JPS61235914A - Gate controlling method - Google Patents

Gate controlling method

Info

Publication number
JPS61235914A
JPS61235914A JP7668485A JP7668485A JPS61235914A JP S61235914 A JPS61235914 A JP S61235914A JP 7668485 A JP7668485 A JP 7668485A JP 7668485 A JP7668485 A JP 7668485A JP S61235914 A JPS61235914 A JP S61235914A
Authority
JP
Japan
Prior art keywords
gate
target
opening
gates
discharge amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7668485A
Other languages
Japanese (ja)
Other versions
JPH0616247B2 (en
Inventor
Toshio Hata
俊夫 畑
Masayoshi Suzuki
正義 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP7668485A priority Critical patent/JPH0616247B2/en
Publication of JPS61235914A publication Critical patent/JPS61235914A/en
Publication of JPH0616247B2 publication Critical patent/JPH0616247B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D9/00Level control, e.g. controlling quantity of material stored in vessel
    • G05D9/12Level control, e.g. controlling quantity of material stored in vessel characterised by the use of electric means

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Non-Electrical Variables (AREA)

Abstract

PURPOSE:To improve the accuracy of a flow rate by decreasing the number of object gates which are operated at the same time and by the same opening, by one gate each, determining automatically the number of gates in which an error range against a target water discharge quantity is the smallest, and also no minute opening is generated, and a target opening, and executing a gate control. CONSTITUTION:A total target water discharge quantity SIGMAQ from a gate is determined by a method prescribed in advance from the present stored water level H, n=N and Q=SIGMAQ are set and a target water discharge quantity Q1 per one gate is derived, and based on this Q1 and the stored water level H, a target opening P to the target water discharge quantity Q1 is derived from a polygonal line approximate calculation of H-P-Q. The target opening P is a real number and made an integer P' by bringing it to a fractional processing so as to become 1cm unit, compared with a minute opening K, and in case of P'>K, the gate is controlled. From the polygonal line approximate calculation of H-P-Q, a water discharge quantity Q1' to the target opening P' is derived, and Q1'=Q/n=SIGMAQ/N is set, but in case there is the gate which is excluded in the checking process, a value divided a value Q=Q-Qi obtained by subtracting the present water discharge quantity Qi from the excluded gate, by n=n-1 gate becomes a target water discharge quantity Q1' per one control object gate.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、ダム・堰放流設備に2門以上のゲートが設置
されている場合でのゲート制御方法に係り、特にゲート
の開度が1画単位に制御される場合に放流量を精度良好
に制御し、また、併せて微小開度時に水漏れ防止装置が
破損されないように考慮されたゲート制御方法に関する
ものである。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a gate control method when two or more gates are installed in a dam/weir discharge facility. The present invention relates to a gate control method that accurately controls the discharge amount when controlled in units, and also takes into consideration that the water leakage prevention device is not damaged when the opening is minute.

〔発明の背景〕[Background of the invention]

これまでのゲート制御方法においては、放流量が精度良
好に制御されなく、また、ゲート全閉時に底からの漏水
を防止するための水密ゴムC以下、これを水漏れ防止装
置と称す)が破損される虞れがあるものとなっている。
With conventional gate control methods, the discharge amount is not controlled with good accuracy, and the watertight rubber C (hereinafter referred to as water leak prevention device) used to prevent water from leaking from the bottom when the gate is fully closed is damaged. There is a risk that this may occur.

即ち、これまでのゲート制御方法にあっては、計測量1
crn単位の開度計が使用され穴複数門ゲートからの合
計目標放流量に対する1門轟りのゲート目標開度を貯水
位(H)と放流量(Q)と開度(P)の3次元折線近似
計算によって求めtす、あるいは予め定められた式で求
め几りしていることから、求めた開度(P)に端数が発
生するものとなっている。この端数に対する処理技術は
確立されていないが、これまでにあっては制御量を1a
n単位にする必要があり、このtめに切捨や四捨五入な
どによって整数化の処理をほどこしゲート制御している
のが実状である。しかしながら、このように制御する場
合は目標放流量と制御実施後の放流量に誤差が生じ、ひ
る場合には、水漏れ防止装置が破損される虞れがある。
That is, in the conventional gate control method, the measured quantity 1
An openness meter in crn units is used to measure the target opening of one gate against the total target discharge from multiple hole gates in three dimensions: water level (H), discharge (Q), and opening (P). Since it is determined by a polygonal line approximation calculation or by a predetermined formula, a fraction occurs in the determined opening degree (P). Processing technology for this fraction has not been established, but so far, the control amount has been reduced to 1a.
It is necessary to make it into n units, and the actual situation is that gate control is performed by performing integer processing such as truncation or rounding to the tth number. However, when controlling in this way, an error occurs between the target discharge amount and the discharge amount after the control is performed, and if this occurs, there is a risk that the water leak prevention device may be damaged.

なお、ダム放流設備制御に関する公知文献としては、”
ダム放流設備制御装置の設計仕様参考書”(昭和57年
8月、国土開発技術研究センター発行)が挙げられる。
In addition, known documents regarding dam discharge equipment control include “
One example is "Design Specification Reference Book for Dam Discharge Facility Control Devices" (August 1981, published by the National Land Development Technology Research Center).

〔発明の目的〕[Purpose of the invention]

本発明の目的は、計測量が1cW1単位の開度計が使用
され九ゲートを複数門同時同開度に操作することを原則
としにゲート制御方法において、目標開度の端数処理お
よび微小開度の条件から発生する目標放流量に対する実
放流量の誤差を少なくすべく1門のゲートで対応せず制
御可能な全ゲートに均等に配分することによりゲート開
度バランスを極力保ちつつ、しかも微小開度の発生を防
止しつつゲート制御を行なうゲート制御方法を供するに
ある。
An object of the present invention is to provide a gate control method based on the principle of operating nine gates to the same opening at the same time by using an opening meter with a measurement quantity of 1 cW 1 unit, and to perform fractional processing of the target opening and minute opening. In order to reduce the error between the actual discharge amount and the target discharge amount that occurs due to the conditions of An object of the present invention is to provide a gate control method that performs gate control while preventing the occurrence of damage.

〔発明の概要〕[Summary of the invention]

この目的のため本発明は、原則的には同時同開度操作と
いっても目標放流量に対して実放流量の精度を低下させ
てしまい貯水位に不必要な外乱を与えては安定したゲー
ト制御が行なえなく、ま几、目標放流・量を守るために
微小開度を無視すると、水漏れ防止装置Kかかる流速と
水圧によって水漏れ防止装置が破損される可能性があり
ゲートの保守回数が増加することに着目してなされたも
のである。即ち、同時同開度操作の対象ゲートを1門づ
つ減らしつつ目標放流量との誤差範囲が最も少なく、か
つ微小開度が発生しないゲート門数と目標開度を自動的
に決定し、ゲート制御を行なうようにし友ものである。
For this purpose, the present invention is designed to reduce the accuracy of the actual discharge amount relative to the target discharge amount even though the opening is operated at the same time in principle, causing unnecessary disturbance to the water level and making it unstable. If the gate cannot be controlled and the minute opening is ignored in order to maintain the target discharge/volume, the water leak prevention device may be damaged by the flow velocity and water pressure applied to the water leak prevention device. This was done with a focus on the increase in In other words, while reducing the number of gates to be operated at the same time by one gate at a time, the number of gates and the target opening are automatically determined, with the smallest error range from the target discharge amount, and at which no minute opening occurs, and gate control is performed. It is a friend to do the same.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を第1図から第6図により説明する。 The present invention will be explained below with reference to FIGS. 1 to 6.

先ず本発明に係るゲート制御システムについて説明する
。第2図はその一例でのシステム構成を示したものであ
る。図中8は制御対象としてのゲートであり、これを制
御すべくゲート8の開度を計測する開度計1、ゲート8
の状態を監視・表示し、かつゲート8の開閉操作を行な
う機側盤3、水位を測定するための測水塔7、ゲート8
の上流水位、下流水位を測定する水位計(本図では河川
の堰を例として記載しているが、ダムの場合は貯水位計
1台である)2、機側盤3との間に布設された屋外ケー
ブルへの落雷による制御装置の保護機能や、ゲートの開
閉信号に対する誤指令、過動作防止機能が設けられてい
る入出力中継装置4、ゲート8を監視・制御する処理装
置6、入出力中継装置4と処理装置6とのインターフェ
イス機能をもつプロセス入出力装置5よゆ構成されるよ
うになっている。ゲート制御は水位計データB1開度計
データA1機側状態信号Cをもとに処理装置6で目標開
度を求めゲートの開閉信号りが処理装置6より機側盤3
に出力されるようになっているものである。
First, a gate control system according to the present invention will be explained. FIG. 2 shows an example of the system configuration. 8 in the figure is a gate as a controlled object, and in order to control this, the opening meter 1 measures the opening degree of the gate 8, and the gate 8
machine side panel 3 for monitoring and displaying the status of the gate 8 and for opening/closing the gate 8; a water measuring tower 7 for measuring the water level; and a gate 8.
(This diagram shows a river weir as an example, but in the case of a dam, there is only one water level meter) 2, which measures the upstream water level and downstream water level of the machine, and the machine side panel 3. The input/output relay device 4 is equipped with a function to protect the control device from lightning strikes on outdoor cables that have been installed, and a function to prevent erroneous commands and overoperation with respect to gate opening/closing signals, a processing device 6 that monitors and controls the gate 8, A process input/output device 5 having an interface function between the output relay device 4 and the processing device 6 is configured. For gate control, the target opening is determined by the processor 6 based on the water level gauge data B1, the opening gauge data A1, and the machine side status signal C, and the gate opening/closing signal is sent from the processor 6 to the machine side panel 3.
It is designed to be output to .

さて、本発明によるゲート制御方法について説明すれば
、第1図は処理装置6におけるゲート制御処理の一例で
のフローを示したものである。なお、この第1図にはゲ
ートN門に対する制御対象開数と目標開度が決定された
うえゲート制御されるまでの機能が従来技術と対比され
て全体的に示されたものとなっている。
Now, to explain the gate control method according to the present invention, FIG. 1 shows a flow of an example of gate control processing in the processing device 6. As shown in FIG. In addition, this Figure 1 shows the overall function from the time when the controlled opening and target opening for the N gate are determined to when the gate is controlled, in comparison with the conventional technology. .

制御処理においては先ず現在の貯水位Hが取り込まれ予
め定められた方法で貯水位H1あるいは流入量に対する
ゲートからの合計目標放流量ΣQが決定される。次には
今回、本方法によりチェックされるゲートの門数、合計
目標放流量の初期値をそれぞれn=N、Q=ΣQとしゲ
ート1門当りの目標放流量Qlが求められる(Ql=Q
/n)。
In the control process, first, the current water storage level H is taken in, and a total target discharge amount ΣQ from the gate with respect to the water storage level H1 or the inflow amount is determined using a predetermined method. Next, the initial values of the number of gates to be checked by this method and the total target discharge amount are n=N and Q=ΣQ, respectively, and the target discharge amount Ql per gate is calculated (Ql=Q
/n).

この後はとのQlと取り込んだ貯水位HをもとにH−P
−Qの折線近似計算から目標放流量Q1に対する目標開
度Pを求めるものである。折線近似計算の手法は従来技
術と同様であるが、求めた目標開度Pは実数であり1m
単位になるように端数処理を行ない整数P′にする必要
がある。この目標開度P′が予め定められている微小開
度にと比較しP’)Kならばn門のゲートを制御するこ
とは可能とし、一方、P’(Kならば微小開度になりn
門での制御は不可とするものである。制御可能な場合に
は、目標開度P′と貯水位HをもとにH−P−Qの折線
近似計算から目標開度P′に対する放流量Ql’が求め
られる。このQ、′は初期放流量としてはQI’=Q/
n=ΣQ/Nであるが、制御対象ゲートを1門ずつチェ
ックしていく過程で除外したゲートがある場合は、除外
ゲートからの現在放流量Qiを差し引いた値Q=Q−Q
jをn=H・−1門で割つ比値を制御対象ゲート1門当
りの目標放流量Ql’とする。また、このときのゲート
全放流量としては制御対象ゲートからQ、/Xn、除外
ゲートからΣQi(fは制御対象外ゲーsl ある。このΣQ′が制御開始前に求めた合計目標放流量
ΣQに対し流量不感帯と呼ばれる偏差士JQの門数なら
ばn門のゲートを目標開度P′まで制御可能とし、もし
も士ΔQ以上ならば制御対象ゲート門数を更に1門減少
し再度1門当りの目標放流量を求め直すものである。こ
のようにして制御可能なゲートが全くない場合(n=o
)は、最初に求め光目標開度P′にて全ゲートN門を制
御するものである。
After this, H-P is based on the previous Ql and the imported water level H.
The target opening degree P for the target discharge amount Q1 is determined from the polygonal line approximation calculation of −Q. The method of polygonal line approximation calculation is the same as that of the conventional technology, but the obtained target opening degree P is a real number and is 1 m.
It is necessary to perform rounding to make an integer P' so that it is a unit. Comparing this target opening degree P' with a predetermined minute opening degree, if P')K, it is possible to control n gates; on the other hand, if P'(K), it becomes a minute opening degree. n
Control at the gate will not be possible. If control is possible, the discharge amount Ql' with respect to the target opening P' is determined from a polygonal line approximation calculation of HPQ based on the target opening P' and the water storage level H. This Q,' is the initial discharge amount, QI'=Q/
n = ΣQ/N, but if there is a gate excluded in the process of checking the controlled gates one by one, the value obtained by subtracting the current discharge amount Qi from the excluded gate is Q = Q - Q
Let the ratio value of dividing j by n=H·-1 gate be the target discharge amount Ql' per gate to be controlled. In addition, the total gate discharge amount at this time is Q from the controlled gate, /Xn, and ΣQi from the excluded gate (f is the non-controlled gate sl. This ΣQ' is the total target discharge amount ΣQ obtained before starting the control. On the other hand, if the number of gates is JQ, which is called the flow rate dead zone, it is possible to control n gates up to the target opening P', and if it is greater than ΔQ, the number of gates to be controlled is further reduced by one, and the number of gates per gate is increased again. This method recalculates the target discharge amount.If there are no gates that can be controlled in this way (n=o
) is to control all N gates at the optical target opening P' which is first determined.

この上うに1流量不感帯や微小開度によってn門のゲー
ト制御が不可能なとき対象ゲートを1門づつ減少し、か
つ流量不感帯をチェックしながら制御可能なゲート同数
nと目標開度P′を求め制御する場合は、目標開度Pの
整数化に伴なう放流量誤差を1門にだけ集約させること
なく制御可能なゲートn門に均等に配分し得、N門のゲ
ート開度バランスもある種度保ち得るわけである。なお
、全ゲートが除外されたときは従来と同様にN門のゲー
トを目標開度P’にて制御する。図中における破線は従
来方式を示したものである。
Furthermore, if it is impossible to control n gates due to a flow rate dead zone or minute opening, reduce the number of target gates one by one, and while checking the flow rate dead zone, determine the same number of controllable gates n and the target opening P'. In the case of determining and controlling, the discharge amount error caused by converting the target opening degree P into an integer can be distributed evenly to the n controllable gates without concentrating it on just one gate, and the gate opening balance of the N gates can also be adjusted. It can be maintained to some extent. Note that when all the gates are excluded, the N gates are controlled at the target opening degree P' as in the conventional case. The broken line in the figure shows the conventional method.

第3図(a)〜(C)は従来方式による問題点に対し本
発明を適用した場合での制御動作を示したものである。
FIGS. 3(a) to 3(C) show control operations when the present invention is applied to the problems of the conventional system.

但し、ここでは第3図(a)に示すように流量不感帯Δ
Q=2m”/s、微小開度K = 1 z、全ゲートの
現在開度を2cmとしている。
However, here, as shown in Fig. 3(a), the flow rate dead zone Δ
Q = 2 m''/s, minute opening K = 1z, and the current opening of all gates is 2 cm.

現在、貯水位H= 9 m%開度P = 2 cmとし
た場合のゲート1門当りの放流量Q′は第3図(b)に
示すH−P−Qの折線近似計算より以下のように求めら
れる。
Currently, when the water storage level H = 9 m% and the opening degree P = 2 cm, the discharge amount Q' per gate is calculated as follows from the H-P-Q line approximation calculation shown in Figure 3 (b). is required.

Q xy = Q m”/ s Q ab = 3 m’/ s −O Q’  =   (3−01十〇 =1.2mJ/ s
したがって、ゲート4門からの合計放流量ΣQ′は4.
13 m ”/sである。この状態のとき合計目標放流
量ΣQ;24m”/sが決定されt場合、制御対象ゲー
トの初期値はn = 4門、Q=24m”/sとなる。
Q xy = Q m"/s Q ab = 3 m'/s - O Q' = (3-01〇 = 1.2 mJ/s
Therefore, the total discharge amount ΣQ' from the four gates is 4.
13 m''/s. In this state, if the total target discharge amount ΣQ; 24 m''/s is determined and t, the initial values of the gates to be controlled are n = 4 gates and Q = 24 m''/s.

ゲート1門当りの目標放流量QlはQ、=Q/n=6m
’/sであり、貯水位H=9m、目標放流量QB =6
m3/sにおける目標開度PはH−P−Qの折線近似計
算より以下のように求められる。
The target discharge amount Ql per gate is Q, =Q/n=6m
'/s, water level H = 9m, target discharge amount QB = 6
The target opening degree P at m3/s is obtained as follows from the H-P-Q line approximation calculation.

Q ab = 3 m”/s Q ce = 9 m ”/s      ″このP 
= 7.5 cmを整数化してP’=7mとするとP′
は微小開度K = 1 cmに対し大きいtめ微小開度
に対しては4門とも制御可能な対象ゲートとなる。一方
、目標開度P′=7の、貯水位H=9mにおける放流量
Ql’はH−P−Qの折線近似計算より以下のようにな
る。
Q ab = 3 m"/s Q ce = 9 m"/s "This P
= 7.5 cm is converted into an integer and P' = 7m, then P'
The four gates are controllable target gates for the t-th minute opening, which is larger than the minute opening K = 1 cm. On the other hand, the discharge amount Ql' at the target opening degree P'=7 and the water storage level H=9 m is calculated as follows from the HPQ broken line approximation calculation.

Q ab = 3 m’/s Q ce = 9 m’/s また、対象外のゲートは0門のため対象外ゲートからの
合計放流量ΣQiはΣQ i = Om’ /sである
。したがって、ゲート開度P′=7crnで4門のゲー
トを制御しt場合合計放流量ΣQ′はΣQ′=5.4 
ms/s X 4 +Om”/s = 21゜5m”/
3となり合計目標放流量ΣQ=24m”/sとの誤差は
1ΣQ′−ΣQ l=2.4m”/Sとなる。コノ14
m ” / sの誤差は予め定められた流量不感帯ΔQ
=2m’/sに対し大きいため4門のゲートを開度7筋
にし得ないことになる。よって、対象ゲートを3門にし
く n=3 )、対象外としたゲートからの合計放流量
をΣQ i = 1.2 m”/sとして再度目標開度
P′が求められる。
Q ab = 3 m'/s Q ce = 9 m'/s Since there are 0 non-target gates, the total discharge amount ΣQi from the non-target gates is ΣQ i = Om' /s. Therefore, when 4 gates are controlled with gate opening P' = 7 crn and t, the total discharge amount ΣQ' is ΣQ' = 5.4
ms/s X 4 +Om”/s = 21゜5m”/
3, and the error from the total target discharge amount ΣQ=24 m''/s is 1ΣQ'-ΣQ l=2.4 m''/S. Kono 14
The error of m”/s is the predetermined flow dead zone ΔQ
= 2 m'/s, so the four gates cannot be opened at seven angles. Therefore, the target opening degree P' is determined again by changing the number of target gates to three (n=3) and setting the total discharge amount from the non-target gates as ΣQ i = 1.2 m''/s.

n=n−1=4−1=3門 n=Q−Qi=24−1゜2 = 2L8m’/sQ 
t = Q/ n = 22.873 =7.6 m”
/s目標放流量Q!= 7.6 m”/s 、貯水位H
=9mのとき、目標開度Pは以下のように求められる。
n=n-1=4-1=3 gates n=Q-Qi=24-1゜2 = 2L8m'/sQ
t = Q/ n = 22.873 = 7.6 m”
/s Target discharge amount Q! = 7.6 m”/s, water level H
=9m, the target opening degree P is determined as follows.

Q ab = 3 m”/s Q ce = 9 m”/s Pを整数化した目標開度P′をP’=8crnとすると
 p/は微少開度に=1cIr1に対し大きいためn 
= 3門とも制御対象となり得る。次に目標開度P ’
 = 8 cm、貯水位H=9mにおける放流量Q1/
を求めれば以下のようになる。
Q ab = 3 m"/s Q ce = 9 m"/s If the target opening P', which is P converted into an integer, is P' = 8 crn, p/ is larger than the minute opening = 1cIr1, so n
= All three gates can be controlled. Next, target opening P'
= 8 cm, discharge amount Q1/ at storage level H = 9 m
If you search for it, you will get the following.

Q ab = 3 m’/ s Qce=9m”/s また、対象外ゲートが1門あるが、その放流量ΣQiが
ΣQ = 1.2 m”/sであるとしてゲート開度8
anで3門のゲートを制御する場合、合計放流量ΣQ′
はΣQ’=6.6m”/s X 3 + 1.2m”/
s ==21.0ms/Sとなり、合計目標放流量ΣQ
=24m ” / sとの誤差は3.9m”/sとなる
。この誤差3.0m”/sも流量不感帯ΔQ = l 
Q m”/sより大きいため更に制御対象ゲートは1門
減らされるものである。
Q ab = 3 m'/s Qce = 9 m''/s In addition, there is one gate that is not targeted, but assuming that its discharge amount ΣQi is ΣQ = 1.2 m''/s, the gate opening degree is 8.
When controlling three gates with an, the total discharge amount ΣQ′
is ΣQ'=6.6m"/s X 3 + 1.2m"/
s ==21.0ms/S, and the total target discharge amount ΣQ
= 24 m''/s, the error is 3.9 m''/s. This error of 3.0 m”/s is also a flow dead zone ΔQ = l
Since it is larger than Q m''/s, the number of gates to be controlled is further reduced by one.

rl=n−1=3−1=2門 n=Q −Q i = 22.8−1.2=21.6m
”/5Ql=Q/n=21.6/2=10.8m’/s
この条件で前回と同様の計算をすれば、P=11、5 
cm、 L九がってP’==11crnとするとQl’
= l O,2m”/sとなる。このときの合計放流量
ΣQ′は制御対象、対象外ゲートそれぞれ2門あること
から、Σ’Q’ = 10.2 m”/s X 2+1
.2m”/ s X 2=218m”/sとなる。この
場合での放流量誤差は1.2m”/Sであり、これは流
量不感帯ΔQ= Z Om”/sより小さくしたがって
、第3図(C)に示すようにゲート2門を目標開度11
倒で制御すれば、目標放流量24m”/sに対し放流量
を最も近づけることが可能となるものである。なお、l
X3図(a)、 (C)中に符号9は既述の水漏れ防止
装置を示す。
rl=n-1=3-1=2 gates n=Q -Q i = 22.8-1.2=21.6m
”/5Ql=Q/n=21.6/2=10.8m'/s
If you do the same calculation as last time under these conditions, P = 11, 5
cm, L9 and P'==11crn, then Ql'
= l O, 2m"/s.The total discharge amount ΣQ' at this time is 2 gates each for controlled and non-controlled gates, so Σ'Q' = 10.2 m"/s X 2+1
.. 2m"/s x 2=218m"/s. The discharge flow error in this case is 1.2 m"/S, which is smaller than the flow rate dead zone ΔQ = Z Om"/s. Therefore, as shown in Fig. 3(C), the two gates are set to the target opening degree of 11.
If the control is carried out vertically, it will be possible to bring the discharge rate closest to the target discharge rate of 24 m''/s.
The reference numeral 9 in FIGS.

さて、ここで本発明による効果の程を明らかにする意味
で、これまで行なわれていた任意の貯水位IH)と放流
量(Q)より開度(Plか、または任意の貯水位(H)
と開度(P)より放流量(Q)を求める方法について第
4図(a)、 (b)により説明すれば以下のようであ
る。
Now, in order to clarify the extent of the effect of the present invention, we will calculate the opening degree (Pl) or the arbitrary water storage level (H) from the arbitrary water storage level IH) and the discharge amount (Q) that have been done so far.
The method of determining the discharge amount (Q) from the opening degree (P) and the opening degree (P) is explained below using FIGS. 4(a) and 4(b).

即ち為一般に放流量Q(R+ pt )s Q(II 
pt◆l)は式(1)、(2)によって与えられる。
That is, in general, the discharge amount Q(R+ pt)s Q(II
pt◆l) is given by equations (1) and (2).

・・・・・・・・・(1) ・・・・・・・・・(2) したがって、式(1)、 (2)よt) P(!T、 
Q)−Q(II−P)は以下のように求められる。
・・・・・・・・・(1) ・・・・・・・・・(2) Therefore, equations (1) and (2) t) P(!T,
Q)-Q(II-P) is determined as follows.

・・・・・・・・・(8) ・・・・・・・・・(4) 式(1)〜(4)は一般式を示すが、M4図(a)、 
(b)はその具体例を示したものである。この場合第4
図(b)は第4図(a)における一部を拡大表示し友も
のであるが、因みにその図におけるQab、QCe、P
、Qは以下のようである。
・・・・・・・・・(8) ・・・・・・・・・(4) Formulas (1) to (4) show general formulas, but M4 diagram (a),
(b) shows a specific example. In this case the fourth
Figure (b) is an enlarged view of a part of Figure 4 (a), but by the way, Qab, QCe, P
, Q are as follows.

Qb−Qa Q ab =      (H−Ha)+Q a4  
Hs Qce=”二S’ (H−Hsi + Q ’4  H
a Q  = −”’ (Qce−Qab)+Qabz  
Pt 第5図はその場合での制御を具体的に示しtものである
。図示の如く例えば、制御対象ゲートが4門、現在の貯
水位Hが9mのときに全ゲートからの合計目標放流量Σ
QがΣQ == 24 rn” / S % 1門当り
の目標放流量QがQ= 5 m”/sとすれば、ゲート
の目標開度Pは以下のように求められる。
Qb-Qa Q ab = (H-Ha) + Q a4
Hs Qce=”2S’ (H-Hsi + Q’4 H
a Q = −”' (Qce−Qab)+Qabz
Pt FIG. 5 specifically shows the control in that case. As shown in the figure, for example, when there are four gates to be controlled and the current water level H is 9 m, the total target discharge amount Σ from all gates
Q is ΣQ == 24 rn''/S % If the target discharge amount Q per gate is Q=5 m''/s, the target opening degree P of the gate is determined as follows.

Q ab = −(9−8)+ 2 = 3 m”/ 
sQ ce = ’−”−(9−8) + 8 = 9
 m”/sP  =    (10−5)+5 =7.
5 cmしかしながら、ゲートの開度の計測は計測単位
が1crnO開度計によっていることから、P=7.5
αで制御を実行することは不可能である。このため、求
めた目標開度に端数が発生し穴場合の処理としてP =
 7 cmかま穴はP = 8 画にせざるを得ない。
Q ab = −(9-8)+ 2 = 3 m”/
sQ ce = '-"-(9-8) + 8 = 9
m”/sP = (10-5)+5 =7.
5 cm However, since the measurement unit for measuring the opening degree of the gate is a 1 crnO opening meter, P = 7.5
It is impossible to perform control with α. For this reason, a fraction occurs in the calculated target opening degree, and in the case of a hole, P =
A 7 cm hook hole has no choice but to be P = 8 strokes.

この例ではP = 7 cmとしている。端数処理した
目標開度7crr&でゲートを制御した結果、放流量は
以下のようになる。
In this example, P = 7 cm. As a result of controlling the gate with the rounded target opening degree of 7crr&, the discharge amount is as follows.

ΣQ’= 5.4 X4=21.6m’/sこれでは目
標放流量と実際の放流量に1門当り0、6 m”/s 
、合計で2.4m”/sの誤差が生じてしまうことにな
る。まtlここで求めた目標開度Pが水漏れ防止装置9
の破損を防ぐために予め定められt微小開度の範囲にあ
る場合は、ゲートの制御は実施し得す、結局は目標放流
量に対し誤差を生じさせることになる。即ち、従来方式
では、開度計はその計測単位がIGであるために同時同
開度制御すると、目標放流量と実放流量の間に誤差(ゲ
ート門数に比例する)が生じ、ひいては貯水位Hに不必
要な外乱を与えることになるものである。因みにP =
 8 cmとした場合ではQ’=’6.6ms/S、Σ
Q’ = 26.4 m’/sとなる。
ΣQ'= 5.4
, an error of 2.4 m''/s will occur in total.The target opening degree P obtained here will be
If the opening degree is within the predetermined range of t minute opening to prevent damage to the valve, gate control may be performed, but this will eventually result in an error in the target discharge amount. In other words, in the conventional method, the measurement unit of the opening meter is IG, so if the opening is controlled at the same time, an error (proportional to the number of gates) will occur between the target discharge amount and the actual discharge amount. This will cause unnecessary disturbance to the position H. Incidentally, P =
In the case of 8 cm, Q'='6.6ms/S, Σ
Q' = 26.4 m'/s.

さて、最後に第6図(a)、 (b)により本発明によ
る効果の程について説明する。第6図(a)、 (b)
はそれぞれゲート開制御の場合、ゲート閉制御の場合で
の貯水位の変化を示しtものである。本発明に係るもの
は実線表示として、また、従来方式に係るものは破線表
示として示すが、従来方式による場合には明らかに貯水
位には不必要な外乱あるいは変動が認められるものとな
っている。即ち、従来方式においては開制御の場合に端
数処理されt開度が不足している場合には第6図(a)
に示す如く貯水位は徐々に大きくなるものである。一方
、閉制御の場合に端数処理され九開度が小さくない場合
は放流量が大となる結果、貯水位は徐々に小さくなるも
のである。
Finally, the effects of the present invention will be explained with reference to FIGS. 6(a) and 6(b). Figure 6 (a), (b)
are the changes in the water level in the case of gate open control and the case of gate closed control, respectively. The method according to the present invention is shown as a solid line, and the method according to the conventional method is shown as a broken line. However, in the case of the conventional method, unnecessary disturbances or fluctuations are clearly observed in the water level. . That is, in the conventional system, in the case of open control, fractions are processed, and when the opening degree t is insufficient, as shown in Fig. 6 (a)
As shown in Figure 2, the water level gradually increases. On the other hand, in the case of closed control, if the number of openings is not small due to rounding, the discharge amount becomes large, and the water storage level gradually decreases.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明による場合は、計測量が1個
単位の開度計を使用しているゲートの制御において、分
解能が1cW1のために発生する流量誤差を防止するの
に特定な1門のゲートに誤差分の流量を割り振るのでは
なく制御可能なゲートに均等配分していることから、流
量精度を向上させることができ、かつ、ゲート開度は殆
どが同一に々るtめ、特定ゲートへの水圧や、河床の変
化に対する問題がなくなる。また、ゲートの開閉制御を
実行しない場合に発生する貯水位の不必要な変動も防ぐ
ことができるので、安定しtゲート制御が行なえること
になる。更に、微小開度も考慮されていることから、水
漏れ防止装置の破損も防止されることになる。
As explained above, in the case of the present invention, in controlling a gate using a position meter whose measurement quantity is one unit, a specific gate is used to prevent a flow rate error that occurs due to the resolution of 1 cW1. Rather than allocating the error flow rate to the gates, the flow rate is distributed equally to controllable gates, which improves flow rate accuracy. There are no problems with water pressure on the gate or changes in the river bed. Further, unnecessary fluctuations in the water level that occur when gate opening/closing control is not performed can be prevented, so that stable t-gate control can be performed. Furthermore, since minute openings are taken into account, damage to the water leakage prevention device is also prevented.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明、によるゲート制御方法の一例でのゲ
ート制御処理のフローを示す図、第2図は本発明に係る
ゲート制御システムの一例でのシステム構成を示す図、
第3図(a)、 (b)、 (C)は、本発明によるゲ
ート制御方法を具体的に説明するための図、第4図(a
)、 (b)/および第5図は、従来方式における開度
ま九は放流量の求め方とそのゲート制御を具体的に説明
するための図、第6図(a)、 (b)は、本発明によ
る効果の程を説明するための図である。 1・・・開度計、2・・・水位計、3・・・機側盤、4
・・・入出力中継装置、5・・・プロセス入出力装置、
6・・・処理装置、7・・・測水基、8・・・ゲート。
FIG. 1 is a diagram showing a flow of gate control processing in an example of a gate control method according to the present invention, and FIG. 2 is a diagram showing a system configuration in an example of a gate control system according to the present invention.
3(a), (b), and (C) are diagrams specifically explaining the gate control method according to the present invention, and FIG. 4(a)
), (b) / and Fig. 5 are diagrams specifically explaining how to determine the opening degree and discharge amount in the conventional method and its gate control, and Fig. 6 (a) and (b) are , is a diagram for explaining the extent of the effect of the present invention. 1... Openness gauge, 2... Water level gauge, 3... Machine side panel, 4
... input/output relay device, 5... process input/output device,
6... Processing device, 7... Water gauge base, 8... Gate.

Claims (1)

【特許請求の範囲】 1、計測単位が1cmの開度計が具備されているゲート
複数の開度が、既知の貯水位−放流量−開度の関係より
求められた後端数処理され、端数処理された開度にもと
づき上記ゲート複数が制御されるゲート制御方法におい
て、同時同開度として操作されるゲートを1門づつ減ら
しつつ目標放流量との誤差範囲が最小となるゲート門数
と目標開度を自動的に決定し、ゲート制御を行なうこと
を特徴とするゲート制御方法。 2、目標開度が予め定められている微小開度以下となつ
た際、同時同開度として操作されるゲートを1門づつ減
らしつつ目標放流量との誤差範囲が最小となるゲート門
数と目標開度を自動的に決定し、ゲート制御を行なう特
許請求の範囲第1項記載のゲート制御方法。
[Claims] 1. The opening degrees of a plurality of gates each equipped with an opening meter with a measurement unit of 1 cm are obtained from the known relationship between water level - discharge amount - opening degree, and then rounded. In the gate control method in which multiple gates are controlled based on the processed opening degree, the number of gates and the target number that minimize the error range from the target discharge amount while reducing the number of gates that are operated with the same opening degree one by one. A gate control method characterized by automatically determining the opening degree and controlling the gate. 2. When the target opening becomes less than a predetermined minute opening, reduce the number of gates that are operated simultaneously with the same opening one by one, and determine the number of gates that minimizes the error range from the target discharge amount. The gate control method according to claim 1, wherein the target opening degree is automatically determined and gate control is performed.
JP7668485A 1985-04-12 1985-04-12 Gate control method Expired - Lifetime JPH0616247B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7668485A JPH0616247B2 (en) 1985-04-12 1985-04-12 Gate control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7668485A JPH0616247B2 (en) 1985-04-12 1985-04-12 Gate control method

Publications (2)

Publication Number Publication Date
JPS61235914A true JPS61235914A (en) 1986-10-21
JPH0616247B2 JPH0616247B2 (en) 1994-03-02

Family

ID=13612264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7668485A Expired - Lifetime JPH0616247B2 (en) 1985-04-12 1985-04-12 Gate control method

Country Status (1)

Country Link
JP (1) JPH0616247B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2277757A1 (en) * 2005-09-27 2007-07-16 Universidad De Castilla-La Mancha (Uclm) Fractional control system for water levels in main irrigation channels includes communications module, data processing and control module, and software that conforms to graphical setting
CN111501952A (en) * 2020-04-24 2020-08-07 北京北排智慧水务有限公司 Novel pipeline space storage adjusting device and using method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2277757A1 (en) * 2005-09-27 2007-07-16 Universidad De Castilla-La Mancha (Uclm) Fractional control system for water levels in main irrigation channels includes communications module, data processing and control module, and software that conforms to graphical setting
CN111501952A (en) * 2020-04-24 2020-08-07 北京北排智慧水务有限公司 Novel pipeline space storage adjusting device and using method thereof

Also Published As

Publication number Publication date
JPH0616247B2 (en) 1994-03-02

Similar Documents

Publication Publication Date Title
Padulano et al. Hydraulic design of a USBR Type II stilling basin
CN104407631A (en) Device and method for controlling oil consumption in large-span measurement range in ground-based simulation test
JPS61235914A (en) Gate controlling method
RU2743704C1 (en) Method for determining coordinates of combinatory dependence point of rotary-vane hydraulic turbine
US20230267246A1 (en) Method for constructing general probability model of harmonic emission level for industrial load
CN116451611A (en) Method and system for constructing and simulating bright full-flow simulation model
JPWO2018167957A1 (en) Water amount control system and water amount control method
RU51680U1 (en) HYDROTURBINE ROTATION REGULATOR
Wahl et al. Applying the energy-momentum method to radial gate discharge calibration
Chen et al. Characterization of surge superposition following 2-stage load rejection in hydroelectric power plant
Taylor et al. Results of Kootenay canal flow comparison test using intake methods
JPS6154516A (en) Solar power generator system
JP7466749B1 (en) Tipping weir control system, tipping weir control method and program
JP3939017B2 (en) Operation method of water conveyance facility and water channel control system for realizing the same
Wolters et al. Calibration of weirs in The Fayoum, Egypt: Choosing between a measured and a calculated rating
CN107895599A (en) A kind of voltage-stablizer water level measurement method and voltage-stablizer
Muss Friction losses on lines with service connections
Taubaldiyev et al. ACCOUNTING OF WATER CONSUMPTION AT HYDROELECTRIC POWER PLANTS
SU547775A1 (en) Pneumatic integrator
Groscurth Discussion of “Spillway Discharge Coefficients for Rock Island Dam”
SU1307258A1 (en) Device for checking pressure
Adamkowski et al. Volumetric gauging method vs Gibson method—Comparative analysis of the measurement results of discharge through pomp-turbine in both operation modes
Hydraulic Plant and Machinery Group et al. Comparative experiments on surge tank performance
Gibson et al. Closure to “Discussions of ‘An Experimental and Analytical Investigation of a Differential Surge-Tank Installation’”(1956, Trans. ASME, 78, pp. 936–938)
Jaeger Discussion:“An Experimental and Analytical Investigation of a Differential Surge-Tank Installation”(Gibson, WL, and Shelson, W., 1956, Trans. ASME, 78, pp. 925–936)