)No.313―70 “Nitrogen Bases in
Petroleum Distillates by Color Indicator
This is the value measured by the method specified in "Titration". This measurement method involves dissolving the sample oil in glacial acetic acid and using crystal violet as an internal indicator.
This method involves titration using perchlorine content in glacial acetic acid. Non-basic nitrogen content (Nn): Calculated from the above Nt and Nb by the following formula. Nn=Nt-Nb As mentioned above, Nn is a nitrogen component that cannot be titrated with a strong acid, so it is an organic nitrogen compound that has very weak basicity or does not show basicity.
The effect of Nn can be improved by adding Nn concentrate separated from mineral oil to alkyl bezene or by purification means.
This can be confirmed by mixing refined mineral oil with altered Nn and Nb contents with alkylbenzene and removing Nb using activated clay. The alkylbenzene used in the present invention is a mono-, di-, or trialkylbenzene having a total of 9 or more carbon atoms in the side chain alkyl group or a mixture thereof, and is usually a straight chain (soft) or branched (hard) for synthetic detergents. For the synthesis of alkylbenzene, it is produced by reacting benzene with a light olefin, such as a propylene oligomer, or by reacting benzene with a long-chain α-olefin or a long-chain halogenated normal paraffin. For example, the use of alkylbenzene as a lubricating oil base oil
It is disclosed in Publication No. 19084. The insulating base oil of the present invention preferably has a viscosity (at 40° C.) in the range of 5 to 30 cSt, and for example, heavy alkylbenzene bottom oil (kettle residual oil) is used. A high viscosity oil is mixed with a low viscosity refined mineral oil, while a low viscosity oil is mixed with a high viscosity refined mineral oil to obtain an electrical insulating oil of appropriate viscosity. The acid value of the alkylbenzene synthesized by the above method after JIS-C-2101 oxidation stability is usually about 5 to 9 mgKOH/g.
It is about 10 to 20 times higher than that of refined mineral oil, so improvement is necessary. The refined mineral oil used in admixture with the alkylbenzene is a lubricating oil fraction separated from conventional crude oil. The crude oil species may be paraffin groups, naphthenic groups, or mixed groups, but mixed group systems are preferably used from the standpoint of stable availability. The refined mineral oil to be mixed and used is a refined lubricating oil fraction having a viscosity of about 7 to 30 cSt (@40°C) separated by distillation from the above-mentioned crude oil. The mixing ratio of alkylbenzene and refined mineral oil is
When the ratio is in the range of 20:80 to 100:0 (volume %), the properties of alkylbenzene are effectively exhibited. That is,
By adding alkylbenzene to 20 vol% or more of the total base oil, fluid antistatic properties, corona resistance,
Low-temperature properties are effectively demonstrated. Electrical insulating oils that require high-speed circulation for cooling and heat dissipation, such as transformer oil used to fill ultra-high-voltage or ultra-super-high-voltage power transmission transformers, are easily charged during flow and are used under harsh conditions, making the use of alkylbenzenes important. . Figure 1 shows an example in which the oxidation stability of electrical insulating oil containing Nn by adding Nn concentrate separated from mineral oil to alkylbenzene was measured using an oxygen absorption method. However, the pressure drop was only about 20 mmHg. Electrical insulating oil that is made by mixing alkylbenzene with refined mineral oil that selectively contains Nn using appropriate refining methods to increase Nn also has extremely excellent oxidation stability; for example, it is composed of 30 vol% alkylbenzene and 70 vol% refined mineral oil. When the electrical insulating oil had Nn of 25.3 ppm and Nb of 0.7 ppm, the acid value after the oxidation stability test according to JIS-C-2101 could reach 0.04 mgKOH/g. When alkylbenzene was mixed with mineral oil whose Nb content was changed depending on refining conditions, the presence of Nb led to an increase in the acid value. The Nn content in the electrical insulation of the present invention is 16 ppm or more, which is based on the viewpoint of practical oxidation stability performance, and the acid value of JIS-C-2101 is 0.20 mg.
This was established with the purpose of ensuring KOH/g or less. In other words, even if Nn is less than 16 ppm, if Nb is limited to an extremely low concentration, considerable performance can be achieved, for example, with an acid value of 0.25~
Although 0.30mgKOH/g can be achieved, it is insufficient for an electrical insulating oil that can be used stably under severe conditions.
According to the results of adjusting electrical insulating oils with varying Nn content up to 504ppm, the desired performance cannot be achieved with Nn of 10ppm to 12ppm, but this can be achieved by increasing Nn to 16ppm or higher. Moreover, in the range up to about 100 ppm, the induction period becomes longer as the Nn increases, and reaches an equilibrium state in the range of 100 to 200 ppm.
Above 200 ppm, the induction period decreased slightly. However, the acid value of JIS-C-2101 test is Nn16ppm.
0.20mg stably in the range of 504ppm
Achieved KOH/g or less, and also exhibited performance of 0.05mgKOH/g or less. Even if Nn is present in a specified amount or more, if a small amount of Nb is present, the desired electrical insulating oil cannot be obtained. Therefore, Nb should not be present as much as possible. Nn
Based on the results of oxidation stability tests using sample oils with varying concentrations of Nb and
2ppm or less, more preferably 1.5ppm or less, still more preferably 1.0ppm or less is required for oxidation stability performance or higher, and if Nn is several tens of ppm to 100ppm, Nb2~
It was recognized that the upper limit is 3 ppm, and even when Nn is 200 to 500 ppm, the upper limit should be 3 to 5 ppm. Therefore, Nb concentration should be kept as low as possible, but Nn
The upper limit varies somewhat in relation to
If Nn is less than about 50ppm, Nb is less than 6% of Nn,
More preferably 5% or less, even more preferably 4% or less, Nn is 50 to 100pm, 5% or less, more preferably 4% or less, still more preferably 3% or less, Nn
In the range where Nb exceeds 100 ppm, Nb needs to be limited to 5 ppm or less, more preferably 3% or less, that is, Nb needs to be limited to 4% or less of Nn, more preferably 3% or less. For producing the electrical insulating oil of the present invention, any of the following means is employed. (b) Blending Nn concentrate separated from mineral oil into base oil. (b) Mixing of refined mineral oil from which Nn is selectively left and Nb has been removed by means of refining. (c) A combination of means (a) and (b). The method (a) is preferably applied when the base oil is alkylbenzene or a mixture of alkylbenzene and highly refined mineral oil. That is, it is a means of producing an electrical insulating oil containing a specified amount of Nn by adding and blending a Nn concentrate as an additive to a base oil that does not contain either Nn or Nb or contains only a very low concentration. The means (b) above uses refined mineral oil from which Nn is selectively left and Nb is removed by a refining means as a base oil, which is mixed with alkylbenzene, and the base oil after mixing is made to contain a specified amount of Nn. This is a means of making it into an electrically insulating oil. Means (c) applies to products manufactured by means (b).
This is a means of blending a concentrate to create an electrical insulating oil containing a specified amount of Nn. Nn concentrates separated from mineral oil exhibit favorable oxidative stability enhancing effects. The concentrate is made from a vacuum distillate of crude oil or an oil obtained by hydrorefining it, treated with activated clay, then treated with silica gel, and the silica gel is mixed with a light hydrocarbon solvent such as pentane or a mixed solvent of methylene chloride/pentane. It is obtained by sequentially washing with water, followed by elution with a mixed solvent of methanol/methylene chloride, and evaporating the solvent in the eluate. The Nn concentrate exhibits favorable solubility. Since the concentration of Nn in the concentrate is high, addition of a small amount is sufficient. To obtain conventionally refined mineral oil base lubricant base oils,
Solvent extraction (abbreviated as EX), hydrogenation treatment (abbreviated as HF), solvent dewaxing (abbreviated as DW), solid adsorption treatment (abbreviated as CA), sulfuric acid cleaning (abbreviated as SW), solvent deasphalting (abbreviated as SD) ), etc., have been carried out by a combination of two or more of the following methods. A refined mineral oil selectively containing Nn can be obtained based on any of the flows shown in FIG. In the same figure, V・O is a lubricating oil fraction separated by distillation from crude oil, that is, the residual oil from atmospheric distillation of crude oil is further vacuum distilled to produce 1 side oil, 2 side oil, 3 side oil, etc. according to the viscosity classification. This includes fractionated oil or deasphalted oil obtained by deasphalting residual oil from vacuum distillation using light hydrocarbons such as propane. For producing low viscosity insulating oil, the first side oil may be further distilled and divided. In the upper stage of each flow shown in the figure, for example, (V
O) → HF → EX → DW → CA is a conventional method for obtaining refined mineral oil (base oil), and in this process, refined base oil (referred to as first refined mineral oil) in which not only Nb but also Nn is highly removed is obtained. ) can only be obtained. The lower part of each flow (~) is a refining process that does not go through the EX process, but the refined base oil obtained by this process (referred to as the second refined mineral oil) is mixed with the first refined mineral oil at an appropriate mixing ratio, at least By mixing after the EX step, a refined mineral oil that selectively contains Nn and removes Nb can be obtained. Not going through the EX process means not making the desulfurization too harsh, and if the extraction conditions are mild and the extract yield is about 30 vol% or less, then EX is not necessary to obtain the second refined mineral oil. There is no problem with process processing. In Figure 2
DW is not important for the purpose of the present invention since it is only intended to lower the pour point and does not participate in the adjustment of Nn. The refined mineral oil obtained by the method shown in Figure 2 is used in combination with alkylbenzene. The value of Nn in refined mineral oil is determined by the mixing ratio of the first and second refined mineral oils, HF,
EX and/or CA processing conditions can be set arbitrarily, and the sulfur content in refined mineral oil is mainly HF and/or
Can be set arbitrarily using EX processing conditions. In the HF process,
Contact treatment is carried out under a known hydrogenation catalyst supporting one or more of Ni, Ti, Mo, Co, W, etc. under hydrogen pressure of 20 to 100 Kg/cm 2 (gauge) and temperature conditions of 280 to 380°C, In the EX process, furfural, N-methyl-
Undesirable components are extracted and removed as an extract using a known solvent having an affinity for aromatic hydrocarbons such as 2-pyrrolidone and phenol. HF
In the and EX steps, sulfur and nitrogen are removed to a considerable extent, but only Nb cannot be selectively removed. The Nt in oil that has gone through the EX process is usually about 20~
70ppm, Nb approx. 10-60ppm, S approx. 0.1-0.6wt%
By further performing CA treatment, Nb
is almost completely removed, and the Nn content in the oil after CA treatment is highly refined to about 10 ppm or less. This refined mineral oil can be mixed with alkylbenzene, but in order to contain more than a specified amount of Nn, it is necessary to adjust it by adding Nn concentrate. Nn
A refined mineral oil selectively containing can be obtained by mixing a second refined mineral oil with a first refined mineral oil. As shown in each flow in Figure 2, the second refined mineral oil is a refined mineral oil obtained without EX treatment or under mild conditions, so it contains a high degree of Nn and is moderately refined. Therefore, by mixing with the first refined mineral oil, a refined mineral oil that selectively contains Nn is obtained. Therefore, by mixing the refined mineral oil with alkylbenzene, the resulting electrical insulation has a Nn content of 16 ppm or more, exhibiting favorable performance. Refined mineral oil that selectively contains Nn and has limited Nb can be used as it is or mixed with alkylbenzene in an intermediate process, but as another method for producing the electrical insulating oil of the present invention, for example, the flowchart shown in FIG. A method is adopted in which only the second refined mineral oil or V.O shown in 2 is mixed with alkylbenzene, and then a severe CA treatment is performed to remove Nb. In this case, although a large amount of solid adsorbent may be required in the CA treatment, an electrical insulating oil with excellent oxidation stability can be obtained because unstable components in the alkylbenzene can be removed at the same time. When adjusting Nn in a mixed electric insulating oil of refined mineral oil and alkylbenzene by mixing it with refined mineral oil, the mixing ratio of refined mineral oil depends on the Nn content in the refined mineral oil, but for example,
If Nn is approximately 200 ppm, it may be mixed with the alkylbenzene in an amount of approximately 7 to 8 vol% or more, and if Nn is approximately 50 ppm, it may be mixed in approximately 30 vol% or more. The sulfur content in the electrical insulating oil of the present invention depends on the degree of refining of the mineral oil and the mixing ratio with alkylbenzene.
It can be set arbitrarily within the range of 0.02 to 0.7wt%. Conventional electrical insulating oil was designed not to selectively leave Nn, but to reduce Nt.
Both HF and EX are processed under harsh conditions, and therefore the sulfur content has been stolen at low concentrations, but in the present invention, the sulfur content is limited as long as it does not cause corrosiveness to metals. There is no need to give special consideration to
There is no problem in the range of 0.02 to 0.7 wt%. Furthermore, for example, a phenol-based or amine-based synthetic antioxidant may be added. The contents of the present invention will be explained below based on examples. Example 1 Hard alkylbenzene (manufactured by Mitsubishi Yuka, trade name Pansolve H) and refined mineral oil whose basic nitrogen content (Nb) and non-basic nitrogen content (Nn) were adjusted by the following method were mixed in a ratio of 30:70, respectively. (capacity ratio) to obtain electrical insulating oil. Method for producing refined mineral oil: Vacuum distillate of Kuwaiti crude oil (viscosity @40℃
12.49cSt, sulfur content 2.46wt%, Nt420ppm,
Using a Ni-Co-Mo supported alumina catalyst, the hydrogen pressure was 35 Kg/cm 2 (gauge pressure) and the temperature was 335.
℃, space velocity (LHSV) 1.5hr -1 to obtain HF oil, and then solvent extraction using furfural solvent (solvent ratio 250%, temperature 45℃)
and obtained EX oil. Next, add the HF oil and EX oil obtained earlier.
The mixture was mixed at a ratio of 20:80 (by volume), cooled to -40℃ in the presence of methyl ethyl ketone/toluene, and dewaxed.
1.5wt%) and refined mineral oil (Nt36ppm,
Nb 1ppm or less, sulfur content 0.36wt%). Table 1 shows the performance and properties of the electrical insulating oil according to this example. At the same time, the performance of a commercially available electrical insulating oil (a mixture of alkylbenzene and mineral oil, containing 30% by volume of alkylbenzene) is also listed.

【表】【table】

【表】 第2表実施例1の電気絶縁油は、酸価0.04mg
KOH/gであり、従来にない酸化安定性能を発
揮した。 実施例 2 第2図フローに基づいて第1の精製鉱油及び
第2の精製鉱油を得、これらと実施例1で使用し
たアルキルベンゼンを混合することにより電気絶
縁油を得た。 第1の精製鉱油; 実施例1に記したEX油を上述の手段で脱ろう
処理して第2表に示す第1の精製鉱油を得た。性
状を第2表に示す。 第2の精製鉱油; 実施例1に記したHF油をメチルエチルケトン
存在下で−40℃に冷却し脱ろう処理し第2表の第
2の精製鉱油を得た。 前記第1及び第2の精製鉱油ならびに実施例1
で使用のアルキルベンゼンを第3表のとおり混合
し、混合物を活性白土と接触させ処理し電気絶縁
油を製造した。Nn,Nbを規定量にした本発明の
電気絶縁油は、きわめてすぐれた酸化安定性を発
揮した。
[Table] Table 2 The electrical insulating oil of Example 1 has an acid value of 0.04mg
KOH/g, demonstrating unprecedented oxidation stability performance. Example 2 A first refined mineral oil and a second refined mineral oil were obtained based on the flowchart of FIG. 2, and by mixing these with the alkylbenzene used in Example 1, an electrical insulating oil was obtained. First refined mineral oil; The EX oil described in Example 1 was dewaxed by the above-mentioned means to obtain the first refined mineral oil shown in Table 2. Properties are shown in Table 2. Second refined mineral oil: The HF oil described in Example 1 was cooled to -40°C in the presence of methyl ethyl ketone and dewaxed to obtain the second refined mineral oil shown in Table 2. The first and second refined mineral oils and Example 1
The alkylbenzenes used in Table 3 were mixed as shown in Table 3, and the mixture was brought into contact with activated clay and treated to produce electrical insulating oil. The electrical insulating oil of the present invention containing specified amounts of Nn and Nb exhibited extremely excellent oxidation stability.

【表】【table】

【表】 実施例 3 実施例1で用いたハード型アルキルベンゼンに
次の方法で得たNn化合物濃縮物を添加し、Nn分
を変化させた電気絶縁油を製造した。 Nn化合物濃縮物; 実施例1で用いた真空蒸留留出油(V・O)及
びHF油をそれぞれ活性白土処理(日本活性白土
(株)製の白土を140℃、4時間焼成したものを前記
油に対し5wt%添加し、45℃で1時間バツチ接
触)したあと口別し、油分をガラスカラムに充填
したシリカゲル(ワコーゲルC―100を140℃で5
時間活性化したものを充てん)に油/シリカゲル
=1/1(重量比)で油を通過させた。シリカゲル
に吸着した部分を、まずペンタンで溶出し洗浄し
たあと、塩化メチレンとペンタン(5:95v/v
比)混合液(シリカゲル容積の2倍量)で洗浄溶
出し、次に同混合液(15:85v/v比)の同4倍
量液で洗浄溶出したあと、メタノール/塩化メチ
レン(15:85v/v比)混合液で溶出した。メタ
ノール/塩化メチレン混合液による溶出液を窒素
ガス流下で加熱蒸発しNn濃縮物を得た。V・O
から得たNn濃縮物(Nc―C―VO)中のNnは
1.22wt%、HF油から得たNn濃縮物(Nn―C―
HF)中のNnは2.30wt%であり、Nbはいずれも検
出できなかつた。 Nn濃縮物をアルキルベンゼンに添加配合し第
4表の電気絶縁油を製造した。
[Table] Example 3 A Nn compound concentrate obtained by the following method was added to the hard alkylbenzene used in Example 1 to produce electrical insulating oils with varying Nn content. Nn compound concentrate: Vacuum distillate oil (V・O) and HF oil used in Example 1 were treated with activated clay (Japanese activated clay), respectively.
Co., Ltd.'s white clay calcined at 140°C for 4 hours was added to the above oil in an amount of 5wt%, contacted in batches at 45°C for 1 hour), separated, and the oil was packed into a glass column using silica gel (Wako Gel C). -100 at 140℃ 5
Oil was passed through the silica gel (oil/silica gel = 1/1 (weight ratio)). The part adsorbed on silica gel was first eluted and washed with pentane, then methylene chloride and pentane (5:95v/v)
Wash and elute with a mixture (2 times the volume of silica gel), then wash and elute with 4 times the volume of the same mixture (15:85 v/v ratio), and then wash and elute with methanol/methylene chloride (15:85 v/v ratio). /v ratio) was eluted with the mixed solution. The eluate of methanol/methylene chloride mixture was heated and evaporated under a nitrogen gas flow to obtain a Nn concentrate. V.O.
The Nn in the Nn concentrate (Nc-C-VO) obtained from
1.22wt%, Nn concentrate obtained from HF oil (Nn-C-
Nn in HF) was 2.30wt%, and no Nb could be detected. Electrical insulating oils shown in Table 4 were produced by adding Nn concentrate to alkylbenzene.

【表】【table】

【表】 本発明の電気絶縁油は、通常実施されている精
製条件を若干変更することにより製造出来、しか
もきわめて優れた酸化安定性を有するため超高電
圧乃至超々高電圧下で使用されるトランス等に長
期充填使用されることが出来、きわめて工業的価
値が高いものである。
[Table] The electrical insulating oil of the present invention can be produced by slightly changing the commonly used refining conditions, and has extremely excellent oxidation stability, so it can be used in transformers used under ultra-high voltage or ultra-super high voltage. It can be used for long-term filling, etc., and has extremely high industrial value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はアルキルベンゼン中の非塩基性窒素分
を変化させた電気絶縁油の酸素吸収試験における
圧力低下と時間の関係を示している。第2図は非
塩基性窒素分を選択的に含有させた精製鉱油の製
造フローの例示である。
Figure 1 shows the relationship between pressure drop and time in an oxygen absorption test of electrical insulating oils with varying amounts of non-basic nitrogen in the alkylbenzene. FIG. 2 is an illustration of the production flow of refined mineral oil that selectively contains non-basic nitrogen.

Claims (1)

【特許請求の範囲】 1 アルキルベンゼン又はアルキルベンゼンと精
製鉱油との混合物を基油とする電気絶縁油におい
て、非塩基性窒素分を少なくとも16ppm以上含
有し、しかも塩基性窒素分を前記非塩基性窒素分
の6%以下に制限したことを特徴とする電気絶縁
油。 2 基油中のアルキルベンゼン含有率が20乃至
100容量%である前項記載の電気絶縁油。 3 非塩基性窒素分が原油中に天然に存在する非
塩基性窒素化合物の窒素である特許請求の範囲第
1項記載の電気絶縁油。 4 非塩基性窒素化合物を選択的に含有する精製
鉱油をアルキルベンゼンに混合し、非塩基性窒素
分を少なくとも16ppm以上含有し、しかも塩基
性窒素分を前記非塩基性素分の6%以下に制限し
た電気絶縁油とすることを特徴とする電気絶縁油
の製造方法。 5 水素化精製された精製鉱油をアルキルベンゼ
ンに混合し次いで固体吸着剤で処理し、非塩基性
窒素分を少なくとも16ppm以上含有し、しかも
塩基性窒素分を前記非塩基性窒素分の6%以下に
制限した電気絶縁油とすることを特徴とする電気
絶縁油の製造方法。
[Scope of Claims] 1. An electrical insulating oil whose base oil is alkylbenzene or a mixture of alkylbenzene and refined mineral oil, which contains at least 16 ppm or more of non-basic nitrogen, and in which the basic nitrogen content is greater than the non-basic nitrogen content. Electrical insulating oil characterized by being limited to 6% or less of 2 The alkylbenzene content in the base oil is 20 or more.
The electrical insulating oil described in the preceding paragraph which is 100% by volume. 3. The electrical insulating oil according to claim 1, wherein the non-basic nitrogen content is nitrogen of a non-basic nitrogen compound naturally present in crude oil. 4 Refined mineral oil selectively containing non-basic nitrogen compounds is mixed with alkylbenzene, the non-basic nitrogen content is at least 16 ppm or more, and the basic nitrogen content is limited to 6% or less of the non-basic elements. A method for producing electrical insulating oil, characterized in that the electrical insulating oil is made into electrically insulating oil. 5 Hydrotreated refined mineral oil is mixed with alkylbenzene and then treated with a solid adsorbent so that it contains at least 16 ppm or more of non-basic nitrogen, and the basic nitrogen content is reduced to 6% or less of the non-basic nitrogen content. 1. A method for producing electrical insulating oil, characterized in that the electrical insulating oil is made into a restricted electrical insulating oil.
JP13190882A 1982-03-25 1982-07-30 Electrically insulating oil and method of producing same Granted JPS5923404A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP13190882A JPS5923404A (en) 1982-07-30 1982-07-30 Electrically insulating oil and method of producing same
US06/478,946 US4542246A (en) 1982-03-25 1983-03-25 Electrical insulating oil having high oxidation stability and method for production thereof
EP83301706A EP0091249B1 (en) 1982-03-25 1983-03-25 Electrical insulating oil having high oxidation stability and method for production thereof
DE8383301706T DE3368802D1 (en) 1982-03-25 1983-03-25 Electrical insulating oil having high oxidation stability and method for production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13190882A JPS5923404A (en) 1982-07-30 1982-07-30 Electrically insulating oil and method of producing same

Publications (2)

Publication Number Publication Date
JPS5923404A JPS5923404A (en) 1984-02-06
JPS6123602B2 true JPS6123602B2 (en) 1986-06-06

Family

ID=15068981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13190882A Granted JPS5923404A (en) 1982-03-25 1982-07-30 Electrically insulating oil and method of producing same

Country Status (1)

Country Link
JP (1) JPS5923404A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101326592B (en) * 2005-12-09 2012-07-04 科学与工业研究委员会 Composition of insulating fluid and process for the preparation thereof
CN103140756B (en) 2010-12-13 2016-04-13 三菱电机株式会社 The maintenance method of the inspection method of electric insulation oil, electrical isolation oil treatment process and immersed electric apparatus oil

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS576646A (en) * 1980-06-17 1982-01-13 Tokyo Shibaura Electric Co Ultrasonic diagnosis apparatus
JPS6123601A (en) * 1984-07-12 1986-02-01 Mitsubishi Rayon Co Ltd Cast polymerization

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS576646A (en) * 1980-06-17 1982-01-13 Tokyo Shibaura Electric Co Ultrasonic diagnosis apparatus
JPS6123601A (en) * 1984-07-12 1986-02-01 Mitsubishi Rayon Co Ltd Cast polymerization

Also Published As

Publication number Publication date
JPS5923404A (en) 1984-02-06

Similar Documents

Publication Publication Date Title
JP6298446B2 (en) Electrical insulating oil composition
EP1952409B1 (en) Uninhibited electrical insulating oil
CA1063793A (en) Electrical insulating oil
US4062791A (en) Electrical insulating oil
US4069166A (en) Electrical insulating oils
US4521296A (en) Process for the production of refrigerator oil
JPS5837642B2 (en) electrical insulation oil
US3419497A (en) Electrical insulating oil
EP0091249B1 (en) Electrical insulating oil having high oxidation stability and method for production thereof
US4072620A (en) Electrical insulating oil
US4584129A (en) Electric insulating oils
US3044955A (en) Electrical insulating oils
US3932267A (en) Process for producing uninhibited transformer oil
JPS6123602B2 (en)
JP3690649B2 (en) Electric insulating oil and base oil for electric insulating oil
JPS606044B2 (en) Electrical insulation oil composition
US4731495A (en) Electrical insulating oils
JPS6044761B2 (en) Method for producing electrical insulating oil composition
JP2000345177A (en) Electrical insulating oil
JPS5932512B2 (en) Method for producing electrical insulating oil
CN114806634B (en) Transformer oil base oil and preparation method thereof
JP2649474B2 (en) Electrical insulating oil and method for producing the same
JPS604521B2 (en) Electrical insulation oil composition
JP3255890B2 (en) Electrical insulating oil
JP3989080B2 (en) Method for producing electrical insulating oil